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Abstract. Let by, by € BMO(R"™) and T, be a bilinear Fourier multiplier operator with
associated multiplier o satisfying the Sobolev regularity that sup [|ox [|yys1.52 (r2n) < oo for
KEZ

some $1, 82 € (n/2,n]. In this paper, the behavior on LP'(R™) x LP2(R™) (p1,p2 € (1,00)),
on HY(R™) x LP2(R™) (p2 € [2,00)), and on H(R™) x H(R™), is considered for the
commutator T defined by

T, 5(f1, fo)(x) = b1(2)To (f1, f2)(x) — To (b1 f1, f2)(x)
+ b2(2)To (f1, f2)(2) = To(f1,b2f2)(x).

By kernel estimates of the bilinear Fourier multiplier operators and employing some tech-
niques in the theory of bilinear singular integral operators, it is proved that these mapping

properties are very similar to those of the bilinear Fourier multiplier operator which were
established by Miyachi and Tomita.
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MSC 2010: 42B15

1. INTRODUCTION

In their seminal works [3], [4], Coifman and Meyer considered the mapping proper-
ties of the bilinear Fourier multiplier operator. Let o € L°°(R?"). Define the bilinear
Fourier multiplier operator T, by

11 T fo)(a) = / exp (2 (6 + 62))(Er, €)1 (€1) fala) A

R2n

The research has been supported by National Natural Science Foundation of China under
Grant #10971228 and #11371370.
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initially for f1, fo € #(R"™), where f denotes the Fourier transform of f and dg =
d¢; dé. Coifman and Meyer [4] proved that if o € C*(R?" \ {0}) satisfies that

(12) 08 0820(E1, €2)| < Clay (1] + €)= 102D

for all multiindices oy, ag such that |oy| + |az] < s with s > 4n + 1, then T,
is bounded from LP'(R™) x LP?>(R™) to LP(R™) for all 1 < p1,p2,p < oo with
1/p=1/p1+1/ps. Using the theory of the multilinear Calderén-Zygmund operator,
Grafakos and Torres [9], Kenig and Stein [11] improved the results of Coifman and
Meyer, proving that if o satisfies (1.2) for all | |+|a2| < s with s > 2n+1, then T, is
bounded from LP* (R™) x LP?(R™) to L»*°(R™) when p1, ps € [1,00] and p € [1/2, c0)
with 1/p = 1/p1 + 1/p2, and is bounded from LP*(R™) x LP2(R™) to LP(R™) when
p1,p2 € (1,00] and p € (1/2,00). In recent years, considerable attention has been
paid to the mapping properties of T, when ¢ satisfies some conditions of Hérmander-
Mihlin type. Let ¥ € (R?") be such that supp ¥ C {(&1,&2): 1/2 < |&1]+]&| < 2}
and Y W(277¢;,275&) =1 for all (&,&2) € R?™\ {0}. Set
KEZL

(1.3) 0k (€1,&2) = V(&1,&)0(2761,27Es).

Tomita [17] proved that if sup |0 ||wsw2n) < oo for some s > n, then T, is bounded

from LP'(R™) x LP2(R™) toELp([R”) for p1,p2,p € (1,00) and 1/p = 1/p1 + 1/pa.
Grafakos and Si [8] considered the mapping properties from LP'(R™) x LP2(R™) to
LP(R™) for T, when p < 1. Fairly recently, Miyachi and Tomita [15] considered the
problem to find the minimal smoothness conditions for the boundedness of T,,. For
s1, 82 € (0,00), define

W2 (R21) o= {f € LAR®™): | fllwerearany < 00},

with
By ageom = [ (61 6202 . €0 0

where (&) = (1 + |¢,]?)"/2. Miyachi and Tomita [15] proved the following result.

Theorem 1.1. Let 0 € L°°(R?") and let T, be the operator defined by (1.1). If
o satisfies that

(1.4) sup [|o || ps1.s2 (r2n) < 00
KEZ

for 51,82 € (n/2,n], then for p1,pa € (1,00], p € [2/3,00) with 1/p = 1/p1 + 1/pa,
T, is bounded from LP*(R™) x LP2(R™) to LP(R™). Moreover,
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(i) if p1 € (0,1] and p2 € [2,00), o satisfies (1.4) for some s; € (n/p1,00) and
s2 € (n/2,n], then T, is bounded from HP*(R™) x LP?(R™) to LP(R"™);

(i) if p1,p2 € (0,1], o satisfies (1.4) for some s1 € (n/p1 — n/2,00), s2 € (n/p2 —
n/2,00) and sy + s2 > n/p1 +n/ps —n/2, then T, is bounded from HP'(R™) x
HP2(R™) to LP(R™).

Now let us consider the commutator of T,. For a function b € BMO(R"™), set

b, To1' (1. f2)(2) = 0(2)T5 (f1, fo)(2) = To(bfr, f2)(2),

and

[0, T5 12 (f1, f2)(x) = b(2)T5 (f1, f2) (@) = To(f1, bf2) (@),
initially for fi, fo € .Z(R™). Let by, by € BMO(R™) and b = (by,b). Define the
commutator generated by band T, by

2
(1.5) iU f2)(@ = [br, o1 (f1, f2) ().
k=1

By the result of Lernel et al. [13], we know that if o satisfies (1.2) for all |aq|+|ag| <
with s > 2n+1, then T'_; is bounded from LP* (R™)x LP?(R™) to LP(R™) provided that
p1,p2 € (1,00] and p E (1/2 o0) with 1/p = 1/p1 + 1/p2, and enjoys an endpoint
estimate of LlogL x LlogL type. Anh and Duong [1] considered the weighted
estimates with multiple weights for T ; when o satisfies (1.2) for n <'s < 2n.

Our first purpose of this paper is to consider the behavior on the product of
Lebesgue spaces for the commutator ngg. We will show that the behavior of ng on
LPr(R™) x LP2(R™) is similar to that of T,,. More precisely, we have

Theorem 1.2. Let o € L>®°(R?") and let T, be the operator defined by (1.1). If
(i) o satisfies (1.4) for s1,s2 € (n/2,n], p1,p2 € (1,00), p € [2/3,00) with 1/p =
1/p1+1/p2,
or
(ii) o satisfies (1.4) for s1,s2 € (n/2,n] and s1 + s2 > (3/2)n, p1,p2 € (1,00) and
p € (1/2,00) with 1/p=1/p1 + 1/pa,
then T 7 is bounded from LP*(R™) x LP2(R") to LP(R™).

Remark 1.1. By Theorem 1.2 and the argument used in [15], it follows that
if p1,p2 € (1,00), p € (1/2,2/3) with 1/p = 1/p1 + 1/p2, and o satisfies (1.4) for
s1, 82 € (n/2,n] such that s; + s2 > n/p1 + n/p2 — n/2, then T ; is bounded from
LP1(R™) x LP2(R™) to LP(R™).

We will also consider the endpoint estimates for T
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Theorem 1.3. Let o € L>(R?") and let T, be the operator defined by (1.1).

(a) If p € [2,00) and o satisfies (1.4) for s1,52 € (n/2,n], then T ; is bounded
from HY(R™) x LP2(R™) to LP>°(R™) with 1/p =1+ 1/ps;

(b) if o satisfies (1.4) for s1,s2 € (n/2,n] with s1+s3 > 3n/2, then T, ; is bounded
from H*(R™) x H'(R™) to L'/%>(R").

Remark 1.2. Our proof of Theorem 1.2, which will be given in Section 2, also
applies to the iterated commutator of T, defined by

T 5(f, fo) (@) = [bu, [b2, To ) (fr fo) ().

However, we do not know if Theorem 1.3 is true for T 5

)

We make some conventions. In what follows, C' always denotes a positive constant
that is independent of the main parameters involved but whose value may differ from
line to line. We use the symbol A < B to denote that there exists a positive constant
C such that A < CB. For x € R™ and r > 0, B(x,r) denotes the ball centered at x
and has radius r. For any set £ C R", xp denotes its characteristic function. For
a ball B in R™ and A € (0,00), we use AB to denote the ball with the same center
as B whose radius is A times that of B. For any p € [1,00), we use p’ to denote the
dual exponent of p, namely, p’ = p/(p—1). Let M be the Hardy-Littlewood maximal
operator. For r € (0,00) and b € BMO(R™), the maximal operators M, and M, ,
are defined as

M, f(z) = (M(|f]") ()",
1/r
My, f(x) = ]S;;I;<|B|/| )f(y )I’“dy)

respectively. It is well known that for ¢ € (r, c0),

(1.6) | Me,r fll Lt (rny < CbllBMO]| fll Lt (R7) s

see [6]. For a locally integrable function f, M*f denotes the Fefferman-Stein sharp
maximal function of f, that is,

M @) = sup o [ 17(@) = m ()] da

B>x

where the supremum is taken over all balls containing x, and mp(f) denotes the
mean value of f on B. For r € (0,00), let M} be the maximal operator defined by

MEf(x) = {MF(F]") (@)}
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2. PROOF OF THEOREM 1.2

Let U € .(R?") and let o, be the same as in (1.3). Define 5, by

5’5(51, 52) - 0-/{(27"{517 27&52)'

It is obvious that
F16.(61, &) = 2" F 10, (2761, 256),

where F~! denotes the inverse Fourier transform. For x,y1,y2, ¥}, y5, 7 € R™, let

1~

G —y1, 7 — y2) '5

Un(x/ - Y1, x' — y2)7

Wo,(z,y1,y2;2") = F~ -F-
F 6.z —y1,0 —ya) — F '6.(z —9), 0 — y2),
F- —F

Wi w2, 91, y2;91)
W2,/{(x7 Y1, Y2; yl2) =

15&(55_3/1;35_3/2) 15H(x—y1,x—y§).

Lemma 2.1. Let oy, be defined by (1.3), ¢1,q2 € [2,00) and s1,$2 = 0. Then
/g2 /¢
(/ (/ |6 (€1, 62) 72 (62)* d§2> (€)™ d&) S Nowllvprer raroa oz (m2ny-

For the proof of Lemma 2.1, see [5].

Lemma 2.2. Let o be a bilinear multiplier which satisfies (1.4) for some s1, $3 €
(n/2,n], u1,u2 € (1,2], B be a ball with radius R and z,2' € (1/4)B.

(i) For nonnegative integers ji,j2 and an integer k with 2°R < 1,

, ul Jub 1/u)
</ </ |Wo . (, y1, a5 2)[* dyz> dy1>
S;,(B) S, (B)

27/{(51+527n/u17n/u2)
[L_, @Ry

<R

Y

where and in the sequel So(B) = B and for positive integer j, S;(B) = 2/B \
2i-1B;
(ii) for positive integers j1, jo and an integer k,

, uf Jub 1/uf
(/ (/ |F 100 (x = y1, @ — y2)| 2 dyz) dy1>
Sji (B) sz(B)

27/{(51+527n/u17n/u2)

Hi=1(2ij)Sk

~ ?
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(iii) if ug > n/sq, then for any u € (1,00), integer k with 2R > 1, positive integer
j and b € BMO(R™),

(2.1) / / F 6 — g1, — o)) | o) | Aol f1 ()] dys
S;(B) /B

) 1/u1
SRy it ( [ A )

S;(B)

and

(2.2) / / F 1602 — g1, — )| 1b(y2) — ms (0)] | fa(y2)| dysl fi(v1)] dyn
S;(B) JB

log(2*R u Vw
< ”b”BMO(Rn)Zn(sl G o szfg(x)(/ i [f1(y1)] 1dy1) )

(2R 5,(B)

Proof. The conclusion (i) is just Lemma 3.5 in [10], and the conclusion (ii)
can be proved by an argument similar to the proof of Lemma 3.3 in [10]. For the
conclusion (iii), we only consider the estimate (2.2), since the inequality (2.1) can
be proved in the same way. A straightforward computation involving the Holder
inequality gives us that

/ /|f*1&n(x—y1,x—y2)||b<y2)—mB<b)||f2<y2)|dy2|f1<y1>|dy1
5;(B) /B
!’ !’ u;/u/z
522”"(/ (/ F 0025 — y1), 2°(z — 1)) "4 (2% (1 — 2))* dyz)
S;(B) B

1/uf uzp’ 1/(uzp’)
; ! b — mp(b)|“2#
X <2I{(x _ y1)>u151 dyl) </B | (<yQ) B( )| dy2>

2z — )}

o o1 o) "2 >1/(U2u) < “ )/
x (272 R) (/B<2~(:c—y)>u232 dy /SJ(B)|f1(y1)I dyr ) .

Let N be the positive integer such that 2V~! < 2°R < 2V: it follows from the
John-Nirenberg inequality that

_ ugp’
JRCT U
B (2¢(z —y))=s
N 7
' b(y) — mp(b)["2
= b(y) — mp(b)|“?* dy + / dy
JN LU0 o) N 7
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N
27 (L + [mp (D) — mp(eo—n (0)]"2H) + 27503

Jj=1

|mp(b) — mB(x,2J‘2—K)(b)|u2“/
27 (s2u2—n)

S 27 log" ! (2°R)| bl

Note that
| f2(y2)[2H Y ,
I L Lt I | <9 Rn/[“LzMu .
(/B <2“(q} — y2)>u2s2 Y2 ~ 2Mf2(x)
The estimate (2.2) now follows from Lemma 2.1 and the estimates above. (]

Lemma 2.3. Let o be a multiplier which satisfies (1.4) for some s1, s3 € (n/2,n)
and ui,us € (1,2], let B be a ball with radius R and y;,y, € %B with [ =1,2.

(i) For nonnegative integers jo, j1,j2 and an integer k with 2°R < 1,

LN\
</ (/ |W1,H(x7y17y27y,1)|uz dy2> dl‘)
Sjo(B) EJ.R2 (z)

J

< on —k(s1+s2—n/ui—n/uz)
SR (290 R)s1 (2j2R)82 ’

, uh /uy 1/ub
(/ (/ [Wa,k (2,91, Y25 y) | dyl) dx)
Sjo(B) \JEE (z)

2—n(sl+32—n/u1 —n/uz)

and

< 27 , ,
S 2R (270 R)s2 (271 R)%1 ’

where and in the sequel, EfY(xr) = B(z,R) and for any positive integer j,
Ef(x) = 2/B(z, R) \ 27~ ' B(x, R);

(ii) for each k = 1,2 and each integer s, there exists a function Hy, .. p such that for
functions f1, fo with supp f1, supp fo C B,

2
/ Wi (w2 ) T i) 47
R=m =1

S / |fk(yk)|Hk,f€,B(x7ykay;g)dyk H M?"lfl(x)7

1<IK2, 12k

and for any integer j > 3,

, , 1/uy, R(sk—n/uk)
u <t .
(/Sj(B) |Hk7H,B(x7yk7yk)| k dx) ~ |2]B|1/Sk )
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(iii) if ug > n/sq, then for any integer x and positive integer j, and b € BMO(R™),
[ 17 e = = )l 1) ~ o) o) el ()
s;(B) /B

. 1/uy
< 2'{(81n/ul)(QjR)sle,quz(x)(/ |f1(y1)|“1 dyl) )

53(B)

For the conclusions (i) and (ii) of Lemma 2.3, see [10]. The conclusion (iii) can be
proved by repeating the proof of (iii) in Lemma 2.2.

Lemma 2.4. Let 6 € (0,1), 0 < p;,pjx < oo and sj > n/2 where j = 1,2

and k = 1,2. Set 1/p = 1/p1 + 1/p2, 1/px = (1 — 0)/p1.x + 0/p2k, and s =
(1 —0)s1,k + 0s2 x. Suppose that the commutator T ; satisfies

||Ta_g||LT’1,1(R")xLT’L?(R")—»LPI([R") 5 SUIZ) ||O-l‘€||W(51,1151,2)(R2n))
’ KE
and
||T0—’E||Lp2v1(R")><Lp2v2(R")~>L7’2(R") S sug ||U’i||W(5211’52>2)([R2")'
KE

Then

HT07EHLP1(Rn)XLPQ(Rn)HLp(Rn) 5 SU[Z) ||O‘ﬁ||W(sl,52)(R2n).
RE

This lemma can be proved by repeating the argument used in the proof of Theo-
rem 6.1 in [7]. We omit the details for brevity.
For k € Z, let T, be the operator defined by

(2.3) 15, (f1, f2)(z) = /Rz” Gr(® —y1, 7 — y2) f1(y1) f2(y2) Y,
and set
(2.4) TN (fr, f2) (@) = D Ts.(f1, fo) ().

|k|<N

For b1,bs € BMO(R™), we define T;Vg, the commutator of TV, as in (1.5).
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Lemma 2.5. Let 0 € L*(R?") which satisfies (1.4) for some s1,s2 € (n/2,n],
let TN be the operator defined by (2.4), TN the commutator of TN. Let ty, = n/sy,
with k = 1,2. Then for any py € (t, ) (k =1,2), 1/p = 1/p1 + 1/p2, and
b1,b2 € BMO(R™),

T F1, F2)ll o rm) CZ [1be[BMmO H [ fxll Lox (=)

with C' independent of N.

Proof. Let b€ BMO(R™). We first claim that for any r € (tx,00) (k =1,2),
0<0<e<min{r/r,r/ro} with 1/r =1/r1 + 1/rs,

(25) M TN (1. f2))(@) < cnanMo< (TN (1. fo) <x>+HMrkfk<x>)
k=1

for bounded functions f;, fo with compact supports.

The proof of (2.5) is fairly standard, see [13], [16]. Without loss of generality,
we may assume that ||b||pmo = 1. Let z € R™ and let B be a ball containing .
Decompose fi (k=1,2) as

Fr) = Fe@xas @) + fr@)xemas®) = fi () + 7).
Let A = {(il,ig)l 11,19 € {1,2}, (il,ig) 75 (1, 1)} For (il,ig) € A, set
Liyin(2,20) = T, (b — map (b)) f1*, £32)(2) = T ((b — man (b)) 1, f3?)(z0)

Let fE(y) = f1(y)(b(y) — map(b)). Take s > 1 such that ds < . An application of
the Holder inequality then gives that

(o 106~ mas@)r ey as)
1/6s

(|B| / b(2) ~ man ) dz)l/és(ﬁ [ e )

M(TN (f1, f2)) ().

Let ux € (tr,7x) (k = 1,2) such that 1 + n/u; + n/ug > s; + s3. Since T is
bounded from L*!(R™) x L*2(R™) to L*(R™) with 1/u = 1/u3 +1/us and the bound
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is independent of N, see [5], it is easy to verify that

(oo [ s sera:)

<(|;| / 1FP(2)" d )”“1<|;| / | f2()|“2dz)1/u2

S H MT’k fr ((E)
k=1

Lemma 2.2, via a trivial computation, tells us that for each z € B and zy € B
satisfying | T, ((b — map(b)) f1, £3)(20)| < oo,

TN ((b — map(b ))fllanQ)( ) = TN((b—map (b)) f1, f2)(20)]
: Z /5;2(43)/ [Wo.x(2y1, ;20| L (1) dyn | Fa ()| dyo

{k: 27 R<1} jo=1

. / /|f Gz — 41,2 — )| |FE ()| dya | fa(ya)] dye
{r: 25R>1} jo=1" 532 (45)

oo

+ Y > / / [F 1 6(20 — y1, 20 — y2)| [ f (y1)] dyn| fa(ya)| dye
S;,(4B) J4B

{k: 2¢R>1} j2=1

oK (14+n/ui+n/usz)

1/uy
Z Z 2H(€1+€2)R€1(232R (/|f1 |UI dy) (2]2R)n/u2M fQ()

{r: 2¢RK1} Jo=1

log(2~R 1/u2
+ Z Z 9k (s2 (:L%uz) QJ)ZR) ”“1f1(’z)</ B |fQ(y)|u2 dy)

{Kk: 28R>1} jo=1 iz (

log(2~R) b\
bY S e i [ lewa)

{k:2¢R>1} j2=1 SjQ(B)

AN

Z/\

2
H Mrkfk +Mr’kfk(20))a

if we choose p € (1,71 /uy). Similarly, we have that for (i1,i2) = (2,1) or (i1,42) =
(2,2), each z € B and z € B satisfying [TN (b — map (b)) fi*, fi2)(20)| < oo,

Em

My, fe(2) + My fr(20))-

L i1,io (z,20)| S
k:l
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Therefore,

1/6

(|B|2/ / |Li, 4, (2, zo| dzdz())

(41,i2)

Note that

(|B|/ A ke )_C'édzj/& s <|;|/ TN (18 ,fz)(z)l‘sdzj/&
i (E/ |(b(=) — m43(b))Tév(f17fz)(z)|‘5dz)1/6

1/6
< |2//|Lzl,z2 Z, 20 |6dzdzo> )

The desired estimate (2.5) then follows directly.

(z ,i2)EA

We now conclude the proof of Lemma 2.5. It suffices to prove that the commutator
[b,TN]! is bounded from LP*(R™) x LP2(R") to LP(R™) with bound C||b||gmo and
C independent of N. Let py € (tx,00) (k = 1,2). By Theorem 6.1 in [5], we know
that TN is bounded from LP*(R") x LP?(R™) to LP(R™) with bound independent
of N. So, for b € L*°(R™) and bounded functions f1, fo with compact supports,
[0, TN (f1, f2) € LP(R™). This, together with (2.5) for r, € (tx,px) (k = 1,2),
implies that

2
1 T (s fo)ll oy < ||b||BMo(|Ms<T;V (oo Doy + 11 ||Mrkfk|m<w>)
k=1
2

S lbllsso TT el oo geny,
k=1

provided that b € L>(R™) and f1, f2 are bounded functions with compact supports.
A standard argument shows that [b, TN]! can be extended to a bounded operator
from LP'(R™) x LP2(R™) to L?(R™) with bound C||b||smo and C independent of N.

O
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Lemma 2.6. Let 0 € L*°(R?") which satisfies (1.4) for some s1,s2 € (n/2,n],
TX be the operator defined by (1.1) and Iet TN be its commutator. Let t, = n/s,

k =1,2. Then for p; € (1,00), p2 € (t2,00) and 1/p =1/p1+1/p2, TN~ is bounded

from LP*(R™) x LP2(R™) to LP(R™) with bound C Z Ibx||BMO, and C' is independent
k=1
of N.

Proof. Our aim is to prove that for each fixed A > 0,

2
26) [{o € R [T f2)@)] > M S S [0elBaioA 1Al o

fQHLpz([R'L

Without loss of generality, we may assume that [|b1||Bymo = [|b2][Bmo = || f1ll e (rr) =
|| f2|| Lr2(mny = 1. For each fixed A > 0, we apply the Calderén-Zygmund decomposi-
tion to | f1[P* at level AP, and obtain pairwise disjoint cubes {Q7}, satisfying

1 .
NP < A |f1( Prdz < 2N, [fi(2)] S CAPPae z e R\ Q.
J

Let

91(2) = F1(@)Xpm o () + D me; (fi)xgy (@),
3 i
and

hi(z) = fi(z) = gi(x) = Y bi(x), with h(z) = (f1(z) = me (f1)xqs (2)-

J

Observe that [|g1[| o (rn) < CAP/P1. Let v € (max{p1,t1},00) and 1/q = 1/y+1/ps.
Lemma 2.5 now tells us that

[z € B2 [TN(g1, £2)@)] > MAY €A a1 oy | Fo Ly S A

Let B’ be the smallest ball which contains @/, and Q = (J4BJ. It is obvious that
J
|2] S A7P. The proof of (2.6) is then reduced to proving that

(2.7) {z € R"\ Q: [T25(h, fo) ()| > A} S AP

We now prove (2.7). Let uy € (t1,2], uz € (t2, min{2,ps}) such that uy; + ug <
s1/n+s2/n+1. For fixed j, let R} and y] be the radius and center of @}, respectively.
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Let

La(a) = 12 SD0r(0m) = mpy )i 2 ) ).
= 305 ) =gl [ Wi ) ) ol
Jj o |k|<N R2n
and

Z Z /zn (W (2, 91, y2; )| [ba(x) — ba(ya)| [P (1) f2(y2)| d7.

J |k|I<N

For € R™\ Q, it follows from the vanishing moment of h]l that

3
TN, f2)(@)] S ) Li().

The estimate for Ly is easy. In fact, for p; € (1,p1) we deduce by the Holder
inequality and the John-Nirenberg inequality that

/.

which in turn gives us that

p1 -
dz < )\ppl/prp7

D (ba(@) = mp (b1))h ()

J

Z
SATP

LP1(R™)

{z € R"\ Q: Li(2) > M4} S AP Y (b —mpy (1))

J

where 1/p=1/p1 + 1/pa. As for Lo, we have by Lemma 2.3 that

Lo(2) § Muy fo(2) ) Ibr(@) =mpg (o)l D Y [2'BiJM/*

J {r:2cRIL1} =0
o, /uy
></ (/RJ‘( )|W1,n($7y17y2;y{)|u2 dy2> |71 (y1)| dys
(s
+ My, f2(z Zlbl — Mpi (b1)]

DS / Hy o 0, u0) 1 () s

{k: 2"RJ>1}

= My, fo(x)Ls ().
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By (i) and (ii) of Lemma 2.3, a straightforward computation leads to

1/U1
@) = mgy () i)

L lmeme S S S0 ZZ'”J'W(/

J {x:2nRI<1) =3 1=0 Si(B

S L it y,zy1>|“2dz) as) W]y
n S[(BJ) 1(%)

SIS o B BN C R )

BJ
J {r:2¢RI>1} (=3 it

X H, . ps (@91, y7)] delh] (y1)] dys

SO Il @y
J
This in turn implies
o € R™\ Q¢ La() > A4} S A7 My fll oy + A7 L |y S A7

To consider Ls, we write

o, 1/ub
Z > Z/ (/R{( )|W1,n($7y17y2;y{)|u2 dyz)

w: 28 RIL1} 1=0
0 M o)
$5 e 1) M o)

J {r:2¢RI>1}
= M(,27u2fg(l‘)L§($).

As in the estimate for Lo, it follows from (iii) of Lemma 2.3 that

L3 ] (rm\0) S Z Z (28 Ryn/urtn/ua—si—s2H1
J {k:2¢RI<1}

x Z ol(n/uz—s2) Z 21/ =) B[ 11 (o

1=3 =0

+Y 0 Y @ rymn/uemamn N gl || gy

J {r:2¢RI>1} 1=3

S DIkl ey
J
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This, along with (1.6), leads to
o € R™\ Q: Ty(x) > M4} S A7,
and this yields (2.7). O

Proof of Theorem 1.2. We first consider the conclusion (i). Let s1, 2 € (n/2,n].
Lemma 2.6 tells us that if p; € (1,00) and p2 € (t2,00), then ng is bounded from
LP1(R™) x LP2(R™) to LP>°(R™). Similarly, we can verify that if p; € (¢;,00) and
p2 € (1,00), then TNA is bounded from LP*(R™) x LP?(R™) to LP-*°(R™). An appli-
cation of the complex interpolation theorem then tells us that, when p;,p2 € (1, 00),
p € (B,00) such that 1/p=1/p1 +1/p2, T 5 is bounded from LP*(R™) x LP2(R™) to
LP>°(R™), where 8 = max{t;/(t;+1), tg/(tg—i—l)} Note that for fixed p1,p2 € (1, 00),

€ [2/3,00) with 1/p = 1/p1 + 1/p2, we can choose points A; = (1/pi, 1/p3;1/pl),
Ay = (1/p3,1/p3;1/p%), Az = (1/p},1/p3;1/p%) such that for i = 1,2,3, p},ps €
(1,00), p* € (B,00), 1/p* = 1/p} + 1/p%, and (1/p1,1/pa2;1/p) is in the open convex
hull of A1, A5 and A3. Thus, by the multilinear Marcinkiewicz interpolation theorem,
we see that TNA is bounded from LP*(R™) x LP2(R™) to LP(R™) with bound indepen-
dent of N. As 1t was pointed out in [12], for f1, fa € L (R™) and by, by € L®(R"™),

1T, 5(f1, f2) — gg(f17f2)|\Loo(Rn) S (e = Z &H)f1f2||L1(R") —0, N —oo0.

|k|<N

Thus, for f1, fo € L (R™) and by, b2 € L®°(R"™), p1,p2 € (1,00), p € [2/3,00) with
1/p=1/p1+1/p2,

2 2
1T, 51 f)lrny S S I0kllenio T Ifull o geny-
k=1 =1

This, via a standard argument, gives our conclusion (i).

We turn our attention to the conclusion (ii). By Lemma 2.6 and the argument
involving the complex interpolation theorem and the multilinear Marcinkiewicz in-
terpolation theorem, we know that for any pi,ps € (1,00), p € (1/2,00) with
1/p = 1/p1 + 1/p2, T:’E is bounded from LP'(R™) x LP2(R™) to LP->°(R™) with

2
bound C Y ||bx|lemo and C is independent of N, provided that s; > n/2, so = n,
k=1

or that s; = n, s > n/2, and so is T ;. This, via Lemma 2.4, implies that
when s1,s2 € (n/2,n] and s1 + s2 > (3/2)n, p1,p2 € (1,00) p € (1/2,00) with
1/p=1/p1 + 1/p2, then

2 2
1T, 5(f1, F2)llLe @y S IbkllByvo T I1Fxllow ey
k=1 k=1
This completes the proof of Theorem 1.2. O
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3. PrROOF OF THEOREM 1.3

We begin with the atomic decomposition of H!(R").

Definition 3.1. A function a(x) is called a (1, 0o, 0)-atom if
(i) a(x) is supported in a cube Q and satisfies that [|a| fe®n) < Q|7
(i) [pn a(z)dz =0.

Let Hg™°(R™) be the set of all finite linear combinations of (1, 00, 0)-atoms. For
f e Hy>(R™), define

k k
HfHHfli,noo,O(Rn) = inf { Z [Ail: f = Z)\iai, keN, {a;}F_, are (1,00,0)—atoms}.

i=1 =1

Denote by C(R™) the set of all continuous functions. Meda, Sjogren and Vallarino
[14] proved that a bounded linear operator on Hé;]oo’o(R”) NC(R™) can be extended
to a bounded operator on H'(R™).

Lemma 3.1. Let t be a positive real number. For any finite collection of dyadic

cubes () and associated positive scalars rq, there exists a collection of pairwise
disjoint dyadic cubes S such that

SIS <t g,

and for all S,

N

t,

‘ > 1l e

QZ any S

Loe(R™)

> g <89,
QcCS

For the proof of Lemma 3.1, see [2].

Lemma 3.2. Let o satisfy (1.4) for s1,sa € (n/2,n], let TN be the operator
defined by (2.4).
(i) For py € [2,00), TN is bounded from L'(R™) x LP2(R™) to LP»*°(R") with
1/p =1+ 1/py, and the bound is independent of N;
(ii) if s1,82 € (n/2,n] and s; + s2 > (3/2)n, then TN is bounded from L'(R") x
H'(R™) to LY/?°°(R™), and the bound is independent of N.

Proof. Since s; € (n/2,n], we can take p; € (0,1) such that sy > n/p; —n/2.
By Theorem 1.1 in [15], we know that

TN (fr, f)llo@ny S Il mes @

follLr2@ny, 1/p=1/p1+1/p2
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and
1T (fr, )o@y S | fillz@ny |l follpoarny,  1/p=1/241/po.

Interpolating the last two inequalities leads to the conclusion (i). The conclusion (ii)

can be proved in the same way. O

Lemma 3.3. Let o satisfy (1.4) for s1, s2 € (n/2,n] with sg+s2 > (3/2)n, and let
TX be the operator defined by (2.4). Let oy, a2 > 1/2 be such that a; + ag = 3/2,
and s1 > ain, so > agn. Define 81, B2 by Br/2 =1 — oy (k = 1,2). Then for
(1, 00,0)-atoms a1 supported on cube Q1 and as supported on cube @2, and any

z € R™\ 2¢/nQ1 U2y/nQ2,
|T5, (a1, az)(x)] < 222" (x — 1)) "1 (2"(2 — €2)) Sty 1 (2)un 2 (),

where c1, co are the center of )1 and Q)2 respectively, u, 1, U2 satisfy that

(3.1) [t 1l 27FnB2(251(Qq))if 251(Q1) < 1
. rllzzion S0 o kg it 281(Qq) > 1;
(3.2) e 2l 27n0/2(28(Qn))” if 2°1(Q2) < 1

. K 2/B2 o
2|l p2/ 9—rnfa/2 if 281(Q2) > 1,

where 1(Q1) denotes the side length of Q.

For the proof of Lemma 3.3, see [15].

Proof of Theorem 1.3. We first prove conclusion (a). Let py > 2, f; € HY(R")
and f2 S Lpz(Rn) with ||f1||H1(Rn) = ||f2HLP2([Rn) =1, b1,by € BMO(RH) with
[Ib1]lBMo = ||b2]lBMO = 1. It suffices to prove that for each fixed A > 0,

(3-3) {a € R™: [TN5(f1, f2) (@) > A} < AP,

Ny .

with 1/p =1+ 1/ps and C independent of N. We assume that f; = > rja], with
j=1

N a positive integer and each af a (1,00, 0)-atom. As was pointed out in [2], we

shall always assume that each scalar r] is positive and supp aj C Q7 for some dyadic

cubes. Applying Lemma 3.1 to the collection of cubes {Q]}; and scalars {r;}; with

t = AP, we have cubes {S7}; with disjoint interiors. Set

fi(z) = g1(z) + ha (),

q(z) = Z reak(xz) and hy(z) = Z Z reak(x).

{k: QxZ any S;} J {k: Qkcsiy
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Observe that

< >\p7
Loo([Rn)

Z 7"k|Q11€|71XQ’1€

lonlmgery <
{k: Q’f,@ any S;}

and

1911 2(amy S Nlgallzoe ey llgnllor@ny S AP

The conclusion (i) of Theorem 1.2 tells us that

[z € R™: [TN(01, £2)(@)] > M2} £ A 1]l gy

f2||Lp2([Rn) 5 AT p

where 1/q = 1/2+1/p,. Let B! be the smallest ball containing S7 and Q = | J4B7.
J
It is obvious that |Q] < A™P. Thus, the proof of (3.3) is reduced to proving that

(3.4) (o € RM\Q: [T, ) (@)] > A/2)] S A

For x € R™\ ©, write

| (h17f2

TN(Z Yo (b —mge(br))reat, fz) (z)

I {k: Qkcsi}
+Y 0 > Irkliba(e) = mer (0] |TY (af, f2) ()]

I {k:Qkcsiy

3
+ |[b2, TP (ha, fo) ()] =) Ui(a)
=1

It follows from Lemma 3.2 that

{x e R"\ Q: Ui(z) > A/6}| S AP p

ST (b —mge(bi))rral

i {k:Qbcsiy LI(R™)

S AR
Similarly to the estimate for Lo in the proof of Lemma 2.6, we get that

{z € R™\ Q: Us(z) > A/6} S A7PI|Mu, f2ll7on (g

FATPY > | SATP

i {k: Qkcsiy

1130



with ug € (t2,2]. Also, repeating the estimate for L3, we deduce that

o € R™\ Q: Us(@) > A6} S A Mo o[22 )

FAP | < AP
> X

J {k: Qkcsi}

Combining the estimates for terms Uy, (k = 1,2, 3) leads to (3.4) and then completes
the proof of conclusion (a).

We now prove conclusion (b). Our aim is to prove that if f1, fo € H'(R™) with
Il fillzr ey = I f2ll 52 (rey = 1 and by, bo € BMO(R™), then for each fixed A > 0,

(3-5) [{z € R™: |T)G(f1, fo) ()| > M} S CZ [ FRe

k=1

Again we assume that ||b1||smo = ||b2]lBMo = 1 and
=2 _rlal(@), fr(x) =) riah(a)
j=1 j=1

where N7, Ny are positive integers and each a{ (i =1,2) is a (1,00, 0)-atom, each
scalar 7/ is positive and suppa] C Q! for some dyadic cube Qz (i = 1,2). Invoking
Lemma 3.1 to each collection of cubes {Q?}; and scalars {r}; with ¢t = A\'/2, we
obtain two families of cubes {S]};, {52}, with disjoint interiors. Decompose f; as

fi(z) = gi(x) + hi(z),
where
gi(x) = Z rRa¥(x) and  hy( Z Z rRak ().

k: QF¥Z any S7 7 {k: QFcsiy

It is obvious that ||91||L2 R S A2 By conclusion (a) of Theorem 1.3, 51,52 €
(n/2,n] implies that T;Vg is bounded from H'(R™) x L?(R™) to L?/3>°(R™). There-
fore, ,

{z € R™: [TN(F1,92) ()] > M3H S A Al g g2l 7ty S A2,
and

[ € B TN (g1 ha)(@)] > A3} S A3 ol % 172,

gl||L2(Rn) S A
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. . 2 .
Let B} be the smallest ball containing S7, and Q@ = |J |J B/, then it is easy to check

i=1

that )
QIS Y ISl s a2

i=1 j
The proof of (3.5) is now reduced to proving that
(3.6) [z € U\ Q: (b, Ty, ha) (@)] > A/6}] S A2,
and
(3.7) [z € R\ Q2 [[bo, T 2(hy, ha) (@) > A6} S A2,

We only consider (3.6), since the argument equally works for (3.7). For x € R™\ Q,
write

Hbl’ ] (hla h2)(£)| 5 Z |T1||b1($) e (bl)| Z |r{| |Tév(a1i, aé)(x)|

+ Tév(Z Z (b1(y1) — mgi (b))rial, h2> (z)
I {k: QkcCSi}

= Dl(l‘) + DQ(J,‘)

Recall that

H ) ) (b1 (y1) —mgi (b1))riay S L
i {k: Qbcsiy LE(R™)
It follows from (ii) of Lemma 3.2 that
A
n . < \—1/2
(3.8) er[R \Q: Dg($)>—12}‘,\,)\ .

As for Dy, we use Lemma 3.3 and get that for z € R\ Q,

s > Z 73111 () = mgy (b1)[(2%(x = 1))~ e 1 (@)

|| <N

X Z 2WZ|7"2| 2%(z _yz)> Szui,z(x)
|k|<N
= Di(«)Di(x),

where y!, y% are the centers of Q! and Q%, ufi’l and uf;’Q satisfy (3.1) and (3.2)
respectively. It was proved in [15] that

D322 ey S 1.
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Let a1, B1 be the same as in Lemma 3.3. A trivial computation involving the John-
Nirenberg inequality shows that if 2%/(Q%) > 1, then

/ [b1(2) = mgy (by)[V/ ™
dx
R7\ Bi

2r@— )/
S S 2UQNI e [ Jbi(a) = mey (0] da
= Si(Bi)
< D@ QY| S 2@ T
j=1

and when 2°1(Q%) < 1, then

b1 (x) — mgs (by)[/ .
fo T S e @) ey s
n 1 r—ci[<27"

© bi(x) — mpi (by /e
N / |b1(2) — mq: (b1)]
2

=1 7 2!<2" |z —ci|<2iH] |2 (z — ¢ )[s2/on

dx

<2 nnlogl/al(Qn 1, 1+Z l—log 2/@[ )))1/al2nl 91/a12 Kn
=1
< =27 log!/ 1 (21(Q)).-

Therefore,

IDHlz ey S = D Il D 27 log(21(Q)))2 /2 (281(Q4)) ™
( {r: 2°1(Q1)<1}

DI UED DI R U CHIR S
i e 2@D)>1)
The estimates for D} and D? imply that

(3.9) IDillz1/2@ma) S 1.

(3.6) now follows from (3.8) and (3.9). This completes the proof of Theorem 1.3. O

Acknowledgement. The authors would like to thank the referee for his/her valu-
able suggestions and comments.
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