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SOME PROPERTIES OF THE FAMILY Γ OF
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Xiaoning Xu, Shenyang, Liangyun Chen, Changchun
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Abstract. In this paper, we continue to investigate some properties of the family Γ of
finite-dimensional simple modular Lie superalgebras which were constructed by X.N.Xu,
Y. Z. Zhang, L.Y.Chen (2010). For each algebra in the family, a filtration is defined and
proved to be invariant under the automorphism group. Then an intrinsic property is proved
by the invariance of the filtration; that is, the integer parameters in the definition of Lie
superalgebras Γ are intrinsic. Thereby, we classify these Lie superalgebras in the sense
of isomorphism. Finally, we study the associative forms and Killing forms of these Lie
superalgebras and determine which superalgebras in the family are restrictable.
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1. Introduction

It is well known that filtration structures play an important role both in the classi-

fication of modular Lie algebras (i.e., Lie algebras over a field of prime characteristic)

(see [1], [7], [19], [21], [26]) and Lie superalgebras (i.e., Lie superalgebras over a field

of characteristic zero) (see [9], [10], [16]). Similarly, filtration structures will provide

useful tools in the research of modular Lie superalgebras (i.e., Lie superalgebras over

a field of prime characteristic). The filtrations of modular Lie algebras of Cartan

type and Lie superalgebras were proved to be invariant in papers [20], [17] and [8],

respectively. The same results for modular Lie superalgebrasW and S were obtained

The research has been supported by National Natural Science Foundation of China (No.
11126129, No. 11371182 and No. 11171055), the PhD Start-up Foundation of Liaoning
University of China (No. 2012002), Predeclaration Fund of State Project of Liaoning
University (No. 2013LDGY01), NSF of Jilin province (No. 201115006) and Scientific
Research Foundation for Returned Scholars Ministry of Education of China.
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by using ad-nilpotent elements in paper [30] and for modular Lie superalgebras H

and K they were obtained by means of minimal dimension of image spaces in pa-

pers [31], [32]. The invariance of the nontrivial transitive filtrations of modular Lie

superalgebras HO was discussed in paper [25].

The research on modular Lie superalgebras just began in recent years (see [11],

[15]). The complete classification of the finite-dimensional simple modular Lie su-

peralgebras remains an open problem [12]. So constructing finite-dimensional sim-

ple modular Lie superalgebras and studying their natural properties is necessary at

present stage (see [27], [33]). Many important results for modular Lie superalge-

bras have been obtained (see [2], [4], [13], [14], [22]–[33]). The study of graded Lie

superalgebras also have got several deep results in recent years (see [3], [5]).

This paper is devoted to investigating the filtration structures of the family Γ of

modular Lie superalgebras by the method of minimal dimension of image spaces and

then some properties are discussed. This paper is organized as follows: In Section 2,

we recall some necessary definitions and useful results of the Lie superalgebras Γ. In

Section 3, we establish some technical lemmas which will be employed to determine

the invariance of the filtrations. Then the filtrations of the Lie superalgebras Γ

are proved to be invariant under automorphisms. Therefore, we are able to obtain

an intrinsic characterization of these Lie superalgebras. In Section 4, we discuss the

associative forms and Killing forms of the Lie superalgebras Γ and find the conditions

for the restrictability of these Lie superalgebras.

2. Preliminaries

Throughout this article, F denotes an algebraically closed field of characteristic p >

3 and F is not equal to its prime field Π. For m > 0, let E = {z1, . . . , zm} be a subset

of F that is linearly independent over the prime field Π, and let H be the additive

subgroup generated by E. If λ ∈ H , then we let λ =
m∑

i=1

λizi and yλ = yλ1

1 . . . yλm
m ,

where 0 6 λi < p. We use the notation N for the set of positive integers and N0 for

the set of non-negative integers. Let Z2 = {0̄, 1̄} be the ring of integers modulo 2.

Given n ∈ N and r = 2n, we put M = {0, 1, . . . , r}. Suppose that µ0, . . . , µr ∈ F

such that µ0 = 0 and µj + µn+j = 1 for j = 1, . . . , n. Let ki ∈ N0 for i ∈ M , then

ki can be uniquely expressed in p-adic form ki =
si∑

v=0
εv(ki)p

v, where 0 6 εv(ki) < p.

Let s
¯

= (s0 + 1, . . . , sr + 1) ∈ N
r+1. We define the truncated polynomial algebras

A = F[x00, x01, . . . , x0s0
, . . . , xr0, xr1, . . . , xrsr

, y1, . . . , ym]
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such that

xp
ij = 0, ∀ i ∈ M, j = 0, 1, . . . , si ; yp

i = 1, i = 1, . . . , m.

Let Q = {(k0, . . . , kr) ; 0 6 ki 6 πi, πi = psi+1−1, i ∈ M}. If k = (k0, . . . , kr) ∈ Q,

we write xk = xk0

0 . . . xkr
r , where xi

ki =
si∏

v=0
x

εv(ki)
iv for i ∈ M . For 0 6 ki, k

′
i 6 πi, it

is easy to see that

(2.1) xi
kixi

k′

i = xi
ki+k′

i 6= 0 ⇔ εv(ki) + εv(k
′
i) < p, v = 0, 1, . . . , si, i ∈ M.

Let Λ(q) be the Grassmann superalgebras over F in q variables ξr+1, . . . , ξr+q with

q ∈ N and q > 1. Denote the tensor product by Ω̃ := A ⊗F Λ(q). Obviously, Ω̃ are

associative superalgebras with a Z2-gradation induced by the trivial Z2-gradation of

A and the natural Z2-gradation of Λ(q):

Ω̃0̄ = A ⊗F Λ(q)0̄, Ω̃1̄ = A ⊗F Λ(q)1̄.

For f ∈ A and g ∈ Λ(q), we abbreviate f ⊗ g to fg. For k ∈ {1, . . . , q}, we set

Bk = {(i1, i2, . . . , ik) ; r + 1 6 i1 < i2 < . . . < ik 6 r + q}

and B(q) =
q⋃

k=0

Bk, where B0 = ∅. If u = (i1, . . . , ik) ∈ Bk, we let |u| = k, {u} =

{i1, . . . , ik} and ξu = ξi1 . . . ξik
. Put |∅| = 0 and ξ∅ = 1. Then {xkyλξu ; k ∈ Q, λ ∈

H, u ∈ B(q)} is an F-basis of Ω̃.

If L is a Lie superalgebra, then h(L) denotes the set of all Z2-homogeneous ele-

ments of L, i.e., h(L) = L0̄ ∪ L1̄. If |x| appears in some expression in this paper, we

always regard x as a Z2-homogeneous element and |x| as its Z2-degree.

Set s = r + q, T = {r + 1, . . . , s} and R = M ∪ T. Put M1 = {1, . . . , r}. Define

ĩ = 0̄ if i ∈ M1, and ĩ = 1̄ if i ∈ T . Let

i′ =






i + n, 1 6 i 6 n,

i − n, n + 1 6 i 6 r,

i, r + 1 6 i 6 s,

[i] =






1, 1 6 i 6 n,

−1, n + 1 6 i 6 r,

1, r + 1 6 i 6 s.

For ei = (δi0, . . . , δir), i ∈ M , we abbreviate xei to xi. Let Di, i ∈ R, be the linear

transformations of Ω̃ such that

Di(x
kyλξu) =

{
k∗

i xk−eiyλξu, i ∈ M,

xkyλ · ∂ξu/∂ξi, i ∈ T,
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where k∗
i is the first nonzero number of ε0(ki), ε1(ki), . . . , εsi

(ki). Then Di ∈ Der Ω̃.

Set

∂ = I −
∑

j∈M1

µjxj0
∂

∂xj0
−

m∑

j=1

zjyj

∂

∂yj

− 2−1
∑

j∈T

ξj

∂

∂ξj

,

where I is the identity mapping of Ω̃. For f ∈ h(Ω̃), g ∈ Ω̃, we define a bilinear

operation [ , ] in Ω̃ such that

[f, g] = D0(f)∂(g) − ∂(f)D0(g) +
∑

i∈M1∪T

[i](−1)ĩ|f |Di(f)Di′(g).

Then Ω̃ are Lie superalgebras for the operation [ , ] defined above (see [33]). Note

that Ω̃ =
⊕

α∈Z2

Ω̃α, where

Ω̃α = spanF{x
kyλξu ; k ∈ Q, λ ∈ H, u ∈ B(q), α = ¯|u|}.

If 1 ∈ H , then we put H ′ = H \ {1} and y = y1. By computation, we obtain that

〈y〉 := {αy ; α ∈ F} is the center of Ω̃ and the commutator subalgebra:

[Ω̃, Ω̃] = spanF{x
kyλξu ; (k, λ, u) 6= (π, n + 2 − 2−1q, ω)},

where π = (π0, . . . , πr) ∈ Q and ω = (r + 1, . . . , s) ∈ B(q). Define Γ(r, H, q, s) :=

[Ω̃, Ω̃]/〈y〉. Then Γ(r, H, q, s) become simple Lie superalgebras (see [27]).

If 1 /∈ H , then Ω := [Ω̃, Ω̃] are simple Lie superalgebras. The case 1 /∈ H is

a different family (Ω rather than Γ) and is not treated in this paper because it has

been studied in [33].

For simplicity, we sometimes write Γ instead of Γ(r, H, q, s). The derivations Di

of Ω̃ induce the derivations of Γ by Di(f + 〈y〉) = Di(f)+ 〈y〉. We write any element

f + 〈y〉 of Γ as f for simplicity. By the convention, we see that αy = 0 in Γ for all

α ∈ F.

Note that Γ =
⊕

j∈X

Γj are Z-gradation Lie superalgebras, where

(2.2) Γj = spanF

{
xkyλξu ;

∑

i∈M1

ki + 2k0 + |u| − 2 = j

}
,

and X = {−2,−1, . . . , τ}, τ =
∑

i∈M1

πi + 2π0 + q − 2. Let f ∈ Γ. If f ∈ Γj , then f

is called a Z-homogeneous element and j is the Z-degree of f which is denoted by

zd(f).
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Let ∆ = {θ : H → F ; θ(λ + η) = θ(λ) + θ(η), ∀λ, η ∈ H}. For θ ∈ ∆, we define

a linear transformation Dθ of Γ such that Dθ(x
kyλξu) = θ(λ)xkyλξu. Clearly Dθ ∈

Der Γ.

Put W1 = {Dθ ; θ ∈ ∆}. Then W1 is an m-dimensional linear space. Set W2 =

spanF{D
pvi

i ; 0 < vi 6 si, i ∈ M}. Denote by Der Γ the derivation superalgebras

of Γ.

Lemma 2.1 ([27]). Der Γ = adL ⊕ spanF{yD0} ⊕ W1 ⊕ W2, where

L = L̂ ⊕ spanF{yxπi+1
i ; i ∈ M}

= Γ ⊕ spanF{x
πyδξω ; δ = n + 2 − 2−1q} ⊕ spanF{yxπi+1

i ; i ∈ M}.

Lemma 2.2 ([27]). If Di(f) = 0 for all i ∈ R, then f =
∑

j∈M

αjxjy +
∑
j∈T

βjξjy +

z(y), where αj , βj ∈ F and z(y) =
∑

λ∈H′

aλyλ ∈ Γ−2 with aλ ∈ F.

3. Filtration

Put I(ϕ) = dim(Imϕ), where ϕ ∈ Der Γ. Let Θ be a set of DerΓ and I(Θ) :=

min{I(ϕ) ; 0 6= ϕ ∈ Θ}. Set

b = xπξωχ(y), B = ad b
∣∣
Γ
, where χ(y) =

∑

η∈H

yη.

If α := {αλ ; λ ∈ H} is a subset of F, then we let α(y) =
∑

λ∈H

αλyλ.

Lemma 3.1. I(B) = s + 2, where s = r + q and

C := kerB = P ⊕ spanF

{
xkξuα(y) ;

∑

i∈M

ki + |u| = 1,
∑

λ∈H

αλ = 0

}

⊕ spanF

{
α(y) ;

∑

λ∈H

(1 − λ)αλ = 0

}
,

where P = span
F

{
xkξuyλ ;

∑
i∈M

ki + |u| > 2, λ ∈ H
}
.
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P r o o f. Clearly B(z) = 0 for all z ∈ P . Note that χ(y)yλ = χ(y) for all λ ∈ H .

If
∑

λ∈H

αλ = 0, then we obtain

B(x0α(y)) =

[
xπξω

∑

η∈H

yη, x0

∑

λ∈H

αλyλ

]
=

( ∑

λ∈H

αλ

) ∑

η∈H

[xπξωyη, x0y
λ]

=

( ∑

λ∈H

αλ

) ∑

η∈H

((p − 1)(1 − λ)xπξωyη+λ − (1 + n − η − 2−1q)xπξωyη+λ)

=

( ∑

λ∈H

αλ

)(
xπξω

( ∑

η∈H

ηyη

)
− (n + 2 − 2−1q)b

)
= 0.

Similarly,

B(xiα(y)) = −[i′]

( ∑

λ∈H

αλ

)
xπ−ei′ ξωχ(y) = 0, ∀ i ∈ M1,

B(ξjα(y)) = (−1)|q|
( ∑

λ∈H

αλ

)
xπξω−(j)χ(y) = 0, ∀ j ∈ T.

If
∑

λ∈H

(1 − λ)αλ = 0, then we have

B(α(y)) =

( ∑

λ∈H

(λ − 1)αλ

)
xπ−e0ξωχ(y) = 0.

We see that

B(x0y) = xπξω
∑

η∈H

(η + 2−1q − n − 1)yη+1 = xπξω
∑

η∈H

(η + 2−1q − n − 2)yη 6= 0,

B(x0y
λ) = xπξω

( ∑

η∈H

ηyη

)
− (n + 2 − 2−1q)b 6= 0,

which is independent of λ for all λ ∈ H.

Similarly, by a direct computation we get

B(xiy
λ) = −[i′]xπ−ei′ ξωχ(y) 6= 0, ∀ i ∈ M1, λ ∈ H,

B(ξjy
λ) = (−1)|q|xπξω−(j)χ(y) 6= 0, ∀ j ∈ T, λ ∈ H,

B(yλ) = (λ − 1)xπ−e1ξωχ(y) 6= 0, ∀ λ ∈ H ′.

Let N = span
F
{1, xi, ξj ; i ∈ M1, j ∈ T }. Then Ω = C ⊕ N. It is easily seen that

B(1), B(xi) and B(ξj) are linearly independent for all i ∈ M and j ∈ T . Hence

I(B) = r + q + 2 = s + 2, as desired. �

1092



Lemma 3.2. If 0 6= f ∈ h(Γ) and f 6∈ spanF{x
πξωα(y)}, then there exist two

basis elements f1 and f2 such that [f, f1] and [f, f2] are linearly independent with

zd(fi) > 0 for i = 1, 2.

P r o o f. (1) If f does not contain any ξj for all j ∈ T, then every term of f can

be expressed in the αkλxkyλ form with αkλ ∈ F, and two cases arise:

Case 1. zd(f) =
∑

i∈M1

πi + 2π0 − 2. Then we can suppose f =
∑

λ∈S

απλxπyλ, where

0 6= απλ ∈ F and S ⊆ H . So we get

[f, xiξj ] = −[i′]
∑

λ∈S

απλxπ−ei′ yλξj 6= 0,

[f, xi′ξj ] = −[i]
∑

λ∈S

απλxπ−eiyλξj 6= 0,

and they are linearly independent.

Case 2. zd(f) <
∑

i∈M1

πi+2π0−2. Then we may assume that f =
∑

k∈∆,λ∈S

αkλxkyλ,

where ∆ ⊆ Q, S ⊆ H and 0 6= αkλ ∈ F. Put βkλ = 1 − λ −
∑

i∈M1

kiµi. For i, j ∈ T

with i 6= j, we have

z1 :=

[ ∑

k∈∆,λ∈S

αkλxkyλ, x0

]
=

∑

k∈∆,λ∈S

αkλ(k∗
0xk−e0x0y

λ − βkλxkyλ),

z2 :=

[ ∑

k∈∆,λ∈S

αkλxkyλ, x0ξi

]
=

∑

k∈∆,λ∈S

αkλ(2−1k∗
0xk−e0x0y

λξi − βkλxkyλξi),

z3 :=

[ ∑

k∈∆,λ∈S

αkλxkyλ, x0ξiξj

]
=

∑

k∈∆,λ∈S

αkλ(−βkλxkyλξiξj).

If there is a k ∈ ∆ such that ε0(k0) 6= 0, then εv(k0 − 1) + εv(1) < p for any

v > 0. Equality (2.1) ensures that xk−e0x0 = xk. Similarly, ε0(k0) = 0 implies that

ε0(k0 − 1) + ε0(1) = p and thereby xk−e0x0 = 0. Put W = {k ∈ ∆; ε0(k0) 6= 0}.

Thus

z1 =
∑

k∈W,λ∈S

αkλ(k∗
0 − βkλ)xkyλ +

∑

k∈∆\W,λ∈S

αkλ(−βkλxkyλ),

z2 =
∑

k∈W,λ∈S

αkλ(2−1k∗
0 − βkλ)xkyλξi +

∑

k∈∆\W,λ∈S

αkλ(−βkλxkyλξi),

z3 =
∑

k∈∆,λ∈S

αkλ(−βkλxkyλξiξj).

If there is a 2-tuple (k, λ), k ∈ ∆, λ ∈ S, such that βkλ 6≡ 0 (mod p), then at least

two of two elements z1, z2, z3 are nonzero and our assertion is affirmed. Otherwise,

z1 and z2 are linearly independent.
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If ε0(k0) = 0 for all k ∈ ∆, then xk−e0x0 = 0 ensures that

z1 =
∑

k∈∆,λ∈S

αkλ(−βkλxkyλ),

z2 =
∑

k∈∆,λ∈S

αkλ(−βkλxkyλξi),

z3 =
∑

k∈∆,λ∈S

αkλ(−βkλxkyλξiξj).

If there exists a 2-tuple (k, λ), k ∈ ∆, λ ∈ S, such that βkλ 6≡ 0 (mod p), then

all z1, z2 and z3 are nonzero elements. Considering the basic elements xkyλ, xkyλξi

and xkyλξiξj on the right-hand side of the equalities above, we know that any two

of the elements z1, z2, z3 are linearly independent. If βkλ ≡ 0 (mod p) for all k ∈ ∆

and λ ∈ S, then for any k ∈ ∆ there is an i ∈ M1 such that ki 6= 0. For j ∈ T , we

have

[f, x0xi′ ] = [i]αkλk∗
i xk−eiyλx0 + . . . 6= 0, [f, xi′ξj ] = [i]αkλk∗

i xk−eiyλξj + . . . 6= 0.

Since their Z-degrees are unequal, [f, x0xi′ ] and [f, xi′ξj ] are linearly independent.

(2) If f contains some ξl, where l ∈ T and Dl(f) 6= 0, then f has only two

possibilities.

(a) f contains xπ . Since f /∈ spanF{x
πξωα(y)}, there exists a j ∈ T such that ξj

does not occur in f . So we can suppose that f = xπyλξu + . . ., where u 6= ∅ and

j /∈ {u}. Then

z1 := [f, xiξj ] = −[i′]xπ−ei′ yλξuξj + . . . 6= 0,

z2 := [f, xi′ξj ] = −[i]xπ−eiyλξuξj + . . . 6= 0.

It is easy to see that z1 and z2 are linearly independent.

(b) There is some i ∈ M such that xπi

i does not appear in f . If ξω occurs in f ,

then we may assume that f = xkyλξω + . . ., where ki 6= πi for some i ∈ M . Hence

there exists a t (0 6 t 6 si) such that xkxptei 6= 0. Then

z1 := [f, xpteiξj ] = (−1)|q|xkxpteiyλξω−(j) + . . . 6= 0,

z2 := [f, xpteiξj+1] = (−1)|q|xkxpteiyλξω−(j+1) + . . . 6= 0,

and they are linearly independent.

If ξj does not arise in f for some j ∈ T , then we let

f = xkyλξu +
∑

l,η,v

alηvxlyηξv,
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where alηv ∈ F and u 6= ∅. By the assumption, we see that j /∈ {u}, j /∈ {v}, ki < πi

and li < πi. Now let ι ∈ {u}. Then

z1 := [f, ξιξj ] = (−1)|u|xkyλξu−(ι)ξj + . . . 6= 0.

By virtue of ki < πi, there is a t ∈ {0, 1, . . . , si} such that xkxptei 6= 0. Then

z2 := [f, xpteiξι] = (−1)|u|xkxpteiyλξu−(ι) + . . . 6= 0,

and our assertion follows.

(3) If f contains some ξl, where l ∈ T and Dl(f) = 0, then f = ξly + . . .. We see

that

[f, x0xi] = −2−1xiyξl + . . . 6= 0, [f, x0x
′
i] = −2−1xi′yξl + . . . 6= 0,

and they are linearly independent. �

Let L be a finite-dimensional Z-graded Lie superalgebra. We denote by ε(f) the

nonzero Z-homogeneous component of f ∈ L with the least Z-degree.

Lemma 3.3. Let f1, . . . , ft ∈ L\{0}. If {fi ; i = 1, . . . , t} are linearly dependent,

then {ε(fi) ; i = 1, . . . , t} are linearly dependent.

Lemma 3.4. Let f ∈ h(Γ) and f 6∈ spanF{x
πξωα(y)}. Then I(ad f) > s + 2.

P r o o f. According to Lemma 3.3, we can suppose that f is a Z-homogeneous

element. We shall proceed in two steps.

(i) [f, yλ] = 0 for λ ∈ H ′ \ {0}. Then f does not contain x0. Let

R1 = {i ∈ M1 ; [f, xiy
λ] = 0, λ ∈ H ′ \ {0}},

R2 = {j ∈ T ; [f, ξjy
λ] = 0, λ ∈ H ′ \ {0}}.

(a) If R1∪R2 = M1∪T , then neither xi nor ξj occur in f for all i ∈ M and j ∈ T .

Thus we may assume that f = yλ, λ ∈ H ′. Then

[f, xkξu] = [yλ, xkξu] = k∗
0(λ − 1)xk−e0yλξu.

Hence I(ad f) > (ps0+1 − 1)p
∑

i∈M1
(si+1)2q > (p − 1)pr2q > r + q + 2 = s + 2.

(b) Let R2 = ∅, |R1| 6 1. If |R1| = 0, i.e., R1 = ∅, then {[f, xiy
λ], [f, ξjy

λ] ; i ∈

M1, j ∈ T , y ∈ H ′ \{0}} are linearly independent. If |R1| = 1, we suppose R1 = {l}.
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We see that {[f, xiy
λ], [f, ξjy

λ] ; i ∈ M1 \ {l}, j ∈ T, y ∈ H ′ \ {0}} are linearly

independent. Thus

I(ad f) > (r + q − 1)pm > (r + q − 1)p > s + 2.

(c) Let ∅ 6= R1∪R2 6= M1∪T . Set J ′ = {i ∈ R1 ; i′ ∈ R1}. So we may assume that

J ′ = {i1, i′1, . . . , iu, i′u}. Put J1 = R1 \ J ′ = {iu+1, . . . , iu+t} and R2 = {j1, . . . , jh}.

Let J2 = {i′u+1, . . . , i
′
u+t} and J = (M1 ∪ T ) \ (R1 ∪ R2 ∪ J2). Put

xγ =
∏

k∈J′

xγkek , γk = 0, 1, . . . , πk, ξv =
∏

j∈R2

ξ
vj

j , vj = 0, 1.

For any l′ ∈ J2 and βl′ ∈ {1, 2, . . . , p − 1}, we see that

(3.1) [f, xγxβl′el′ ξv] = [l]βl′Dl(f)xγxβl′el′−el′ ξv.

For all j ∈ J we obtain

[f, xγxjξ
v] = [j′]Dj′(f)xγξv,(3.2)

[f, xγξvξj ] = (−1)|f |Dj(f)xγξv.(3.3)

Since l′ ∈ J2, Dl(f)yλ 6= 0. As f does not contain xi for all i ∈ J ′, we have

Dl(f), Dl(f)xγ 6= 0. By a similar argument we obtain Dl(f)xγξv 6= 0 and then

Dl(f)xγξvxβl′el′−el′ 6= 0. Similarly, Dj′(f)xγξv 6= 0 and Dj(f)xγξv 6= 0. It is easy

to see that the nonzero elements on the right-hand side of equalities (3.1), (3.2) and

(3.3) are linearly independent. Therefore,

I(ad f) > p
∑

i∈J′ (si+1)2h(p − 1)t + p
∑

i∈J′ (si+1)2h(s − 2u − 2t − h)

> p2u2h(p − 1)t + p2u2h(s − 2u − 2t − h)

= p2u2h(s − 2u − h + (p − 3)t).

Let 2u + h > 0. If t > 0, by s = r + q > 2n + 2 > 4 we have

I(ad f) > 22u+h
(
s − (2u + h) + (p − 3)t

)

= 22u+h
(
s − (2u + h)

)
+ 22u+h(p − 3)t

> 2(s − 1) > s + 2.

If t = 0, then s > 4 implies that

I(ad f) > p2u2h(s − (2u + h))

= ((p − 2) + 2)2u2h(s − (2u + h))

> (p − 2)2u2h(s − (2u + h)) + 22u+h(s − (2u + h))

> 2(22u+h(s − (2u + h))) > 2(2(s − 1)) = s + (3s − 4) > s + 2.
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Let 2u + h = 0. Then u = h = 0. As R1 ∪ R2 6= ∅, t > 0. If t > 1, then

I(ad f) > s + (p − 3)t > s + 4 > s + 2. If t = 1, we see that R2 = ∅ and |R1| = 1.

Part (b) then yields I(ad f) > s + 2.

(ii) [f, 1] 6= 0. If there exists a j ∈ T such that [f, ξj ] = 0, then

0 6= [f, 1] = −[f, [ξj , ξj ]] = −[[f, ξj ], ξj ] − (−1)|f |[ξj , [f, ξj ]] = 0,

a contradiction. So [f, ξj ] 6= 0 for all j ∈ T.

(a) Set R3 = {i ∈ M1 ; [f, xi] = 0}. Then R3 6= ∅. If i ∈ R3, then i′ ∈ R3.

Otherwise,

[i][f, y2λ] = [f, [xiy
λ, xi′y

λ]] = [[f, xiy
λ], xi′ ] + [xi, [f, xi′y

λ]] = 0,

contradicting [f, 1] 6= 0. Thus we may assume that R1 = {1, . . . , t}. Put J =

{i, i′ ; i = 1, . . . , t} and J̃ = (M1 ∪ T ) \ J . Set

P = {k1e1′ + . . . + ktet′ ; 0 6 ki 6 p − 1, i = 1, . . . , t}.

For all g ∈ spanF{x
k ; k ∈ P}, we will show that if [f, g] = 0, then g = 0. Otherwise,

if g 6= 0, we choose g ∈ span
F
{xk ; k ∈ P} with the least Z-degree satisfying [f, g] = 0.

If zd(g) = −2, we let g = 1. Then [f, 1] = 0, a contradiction. Let zd(g) > −2, then

there is an i ∈ {2, . . . , t} such that Di′(g) 6= 0. Hence [xi, [f, g]] = [[xi, f ], g] +

[f, [xi, g]] = [f, [xi, g]] = [i][f, Di′(g)] = 0. This contradicts the choice of g with

the least Z-degree and our assertion is true. It is easy to see that [f, xj ] 6= 0 and

[f, ξj ] 6= 0 for all j ∈ J̃ . Because |P | = pt, |J̃ | = s − 2t and t > 0, we have

I(ad f) > pt + s − 2t > 1 + t(p − 1) + (s − 2t) = s + 1 + t(p − 3) > s + 2.

(b) R3 = ∅. Then [f, xi] 6= 0 for all i ∈ M1. Moreover, [f, ξj ] 6= 0 for all

j ∈ T . According to Lemma 3.2, there exist two basis elements f1 and f2 with

zd(fj) > 0, j = 1, 2, such that [f, f1] and [f, f2] are linearly independent. Therefore

{[f, 1], [f, xi], [f, ξi], [f, fj] ; i ∈ R, j = 1, 2} are linearly independent. Thus I(ad f) >

s + 2.

(iii) [f, 1] = 0 and [f, yλ] 6= 0 for λ ∈ H ′ \ {0}. Then we may assume that

f = x0y. Put S = {i ∈ M1; mui = 0}. Clearly, if i ∈ S, then i′ 6∈ S. Thus

[f, xi] 6= 0 for i ∈ S. By computation, we see that {[f, xε], [f, xixi′ξ
u], [f, ξj ],

[f, xε′ξjξl] ; ε ∈ S, i ∈ M1, j, l ∈ T , u ∈ B(q) \ B0} are linearly independent. Hence

I(ad f) > n + n(2q − 1) + q + nq(q − 1) > 2n + q + 2 = s + 2,

as desired. �
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Lemma 3.5. Let fi = gi + hi, where fi, gi, hi ∈ L, i = 1, 2, . . . , t. If {gi ; i =

1, 2, . . . , t} are linearly independent and spanF{gi ; i = 1, 2, . . . , t} ∩ spanF{hi ; i =

1, 2, . . . , t} = 0, then {fi ; i = 1, 2, . . . , t} are linearly independent.

Lemma 3.6. I
(
ad

( ∑
i∈M

yxπi+1
i

))
> s + 2 and I(yD0) > s + 2.

P r o o f. Set Vi = {xkξuyη ; k0 = ki = 0, 2 6 kt 6 πt, k ∈ Q, u ∈ B(q), η ∈ H ,

t ∈ M1 \ {i}} for i ∈ M1. By computation, we see that

ad

( ∑

i∈M

yxπi+1
i

)
(z) = yxπ0

0 ∂(z) + yxπi

i Di′(z) 6= 0, ∀ z ∈ Vi.

Clearly spanF{yxπ0

0 ∂(z) ; z ∈ Vi}∩spanF{yxπi

i Di′(z); z ∈ Vi} = 0. Since {yxπi

i Di′(z);

z ∈ Vi} are linearly independent, it follows from Lemma 3.5 that {ad(
∑

i∈M

yxπi+1
i )(z);

z ∈ Vi} are linearly independent. Hence

I

(
ad

( ∑

i∈M

yxπi+1
i

))
>

∏

j∈M1\{i}

(psj+1 − 2)2qpm > p(p − 2)r−12q > s + 2.

As yD0(x
kyλξu) = xk−e0yλξu 6= 0 for 1 6 k0 6 π0, we have

I(yD0) > (ps0+1 − 1)p
∑

i∈M1
(si+1)+m2q > (p − 1)pr+12q > s + 2.

�

Theorem 3.1. I(Der(Γ)) = s + 2. If ϕ ∈ h(Der(Γ)), then I(ϕ) = s + 2 if and

only if 0 6= ϕ ∈ spanF{B}.

P r o o f. Lemma 3.1 implies that I(h(Der(Γ))) 6 s + 2. Let ϕ ∈ h(Der(Γ)).

Then I(ϕ) 6 s + 2. By virtue of Lemma 2.1, we suppose that

ϕ = ad f +
∑

i∈M

βi ad(yxπi+1
i ) + γyD0 +

∑

i∈M

si∑

v=1

αivDpv

i + Dθ,

where f ∈ L̂, βi, γ, αiv ∈ F. We will prove that βi = γ = αiv = 0 and θ = 0.

Suppose that there is an l ∈ M such that αlv 6= 0. Put t = max{v; αlv 6= 0}. Let

U = {k ∈ Q ; kl = pt, psi 6 ki 6 πi, ∀ i ∈ M \ {l}}.

For any k ∈ U , we have

ϕ(xkyλξu) = αxk−ptelyλξu + g,
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where α ∈ F and g is indeed a F-linear combination of some elements of {xk′

yηξv ;

k′
l 6= 0}. It follows from Lemma 3.5 that

{αxk−ptelyλξu + g ; k ∈ U, λ ∈ H, u ∈ B(q)}

are linearly independent. Then I(ϕ) > (p − 1)rpm2q > s + 2, contradicting I(ϕ) 6

s + 2. So αiv = 0.

Now let ϕ = ad f +
∑

i∈M

βi ad(yxπi+1
i ) + γyD0 + Dθ. Put ε(f) = h. Assume γ 6= 0.

Set W = {xkξu ; 1 6 k0 6 π0}. If zd(h) = −2, then ε(ϕ(z)) = adh(z) + γyD0(z) for

z ∈ W. Since h 6= y, we have spanF{adh(z) ; z ∈ W}∩spanF{γyD0(z) ; z ∈ W} = 0.

As {γyD0(z) ; z ∈ W} are linearly independent, {ε(ϕ(z)) ; z ∈ W} are linearly

independent by Lemma 3.5. It follows from Lemma 3.6 that I(yD0) > s + 2. Thus

I(ϕ) > s + 2, a contradiction. So zd(h) 6= −2. Let zd(h) > −1. Then ε(ϕ(z)) =

γyD0(z). Lemma 3.6 means that I(yD0) > s + 2, a contradiction. Thus γ = 0.

Now let ϕ = ad f +
∑

i∈M

βi ad(yxπi+1
i )+Dθ. If zd(h) = −1, then ε(ϕ(z)) = adh(z)

for z ∈ Γ. As I(ad(h)) > s + 2, we have I(ϕ) > s + 2, a contradiction. Hence

zd(h) > 0. Suppose that θ 6= 0. Then there is an η ∈ H such that θ(η) 6= 0. If

zd(h) > 1, we set

U1 =

{
xkyηξu ; 2k0 +

∑

i∈M1

ki + |u| = 2, θ(η) 6= 0

}
.

Then ε(ϕ(z)) = Dθ(z) = θ(η)z for all z ∈ U1. So {ε(ϕ(z)) ; z ∈ U1} are linearly

independent. Thus I(ϕ) > s + 2, a contradiction. Let zd(h) = 0. Set

h =

( ∑

i,j∈M1

aijxixj +
∑

i∈M1,j∈T

bijxiξj +
∑

i,j∈T

cijξiξj + µx0

)
yλ,

where aij , bij , cij , µ ∈ F. Put

U2 =

{ t∏

j=1

ξr+jy
η ; t = 1, . . . , q

}
∪ {xtei+tei′ yηξω ; i = 1, . . . , n, t = 1, . . . , 5}.

By direct computation , we have

ε(ϕ(z))) = (adh + Dθ)(z) 6= 0, ∀ z ∈ U2.

Considering the Z-degree of ε(ϕ(z)), we obtain that {ε(ϕ(z)) ; z ∈ U2} are linearly

independent. So I(ϕ) > 5n + q > s + 2, a contradiction; that is, θ = 0.
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Now ϕ = ad f +
∑

i∈M

βi ad(yxπi+1
i ). If zd(h) < πi − 1, then ε(ϕ(z)) = adh(z) for

all z ∈ Γ. As I(ad(h)) > s + 2, we have I(ϕ) > s + 2, a contradiction. Suppose

zd(h) = πi − 1 and βi 6= 0. For z ∈ Vi in Lemma 3.6, we have ε(ϕ(z)) = adh(z) +

βi ad(yxπi+1
i )(z) 6= 0. Considering the Z-degree of ε(ϕ(z)), we obtain that {ε(ϕ(z)) ;

z ∈ Vi} are linearly independent. Hence I(ϕ) > s+2, a contradiction; that is, βi = 0

for all i ∈ M. Let zd(h) > πi−1. Then ε(ϕ(z)) = ad
( ∑

i∈M

βiyxπi+1
i

)
(z) for all z ∈ Γ.

It follows from Lemma 3.6 that I
(
ad

( ∑
i∈M

βiyxπi+1
i

))
> s + 2. Then I(ϕ) > s + 2,

a contradiction. Thus βi = 0.

Now let ϕ = ad f . Lemma 3.4 implies that I(Der(Ω)) = s + 2 and if I(ϕ) = s + 2,

then ϕ = adxπξωα(y). Assume that α(y) 6∈ span
F
{χ(y)}. Since span

F
{χ(y)} is

the only one-dimensional ideal of F[y] (see [18]), there is a ν ∈ H such that α(y)

and α(y)yν are linearly independent. Now ϕ(yν) = [xπξωα(y), yν ] = (ν − 1)×

xπ−e0ξωα(y)yν implies that the images of the s+1 elements 1, yν , xi, ξj are linearly

independent for all i ∈ M and j ∈ T . So I(ϕ) > s+2. This contradicts the fact that

I(ϕ) = s + 2. Therefore α(y) ∈ spanF{χ(y)} and ϕ ∈ spanF{B}. �

Let ̺ be the induced representation of C on Γ/C, i.e.,

̺(f) : Γ/C → Γ/C

(g + C) 7→ [f, g] + C, where f ∈ C, g ∈ Γ.

Lemma 3.7. C is an invariant maximal subalgebra of Γ.

P r o o f. First we will show that ̺ is irreducible.

For all f ∈ Γ, the element f + C ∈ Γ/C will be denoted by f . Assume that V is

a nonzero submodule of Γ/C and

0 6= f = γ1̄ + δx0 +
∑

i∈M1

αixi +
∑

j∈T

βjξj ∈ V,

where γ, δ, αi, βj ∈ F. If there is an i ∈ M1 (or j ∈ T ) such that αi 6= 0 (or βj 6= 0),

then

̺(xixi′ )f =
∑ [

xixi′ ,
∑

i∈M1

αixi

]
+ C = [i′]αixi ∈ V

(
or ̺(ξiξj)f =

[
ξiξj ,

∑

j∈T

βjξj

]
+ C = βjξi ∈ V

)
.

If αi = βj = 0 for all i ∈ M1 and j ∈ T , when γ 6= 0, we obtain

̺(x0xi)f = [x0xi, γ] + [x0xi, δx0] + C = γxi ∈ V (or ̺(x0ξj)f = γξj ∈ V ).
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If γ = 0, we let δ 6= 0. Then for λ ∈ H we have

̺(xi(1 − yλ))f = [xi(1 − yλ), δx0] + C

= −δ((1 − µi) − (1 − µi)y
λ)xi − δλxiy

λ + C = −δλxiyλ ∈ V ;

that is, xi = xiyλ ∈ V. Similarly, ξj = ξjyλ ∈ V. In all cases we have xi ∈ V (or

ξj ∈ V ) for some i ∈ M1 (for some j ∈ T ). So

[i′]̺
(
λ−1(1 − yλ)xi′

)
xi = [i′]λ−1[(1 − yλ)xi′ , xi] + C

= λ−1(1 − yλ) + C ≡ 1 + C = 1̄ ∈ V (or − ̺(λ−1(1 − yλ)ξj)ξj = 1̄ ∈ V ).

Thus x0 = ̺(2−1x2
0)(1̄) ∈ V, xi = ̺(x0xi)(1̄) ∈ V and ξj = ̺(x0ξj)(1̄) ∈ V for all

i ∈ M1 and j ∈ T . It follows that V = Γ/C.

C is invariant according to Lemma 3.1 and Theorem 3.1. Let L be any subalgebra

containing C, then L/C is a submodule of Γ/C. By the proof above, L = Γ or L = C

and thereby C is maximal. �

Let Γ = Γ(r, H, q, s) and Γ′ = Γ(r′, H ′, q′, s′) be two Lie superalgebras. Let

Γ(−1) = Γ, Γ(0) = C and define

(3.4) Γ(i) = {f ∈ Γ(i−1) ; [f, Γ(−1)] ⊆ Γ(i−1)}, ∀ i > 1.

Then we obtain a descending filtration of Γ: {Γ(i) ; i > −1}. Similarly, Γ′ possesses

a filtration: {Γ′
(i) ; i > −1} imitating the definition above with C′ = Γ′

(0). Set

B = spanF{x
πξωχ(y)} and B

′ = spanF{x
π′

ξω′

χ′(y)}, where π′ = (π′
0, . . . , π

′
r) and

ω′ = 〈r′ + 1, . . . , r′ + q′〉,

Lemma 3.8. If σ is an isomorphism of Γ onto Γ′, then σ(Γ(0)) = Γ′
(0) .

P r o o f. From Lemmas 3.4 and 3.1, we see that σ(B) = B′. As

[f, B] = 0 ⇐⇒ [σ(f), σ(B)] = 0, ∀ f ∈ Γ,

we have

σ(Γ(0)) = σ(C) = σ{f ∈ Γ; [f, B] = 0} = {σ(f) ∈ Γ′ ; [f, B] = 0}

= {σ(f) ∈ Γ′ ; [σ(f), σ(B)] = 0} =
{
g ∈ Γ′ ; [g, B′] = 0

}
= C

′ = Γ′
(0).

�

By virtue of equality (3.4) and Lemma 3.8, we obtain the following theorem.
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Theorem 3.2. Let σ be an isomorphism of Γ onto Γ′. Then σ(Γ(i)) = Γ′
(i) for

all i > −1.

Corollary 3.1. The filtration of Γ is invariant under the automorphism group

of Γ.

P r o o f. This is a direct consequence of Theorem 3.2. �

Corollary 3.2. Γ(r, H, q, s) ∼= Γ(r′, H ′, q′, s′) ⇐⇒ r = r′, m = m′, q = q′, s0 =

s′0 and

(3.5) {{s1, s1′}, . . . , {sn, sn′}} = {{s′1, s
′
1′}, . . . , {s′n, s′n′}}.

P r o o f. We only need to prove the necessary condition. Since dimΓ = dimΓ′,

i.e., 2qp
∑

i∈M
(si+1)+m = 2q′

p
∑

i∈M′ (s
′

i+1)+m′

, we have q = q′. If σ is an isomorphism

of Γ onto Γ′ and D ∈ DerΓ, then the mapping D 7→ σDσ−1 is an isomorphism

of DerΓ onto Der Γ′, i.e., Der Γ ∼= Der Γ′. Hence I(Der Γ) = I(Der Γ′); that is,

r + q = r′ + q′. Thus r = r′. Furthermore, since the outer derivation subspace has

the same dimension and the outer derivation Dθ is not ad-nilpotent, m = m′.

Note that Γ = C⊕N and Γ′ = C′ ⊕N′. One may easily verify that σ(N) = N′ by

Lemma 3.8. Recall that σ(Γα) = Γ′
α, where α ∈ Z2. Put

Vi = {f ∈ Γ(i) ∩ Γ0̄ ; adf(N ∩ Γ1̄) = 0}, i > −1,(3.6)

V ′
i = {g ∈ Γ′

(i) ∩ Γ′
0̄ ; adg(N′ ∩ Γ′

1̄) = 0}, i > −1.(3.7)

Then Vi = Γ(r, H, s)(i) and V ′
i = Γ(r, H ′, s′)(i). Let V =

⋃
i>−1

Vi and V ′ =
⋃

i>−1

V ′
i .

It is easy to show that V = Γ(r, H, s) and V ′ = Γ(r, H ′, s′). It follows from (3.6)

and (3.7) that σ(Vi) = V ′
i for all i > −1. Hence σ(V ) = V ′. Therefore Γ(r, H, s) ∼=

Γ(r, H ′, s′). By the consequence of Lie algebra (see [6]), we obtain s0 = s′0 and

equality (3.5) holds. �

4. Properties

In this section, k 66 π denotes that there exists an i ∈ M such that ki > πi. We

adopt the convention that if ki < 0 or ki > πi, then xki

i = 0 for i ∈ M. It is easily

seen that if 0 < ki, k′
i < p, then xki

i x
k′

i−1
i = xki−1

i x
k′

i

i .

The following lemma is easy:
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Lemma 4.1. Let α ∈ F and ς ∈ Π. Then
p−1∏
j=0

(α − jς) = αp − αςp−1.

Let L =
s⊕

i=−r

Li be a finite-dimensional simple Z-graded Lie superalgebra. Put

L− :=
−1⊕

i=−r

Li and L+ :=
s⊕

i=1

L. Then L = L− ⊕ L0 ⊕ L+.

The proofs of Lemmas 4.2 and 4.4 are given in reference [32] in Chinese. For the

convenience of the reader, their proofs in English will be given in Appendix.

Lemma 4.2 ([32]). Let L =
s⊕

i=−r

Li be a finite-dimensional simple Z-graded Lie

superalgebra. Suppose that λ 6= 0 is an associative form on L. Then the following

statements hold.

(1) λ(Li, Lj) = 0 if i + j 6= s − r.

(2) λ
∣∣
Li×Ls−r−i

is nondegenerate and dimF Li = dimF Ls−r−i, where −r 6 i 6 s.

Lemma 4.3 ([24]). Suppose that λ : L × L → F is a supersymmetric bilinear

form such that

(1) λ is L−-invariant, i.e., λ([x, y], z) = λ(x, [y, z]), ∀x, z ∈ L, y ∈ L−;

(2) λ
∣∣
Li×Ls

= 0 for i > −r;

(3) λ
∣∣
L−r×Ls

is L0-invariant, i.e., λ([x, y], z) = λ(x, [y, z]), ∀x ∈ L−r, y ∈ L0,

z ∈ Ls.

Then λ is an associative form on L.

Lemma 4.4 ([32]). Let L0 ∩ L0̄ 6= 0. If L has a nondegenerate trace form, then

r = s.

Theorem 4.1. The algebra Γ(r, H, q, s) admits a nondegenerate associative form

if and only if 3 + n − 2−1q ≡ 0 (mod p).

P r o o f. Let λ be a nondegenerate associative form on Γ. By Lemma 4.2

we see that λ
∣∣
Γτ×Γ−2

is nondegenerate. Then λ(1, xπξω) 6= 0. As λ is associative,

λ([1, x0], x
πξω) = λ(1, [x0, x

πξω]). By computation, we get −λ(1, xπξω) = (2 + n −

2−1q)λ(1, xπξω). Since λ(1, xπξω) 6= 0, we have 3 + n − 2−1q ≡ 0 (mod p).

Conversely, suppose 3 + n − 2−1q ≡ 0 (mod p). Define σπω : Γ → F such that

σπω

( ∑

k,η,u

αkηuxkyηξu

)
= απ0ω,

where αkηu ∈ F. Clearly, σπω is a linear mapping. We define

λ : Γ × Γ → F, λ(f, g) = σπω(fg).

It is easy to see that λ is a super-symmetric bilinear form.
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For the basis elements f = xkyηξu and g = xlyςξv with ς ∈ H , we will prove

Lemma 4.3 (1) holds:

(4.1) λ([yδ, f ], g) + λ(f, [yδ, g]) = (δ − 1)
(
k∗
0σπω(xk−e0xlyδ+η+θξuξv)

+ l∗0σπω(xkxl−e0yδ+η+θξuξv)).

If (k + l− e0, δ + η + θ, {u}∪ {v}) 6= (π, 0, {ω}), by the definition of σπω, we see that

the right hand side of equality (4.1) equals zero.

If (k+ l−e0, δ+η+θ, {u}∪{v}) = (π, 0, {ω}), then k0+ l0−1 = π0 and ki + li = πi

for all i ∈ M1. Thereby the right hand side of equality (4.1) equals (δ − 1)(k∗
0 + l∗0).

As k0 + l0 − 1 = π0, k
∗
0 + l∗0 = p. Thus the right hand side of equality (4.1) equals

zero.

Similarly, for i ∈ M1 we have

(4.2) λ([xiy
δ, f ], g) + λ(f, [xiy

δ, g]) = (µi + δ − 1)
(
k∗
0σπω(xk−e0xix

lyδ+η+θξuξv)

+ l∗0σπω(xkxl−e0xiy
δ+η+θξuξv)) + [i](k∗

i′σπω(xk−ei′ xlyδ+η+θξuξv)

+ l∗i′σπω(xkxl−ei′ yδ+η+θξuξv)).

Note that k + l − e0 + ei′ and k + l − ei′ cannot equal π in the mean time. If

neither of them is equivalent to π, then both the sum of the first two terms and

the sum of the last two terms on the right-hand side of equality (4.2) equal zero. If

(k + l−e0 +ei′ , δ +η +θ, {u}∪{v}) = (π, 0, {ω}), then the sum of the last two terms

on the right-hand side of equality (4.2) equals zero. Since k + l− e0 + ei′ = π so that

k∗
0 + l∗0 = p, the sum of the first two terms on the right-hand side of equality (4.2)

equals (µi + δ − 1)(k∗
0 + l∗0) = 0. If (k + l − ei′ , δ + η + θ, {u} ∪ {v}) = (π, 0, {ω}),

then the sum of the first two terms on the right-hand side of equality (4.2) equals

zero. As k + l − ei′ = π so that k∗
i′ + l∗i′ = p, the sum of the last two terms on the

right-hand side of equality (4.2) equals [i](k∗
i′ + l∗i′) = 0.

For j ∈ T we obtain

(4.3) λ([f, ξjy
δ], g) − λ(f, [ξjy

δ, g]) = (2−1 − δ)
(
k∗
0σπω(xk−e0xlyδ+η+θξuξvξj)

+ l∗0σπω(xkxl−e0yδ+η+θξuξvξj)) + ((−1)|u|σπω(xkxlyδ+η+θξu−(j)ξv)

+ σπω(xkxlyδ+η+θξuξv−(j))).

Similarly, if (k + l − e0, δ + η + θ, {u} ∪ {v} ∪ {j}) = (π, 0, {ω}), then both the sum

of the first two terms and the sum of the last two terms on the right-hand side of

equality (4.3) equal 0. If (k + l, δ + η + θ, {u} ∪ {v} \ {j}) = (π, 0, {ω}), then the

sum of the first two terms on the right-hand side of equality (4.3) equals 0. Since

ξu−(j)ξv = −(−1)|u|ξuξv−(j), the sum of the last two terms on the right-hand side

of equality (4.3) equals 0. Thus λ is Γ−-invariant.
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Now we show that Lemma 4.3 (3) holds. If δ + θ + η = 0, by 3 + n − 2−1q ≡ 0

(mod p), we get

λ([x0y
δ, yθ], xπyηξω) + λ

(
yθ, [x0y

δ, xπyηξω]) = (3 + n − 2−1q) − (δ + θ + η) = 0.

Thus λ
∣∣
Γ−2×Γτ

is Fx0y
δ−invariant. Similarly, one may easily prove that λ

∣∣
Γ−2×Γτ

is Γ0-invariant. Finally, by equality (2.2) and the definition of λ, Lemma 4.3 (2)

holds. It follows that λ is an associative form on Γ. As λ 6= 0 and Γ is simple, it is

nondegenerate. �

Theorem 4.2. The Killing form of each algebra in the family Γ is degenerate.

P r o o f. As Γ =
τ⊕

i=−2

Γi, where τ =
∑

i∈M1

πi +2π0 +q−2, we see that Γ0∩Γ0̄ 6= 0

and τ 6= 2. By Lemma 4.4, every trace form of Γ is degenerate. Since the trace form

of the adjoint representation is the Killing form, the Killing form of Γ is degenerate.

�

Lemma 4.5. Let s0 = si = 0 for i ∈ M1 and η ∈ H ′. Suppose f = xkyνξu ∈ Γ0̄,

where |u| = 0 or |u| is an even number and ν ∈ H . The following statements hold.

(1) If |u| 6= 0, then (ad f)pyη = 0.

(2) If |u| = 0, then (ad f)pyη = 0 or αpy
η, where αp ∈ F. In particular, if

(ad f)pyη 6= 0, then we have f = x0y
ν .

P r o o f. (1) As |u| > 2, the assertion holds by direct computation.

(2) We will prove by induction on m that

(4.4) (ad f)myη = 0 or αmxmk−me0ymν+η with αm ∈ F.

For the case m = 1, we have (ad f)yη = 0 or k∗
0(1 − η)xk−e0yν+η. Suppose the

assertion is true for m. Then

(ad f)m+1yη = (ad f)((ad f)myη) = [xkyν , αmxmk−me0ymν+η]

= (β1g − β2h)y(m+1)ν+η +
∑

i∈M1

[i]αm(mk∗
i k∗

i′ )(gi − hi)y
(m+1)ν+η,

where β1, β2 ∈ F and

g = xk−e0xmk−me0 , h = xkxmk−(m+1)e0 ;

gi = xk−eixmk−me0−ei′ , hi = xk−ei′ xmk−me0−ei .

1105



By equality (2.1), we obtain gi = hi = {0, x(m+1)k−me0−ei−ei′ }; that is, gi − hi = 0.

Also by equality (2.1), we get g, h ∈ {0, x(m+1)k−(m+1)e0}. It follows that

(ad f)m+1yη = 0 or αm+1x
(m+1)k−(m+1)e0y(m+1)ν+η.

Put m = p. If pk−pe0 66 π, then (ad f)pyη = 0. Let pk−pe0 6 π. As s0 = si = 0,

we have k0 = 0 or 1, and ki = 0 for all i ∈ M1. If k0 = 0, then (ad f)pyη =

(ad f)p−1[yν , yη] = 0. If k0 = 1, then (ad f)pyη = 0 or (ad f)pyη = αpy
pν+η = αpy

η

by ki = 0 and equality (4.4).

In particular, if (ad f)pyη 6= 0, then k0 = 1 and ki = 0 for all i ∈ M1, i.e.,

f = x0y
ν . �

Lemma 4.6. Let s0 = si = 0 for i ∈ M1. Let f = xkyϑξu ∈ Γ1̄, where |u| is an

odd number and ϑ ∈ H . Then (ad f)2pyη = 0 for η ∈ H ′.

P r o o f. If |u| > 1, a simple computation shows that

(ad f)yη = [xkyϑξu, yη] = k∗
0(1 − η)xk−e0yϑ+ηξu,

(ad f)2yη = (ad f)((ad f)yη) = k∗
0(1 − η)[xkyϑξu, xk−e0yϑ+ηξu] = 0.

It follows that (ad f)2pyη = 0 .

If |u| = 1, we let f = xkyϑξj . First, we show that (ad f)2myη = 0 or

α2mx2mk−me0y2mϑ+η with α2m ∈ F by induction on m. If m = 1, then

(ad f)yη = [xkyϑξj , y
η] = k∗

0(1 − η)xk−e0yϑ+ηξj ,

(ad f)2yη = k∗
0(1 − η)[xkyϑξj , x

k−e0yϑ+ηξj ] = k∗
0(η − 1)xkxk−e0y2ϑ+η.

Clearly, xkxk−e0 = 0 or x2k−e0 . Thus (ad f)2yη = 0 or α2x
2k−e0y2ϑ+η, where

α2 = k∗
0(η − 1) ∈ F. Suppose that the assertion is true for m. Then we have

(ad f)2m+1yη = (ad f)((ad f)2myη) = [xkyϑξj , α2mx2mk−me0y2mϑ+η]

= (β1g − β2h)y(2m+1)ϑ+ηξj + α2m

n∑

i=1

(2mk∗
i k∗

i′)(gi − hi)y
(2m+1)ϑ+ηξj ,

where β1, β2 ∈ F,

g = xk−e0x2mk−me0 , h = xkx2mk−(m+1)e0 ;

gi = xk−eix2mk−me0−ei′ , hi = xk−ei′ x2mk−me0−ei .
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From equality (2.1), we obtain gi = hi = {0, x(2m+1)k−me0−ei−ei′ }, i.e., gi − hi = 0,

and g, h ∈ {0, x(2m+1)k−(m+1)e0}. It follows that

(ad f)2m+1yη = γx(2m+1)k−(m+1)e0y(2m+1)ϑ+ηξj , γ ∈ F.

Moreover,

(ad f)2(m+1)yη = [xkyϑξj , γx(2m+1)k−(m+1)e0y(2m+1)ϑ+ηξj ]

= α2(m+1)x
kx(2m+1)k−(m+1)e0y2(m+1)ϑ+η,

where α2(m+1) ∈ F. As xkx(2m+1)k−(m+1)e0 = 0 or x2(m+1)k−(m+1)e0 , our assertion

is true for m + 1. The induction is complete.

Setm = p. It is easy to see that (ad f)2pyη = 0 or α2px
2pk−pe0yη. If 2pk−pe0 66 π,

then (ad f)2pyη = 0. Let 2pk − pe0 6 π. As s0 = si = 0, we have k0 = ki = 0

for all i ∈ M1. Thus f = yϑξj . By computation, we have [yϑξj , y
η] = 0. Hence

(ad f)2pyη = 0. �

A Lie superalgebra L = L0̄⊕L1̄ is called restricted if L0̄ is a restricted Lie algebra

and if L1̄ is a restricted L0̄-module (see [15], [22]). Let p(f) = p if f ∈ L0̄, and

p(f) = 2p if f ∈ L1̄.

Theorem 4.3. The algebra Γ(r, H, q, s) is a restricted Lie superalgebra if and

only if H = Π and s0 = si = 0 for all i ∈ M1.

P r o o f. Suppose Γ is a restricted Lie superalgebra in the family. We see that

(ad 1)p is an inner derivation of degree −2p. Lemma 2.1 implies (ad 1)p = 0. It

follows that 0 = (ad 1)pxπ = (p − 1)!xπ−pe0 . Thus s0 = 0. Similarly, (ad xi)
p is an

inner derivation of degree −p and (ad xi)
p = 0. Then we have 0 = (adxi)

pxπ−π0e0 =

(p − 1)! xπ−π0e0−pei . Hence si = 0 for all i ∈ M1.

Assume H 6= Π. Put θ(η) = η − ηp for all η ∈ H . As H 6= Π, θ is a nonzero

additional mapping from H into F. Then there exists an η ∈ H such that θ(η) 6= 0;

that is, Dθ is a nonzero derivation of Γ. Clearly, Dθ is also a nonzero derivation of

Γ0̄. Lemma 2.1 implies that Dθ is not an inner derivation. In addition, Γ0̄ is a re-

stricted Lie algebra, whose every derivation is an inner derivation, a contradiction.

Consequently, H = Π.

Now we prove the sufficient condition. By the result in [22], we only need to prove

that there is g ∈ Γ such that (ad f)p(f) = ad g for every basis element f = xkyηξu.

By Lemma 2.1, we suppose

(ad f)p(f) = ad g + Dθ + αyD0 + β ad(xπyδξω) +
∑

i∈M

γi ad(yxπi+1
i ),
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where g ∈ Γ, α, β and γi ∈ F. According to Lemmas 4.5 and 4.6, we have

(ad f)p(f)(1) = D0(g) + βxπ−e0yδξω + γ0yxπ0

0 = 0 or αp.

Clearly, β = γ0 = 0 and D0(g) = 0 or αp. Then

(4.5) (ad f)p(f) = ad g + Dθ + αyD1 +
∑

i∈M1

γi ad(yxπi+1
i ).

Let f0 and g0 be Z-homogeneous components of f and g of degree 0, respectively.

Acting on x0xi′ by equality (4.5) we have

(ad f0)
p(f)(x0xi′ ) = ad g0(x0xi′) + αxi′y + γiyxπi

i x0.

Considering the Z-degree of every term, we get α = γi = 0 for all i ∈ M1. Then

(4.6) (ad f)p(f) = ad g + Dθ.

(1) f ∈ Γ0̄. If |u| 6= 0, by (1) of Lemma 4.5 we have 0 = (ad f)p(1) = ad g(1) =

D0g, i.e., D0g = 0 or D0g = ιy, where ι ∈ F. Then 0 = (ad f)pyη = ι(1 − η)yη+1 +

θ(η)yη for all η ∈ H ′ \ {0}. It follows that θ(η) = 0 and ι = 0. In particular,

0 = (ad f)p(x0y) = ad g(x0y) + Dθ(x0y) = ∂(g)y + θ(1)x0y. Since x0 does not occur

in g, θ(1) = 0. Thus θ = 0.

Let |u| = 0 and f = xkyν . Suppose θ 6= 0 and θ(η) 6= 0 for η ∈ H ′. By Lemma 4.5

and equality (4.6), we have (ad f)py2 = ad g(y2) + Dθ(y
2) = −D0(g)y2 + θ(2)y2 = 0

or αpy
2. Then g does not contain x0 or D0(g) ∈ F \ {0}. If g does not contain x0,

by equality (4.6) we have (ad f)pyη = θ(η)yη 6= 0. Lemma 4.5 implies f = x0y
ν

with ν ∈ H = Π. It follows from equality (4.6) that (adx0y
ν)pxi = ad g(xi) for

all i ∈ M1. Thus Di′g = [i′]αixi, where αi =
p−1∏
j=0

(1 − µi − jν). Then we may

assume that g =
∑

i∈M1

[i′]αixixi′ + h, where h ∈ Γ does not contain x0 and Di′h = 0

for all i ∈ M1. Comparing the coefficient of (adx0y
ν)px2

t = ad g(x2
t ), we obtain

p−1∏
j=0

(1 − 2µt − jν) = 2αt. Since νp−1 = 1, we have µt = 0 by Lemma 4.1. Similarly,

µt′ = 0, contradicting µt + µt′ = 1. Now let D0g = ε 6= 0, where ε ∈ F. Then

ε = ad g(1) = (ad f)p(1) = (adx0y
ν)p(1) =

p−1∏

j=0

(1 − jν) = 0,

a contradiction. So θ(η) = 0 for η ∈ H ′. As 0 = θ(2) = θ(1 + 1) = θ(1) + θ(1),

θ(1) = 0. Hence θ = 0; that is, (ad f)p = ad g.
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(2) f ∈ Γ1̄. Lemma 4.6 yields 0 = (ad f)2p(1) = ad g(1) + Dθ(1) = (−1)|g|D0g,

i.e., D0g = 0 or ιy, where ι ∈ F. Thus (ad f)2pyη = ad g(yη) + Dθ(y
η) = θ(η)yη or

ι(1 − η)yη+1 + θ(η)yη for 0 6= η ∈ H ′. As (ad f)2pyη = 0 by Lemma 4.6, we have

θ(η) = 0 for η ∈ H ′. Since 0 = θ(2) = θ(1 + 1) = θ(1) + θ(1), we have θ(1) = 0.

It follows that θ = 0; that is, (ad f)2p = ad g. Consequently, Γ is a restricted Lie

superalgebra. �

Appendix

P r o o f of Lemma 4.2. (1) Clearly λ is nondegenerate. We define ϕ : L → L∗

by means of ϕ(x)(y) = λ(x, y), for all x, y ∈ L, where L∗ denotes the dual space

of L. The mapping ϕ is linear and as kerϕ = 0, ϕ is injective. Note that L∗ is

Z-graded and ϕ =
∑
i∈Z

ϕi, where ϕi ∈ HomF(L, L∗)i. We shall prove that kerϕj is

a right ideal (Z2-graded is not necessary) of L for j ∈ Z. We denote by zh(L) the

set of all Z-homogeneous elements of L. By the definition of ϕ and the invariance

of λ, we have ϕ([x, y])(z) = ϕ(x)([y, z]) for all x, y, z ∈ zh(L). Then
∑
i

ϕi([x, y])(z) =
∑
i

ϕi(x)([y, z]). It follows that

ϕj([x, y])(z) = ϕj(x)([y, z]), ∀ j ∈ Z.

Since ϕj is Z-homogeneous, kerϕj is a Z-graded subspace of L. Suppose x ∈

zh(kerϕj) in the equality above, then ϕj([x, y])(z) = 0, for all x ∈ zh(kerϕj), for all

y, z ∈ zh(L). Thus ϕj([x, y]) = 0, for all x ∈ zh(kerϕj), y ∈ zh(L). Furthermore,

ϕj([x, b]) = 0, ∀x ∈ zh(kerϕj), b ∈ L.

For a ∈ kerϕj , as kerϕj is a Z-graded subspace of L, we have a =
∑
i

ai, where

ai ∈ Li ∩ kerϕj . By the equality above, we get ϕj([a, b]) = 0, i.e., [a, b] ∈ kerϕj , for

all a ∈ kerϕj , b ∈ L. Then kerϕj is a right ideal of L.

Since ϕ is an isomorphism of linear spaces, there is an index j such that ϕj 6=

0. Then kerϕj is a proper right ideal (Z2-graded is not necessary) of L. Thus

kerϕj = 0 and then ϕj is injective. It follows that ϕj(L−r) 6= 0 and ϕj(Ls) 6= 0. As

L∗ =
r⊕

i=−s

(L∗)i, we have −s 6 j − r, j + s 6 r, which implies that j = r − s. Hence

ϕ = ϕr−s.

For x ∈ Li, i ∈ Z, we see that ϕ(x) = ϕr−s(x) ∈ (L∗)i+r−s. Noting that the

Z-gradation of F is trivial, we have λ(x, y) = ϕ(x)(y) = 0 for i + j 6= s− r, ∀ y ∈ Lj.

(2) Note that λ is nondegenerate. The assertion follows directly from (1). �
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P r o o f of Lemma 4.4. Note that any algebraically closed field is an infinite

field. By Lemma 1.4.7 in [20], L0̄ ∩L0 has a Cartan subalgebra. Let H be a Cartan

subalgebra of L0̄ ∩ L0. Put

(16) H = {x ∈ L0̄ ; ∀h ∈ H, ∃n(h) ∈ N : (adh)n(h)(x) = 0}.

Theorem 3.2.3 in [20] implies thatH is a Z-graded Cartan type subalgebra of L0̄; that

is, H =
s∑

i=−r

H ∩Li∩L0̄ and H 0̄ = H. Let κ̺ be the trace form of the representation

̺ of L:

k̺ : L × L → F, k̺(x, y) = str(̺(x)̺(y)), ∀x, y ∈ L,

where str is the supertrace (see [16]).

Let L =
⊕

α∈∆

Lα be the weight space decomposition of L with respect to H . Then

κ̺ : Li ∩ Lα × Ls−r−i ∩ L−α → F is nonsingular. Noting that κ̺ is a homogeneous

linear mapping of degree 0̄, we obtain

κ̺ : Li ∩ Lα ∩ L0̄ × Ls−r−i ∩ L−α ∩ L0̄ → F

is nonsingular, which yields

dim(Li ∩ Lα ∩ L0̄) = dim(Ls−r−i ∩ L−α ∩ L0̄).

Since H is a Cartan subalgebra of L0̄∩L0, we have H 6= 0 and H = Lθ∩L0∩L0̄ with

zero weight θ. Set i = s− r and α = θ in the equality above. Then dim(Ls−r ∩Lθ ∩

L0̄) = dim(L0 ∩Lθ ∩ L0̄) 6= 0. It follows from equality (16) that H ⊃ L0̄ ∩ Lθ. Thus

Hs−r = H ∩ Ls−r ∩ L0̄ ⊃ Ls−r ∩ Lθ ∩ L0̄ 6= 0. Observing that H 0̄ = H , we see that

Hs−r is H-invariant. As H is nilpotent, ad y is a nilpotent linear transformation

of Hs−r for every y ∈ H ⊂ H . According to Engel’s Theorem, there exists a

0 6= x ∈ Hs−r such that [y, x] = (ad y)(x) = 0, for all y ∈ H. Since L is simple,

y ∈ L(1). Suppose s 6= r. Then x is ad-nilpotent by x ∈ Hs−r = H ∩Ls−r∩L0̄. Thus

κ̺(x, y) = 0 for y ∈ H, which indicates that κ̺ : Ls−r ∩Lθ ∩L0 ×L0 ∩Lθ ∩L0̄ → F

is singular by H = Lθ ∩ L0 ∩ L0̄, a contradiction. Hence s = r. �
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