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Abstract. In this paper, we continue to investigate some properties of the family I' of
finite-dimensional simple modular Lie superalgebras which were constructed by X.N. Xu,
Y.Z.Zhang, L. Y. Chen (2010). For each algebra in the family, a filtration is defined and
proved to be invariant under the automorphism group. Then an intrinsic property is proved
by the invariance of the filtration; that is, the integer parameters in the definition of Lie
superalgebras I' are intrinsic. Thereby, we classify these Lie superalgebras in the sense
of isomorphism. Finally, we study the associative forms and Killing forms of these Lie
superalgebras and determine which superalgebras in the family are restrictable.
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1. INTRODUCTION

It is well known that filtration structures play an important role both in the classi-
fication of modular Lie algebras (i.e., Lie algebras over a field of prime characteristic)
(see [1], [7], [19], [21], [26]) and Lie superalgebras (i.e., Lie superalgebras over a field
of characteristic zero) (see [9], [10], [16]). Similarly, filtration structures will provide
useful tools in the research of modular Lie superalgebras (i.e., Lie superalgebras over
a field of prime characteristic). The filtrations of modular Lie algebras of Cartan
type and Lie superalgebras were proved to be invariant in papers [20], [17] and [§],
respectively. The same results for modular Lie superalgebras W and S were obtained
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11126129, No. 11371182 and No. 11171055), the PhD Start-up Foundation of Liaoning
University of China (No. 2012002), Predeclaration Fund of State Project of Liaoning
University (No. 2013LDGY01), NSF of Jilin province (No. 201115006) and Scientific
Research Foundation for Returned Scholars Ministry of Education of China.
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by using ad-nilpotent elements in paper [30] and for modular Lie superalgebras H
and K they were obtained by means of minimal dimension of image spaces in pa-
pers [31], [32]. The invariance of the nontrivial transitive filtrations of modular Lie
superalgebras HO was discussed in paper [25].

The research on modular Lie superalgebras just began in recent years (see [11],
[15]). The complete classification of the finite-dimensional simple modular Lie su-
peralgebras remains an open problem [12]. So constructing finite-dimensional sim-
ple modular Lie superalgebras and studying their natural properties is necessary at
present stage (see [27], [33]). Many important results for modular Lie superalge-
bras have been obtained (see [2], [4], [13], [14], [22]-[33]). The study of graded Lie
superalgebras also have got several deep results in recent years (see [3], [5]).

This paper is devoted to investigating the filtration structures of the family I" of
modular Lie superalgebras by the method of minimal dimension of image spaces and
then some properties are discussed. This paper is organized as follows: In Section 2,
we recall some necessary definitions and useful results of the Lie superalgebras I'. In
Section 3, we establish some technical lemmas which will be employed to determine
the invariance of the filtrations. Then the filtrations of the Lie superalgebras I'
are proved to be invariant under automorphisms. Therefore, we are able to obtain
an intrinsic characterization of these Lie superalgebras. In Section 4, we discuss the
associative forms and Killing forms of the Lie superalgebras I and find the conditions
for the restrictability of these Lie superalgebras.

2. PRELIMINARIES

Throughout this article, F denotes an algebraically closed field of characteristic p >

3 and F is not equal to its prime field I1. For m > 0, let E = {21, ..., z;n} be a subset

of F that is linearly independent over the prime field II, and let H be the additive

subgroup generated by E. If A € H, then we let A = i Xiz; and y* = yi‘l oy,
i=1

where 0 < A; < p. We use the notation N for the set of positive integers and Ny for
the set of non-negative integers. Let Zs = {0, 1} be the ring of integers modulo 2.

Given n € N and r = 2n, we put M = {0,1,...,r}. Suppose that pog,...,pu € F
such that pg = 0 and p; + pipyj =1 for j =1,...,n. Let k; € Ny for i € M, then

Si

k; can be uniquely expressed in p-adic form k; = > &, (k;)p", where 0 < &, (k;) < p.
v=0

Let s = (so+1,...,8.+1) € N"T1. We define the truncated polynomial algebras

A= [F[xOO;xOI;' <3 L0sgy -+ s Lr0y Lrly -+ y Trs,s Y1y - 7ym]
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such that
2. =0, VieM, j=0,1,...,8; y'=1,i=1,...,m.

LetQ:{(/fo,...,kr); 0<k; <my, Wi:pSiJrl—]., ZGM} Ifk:(k‘o,...,kr) €Q,

N
we write #* = 20 ... 2 where ;¥ = ] x;)( ) for i € M. For 0 < ki, k) < g, it
v=0

is easy to see that
(2.1) ziFia = g £ 0 s ey (k) + eo(k)) <p, v=0,1,...,8;, i € M.

Let A(q) be the Grassmann superalgebras over [ in ¢ variables €41, ..., &44 with
q € N and g > 1. Denote the tensor product by Q= A®¢ A(q). Obviously, Q are
associative superalgebras with a Zs-gradation induced by the trivial Zs-gradation of
A and the natural Z5-gradation of A(q):

Op = A2r A)s, Q= A®F Ag)1.
For f € A and g € A(q), we abbreviate f ® g to fg. For k € {1,...,q}, we set
Br = {(i1,42,...,ig); 7+ 1< i1 <ia<...<ip <7 +q}

and B(q) = qu Bi, where Bg = (0. If uw = (i1,...,ik) € By, we let |u| =k, {u} =
k=0

{ig,...,ix} and € =&, ... &,. Put [§| = 0 and €? = 1. Then {zFy ¢"; k€ Q,\ €

H,u € B(q)} is an F-basis of Q.

If L is a Lie superalgebra, then h(L) denotes the set of all Zy-homogeneous ele-
ments of L, i.e., h(L) = LgU Lg. If |x| appears in some expression in this paper, we
always regard = as a Zs-homogeneous element and |z| as its Z-degree.

Set s=r+q¢, T={r+1,...,s} and R= MUT. Put My = {1,...,r}. Define
i=0ifie M;,andi=11ifi € T. Let

t+n, 1<t<n, 1, 1<i<n,
i'=<{i-n, n+1<i<n, [i(]=% -1, n+1<i<r,
i, r+1<1i<s, 1, r+1<17<s.

For e; = (di0,-..,0ir), © € M, we abbreviate 2¢ to x;. Let D;, i € R, be the linear
transformations of 2 such that
krak—eighen, 1€ M,
Di(xky/\fu) _ ? .
aFyr - 0Ev/0¢;, i e T,
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where kf is the first nonzero number of ¢ (k;),e1(ki), ..., €5, (ki). Then D; € Der Q.

Set
=1- Z MJxJO Zzﬁyﬂa _12533

JEM: JET

where [ is the identity mapping of Q. For fe h(ﬁ), g € §~2, we define a bilinear
operation [, ] in € such that

[f.91 = Do(£)3(g) = D(H)Dolg) + > [iI(=1)'M'Di(f)Ds (9)-

i€ MLUT

Then € are Lie superalgebras for the operation | , | defined above (see [33]). Note

that Q = @ Q., where
a€ls

Qo = spang{z"y e k€ Q, A€ H, u € B(q), a = |1_¢|}

If 1 € H, then we put H' = H \ {1} and y = y'. By computation, we obtain that
(y) = {ay; a € F} is the center of 2 and the commutator subalgebra:

[, Q] = spang {z*y*¢"; (kA u) # (m,n+2-27"q,w)},

where 7 = (7o,...,7m) € Q and w = (r+1,...,s) € B(q). Define I'(r, H,q,s) :=
[€2,9]/(y). Then I'(r, H,q, s) become simple Lie superalgebras (see [27]).

If 1 ¢ H, then Q := [Q,ﬁ] are simple Lie superalgebras. The case 1 ¢ H is
a different family (2 rather than I') and is not treated in this paper because it has
been studied in [33].

For simplicity, we sometimes write I" instead of I'(r, H, ¢, s). The derivations D;
of Q induce the derivations of I' by D;(f+ (y)) = Di(f)+ (y). We write any element
f+ (y) of T" as f for simplicity. By the convention, we see that ay = 0 in T" for all
ac .

Note that I' = @ T'; are Z-gradation Lie superalgebras, where
jeX

(2.2) I, = span; {xwu; S ki 2ho + Jul - 2 —j},

i€ M,

and X ={-2,-1,...,7}, 7= > m+2mo+q—2. Let feT. If f € T, then f
1€ My
is called a Z-homogeneous element and j is the Z-degree of f which is denoted by

2d(f).
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Let A={0: H—F; 0(A+n) =0\ +6(n), YA,n€ H}. For 6 € A, we define
a linear transformation Dy of I' such that Dy(z¥y*¢%) = O(\)zFy*¢¥. Clearly Dy €
DerT.

Put Wy = {Dy; 6 € A}. Then W; is an m-dimensional linear space. Set Wy =
span[F{vai; 0 < v; < s, i€ M}. Denote by DerT' the derivation superalgebras
of .

Lemma 2.1 ([27]). Derl" = ad L @ spang{yDy} ® Wy @ Wa, where

L = L @ spang{ya™*'; i € M}
=I'® span[F{x”y‘sg‘”; s=n+2-2"¢}® span[F{ya:f"'H; i€ M}.

Lemma 2.2 ([27]). If D;(f) =0 for alli € R, then f = Y ajzjy+ Y B;§y+
jeM j€T
z(y), where aj, 8; € F and 2(y) = > axy* € T2 with ay € F.
XeH'

3. FILTRATION

Put I(p) = dim(Im ¢), where ¢ € DerI'. Let O be a set of DerI" and I(©) :=
min{I(y); 0+# ¢ € O}. Set

b = xwwa(y)a B - adb r’ Where X(’y) = Z yn.
neH

If a := {ay; A\ € H} is a subset of [, then we let a(y) = Y. axy’.
XEH

Lemma 3.1. I(B) = s+ 2, where s =r + ¢ and

¢ :=ker B = P @ spang {xkguoz(y); Z ki + Ju| =1, Z ay = 0}

€M AEH

@ spang {a(y); > (1= Nay = o},

AEH

where P = spanm{xkfuy’\; Skitul =2, A€ H}.
i€M
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Proof. Clearly B(z) =0 for all z € P. Note that x(y)y* = x(y) for all A € H.

If > ax =0, then we obtain
XeH

Blaoa() = o€ 0 Y- a| = (o) Slmeyans’

ncH \eH \eH neH

= ( Z a>\> Z (p—1)(1 - /\)a:’rf‘”ym')‘ —(1+n—-n- 2_1q)x”£‘”y"+)‘)

—<§I >< <n§e;1ny> (n+2-2" q)b)—O.

Similarly,

B(zia(y)) = —m( > m)x”—euewm) =0, VieM,

AEH

B(&ja(y)) = (—1)7 ( 3 Ou)x”é““_(j)x(y) 0, VjeT

AEH

If > (1—=May =0, then we have
AEH

Blal) = (X 0= D Ja™oex) =0,
ANEH
We see that

Blzoy) =276 Y (n+2 g —n— 1y =27 > (n+27"g—n—2)y" £0,
neH neH

B(zoy*) = 2™ §“(Zny) (n+2-2"1q)b #0,

neH

which is independent of A for all A € H.
Similarly, by a direct computation we get

B(xiy?) = —[i']2™ % €“x(y) #0, Vi€ My, A€ H,

B(&yY) = (—1)lMame=Wy(y) £0, VjeT, A€ H,
By) = (A —1)a™ X (y) #0, VYA€ H'.

Let M = spang{l,2;,§;; ¢ € My, j € T} Then Q = €@ MN. It is easily seen that
B(1), B(z;) and B(&;) are linearly independent for all ¢ € M and j € T. Hence
I(B) =r+q+2=s+2, as desired. O
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Lemma 3.2. If 0 # f € h(') and f ¢ spanp{z™¢“a(y)}, then there exist two
basis elements f1 and fo such that [f, f1] and [f, f2] are linearly independent with
zd(f;) =0 fori=1,2.

Proof. (1)If f does not contain any &; for all j € T, then every term of f can
be expressed in the aprz*y? form with oy € F, and two cases arise:

Case 1. zd(f) = > m; +2m — 2. Then we can suppose f = Y. a,z"y*, where
1€ My AES
0# a;\ € Fand S C H. So we get

(i) = =[] amaa™ 'y e £ 0,

Aes
[fragi] = =[] ) ama™ ¢ #0,
res
and they are linearly independent.
Case 2. zd(f) < . mi+2mo—2. Then we may assume that f = Y. apaz®y?,
i€M; kEANES
where ACQ,SC Hand 0# apy € F. Put Bpyx =1—A— > kjp;. Fori,j €T
iE€M,
with ¢ # j, we have
a=|y Oékwky&m} = Y amkir T Cxeyt — Barty),
L keAxes kEANES
29 1= Z akAxky’\,xo&} = Z apA (27 kg 0 moy G — Bty &),
LkeA,NeS kEANES
23 1= Z ak,\xky)‘,xofifj] = Z Oék/\(_ﬁkkxky)\fifj)'

LkeA,neS kEEANES

If there is a k € A such that o(ko) # 0, then e,(kg — 1) + €,(1) < p for any
v > 0. Equality (2.1) ensures that z*~¢xo = 2*. Similarly, eo(ko) = 0 implies that
go(ko — 1) + £o(1) = p and thereby z¥~¢0xy = 0. Put W = {k € A; eo(ko) # 0}.
Thus

2 = Z (ks — By + Z e (—BerzFyt),

kEWAES kEA\W,\ES
29 = Z (27 ks — B )ty + Z i (= Braz™y &),
kEWAES kEA\W,AES
koA
= Y (=B aE).
kEANES

If there is a 2-tuple (k,A), k € A, A € S, such that S;x Z 0 (mod p), then at least
two of two elements z1, z2, z3 are nonzero and our assertion is affirmed. Otherwise,
z1 and z9 are linearly independent.
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If e9(ko) = 0 for all k € A, then ¥~ 2y = 0 ensures that

z1 = Z ap (= Braz"y),

kEANES
= Y a(—Purty &),
kEANES
_ ko A
23 = Z apx (= Bz "y §i&j).
kEANES

If there exists a 2-tuple (k,\), k € A, A € S, such that Gy #Z 0 (mod p), then
all z1, 2o and z3 are nonzero elements. Considering the basic elements z¥y*, zFy*¢;
and xky)‘fifj on the right-hand side of the equalities above, we know that any two
of the elements z1, 22, 23 are linearly independent. If Gy = 0 (mod p) for all k € A
and A € S, then for any k € A there is an i € My such that k; # 0. For j € T, we
have

[f, zows] = [flapakizt =y z0 + ... #0,  [f,z0&] = [Jamkia® e + ... #£0.

Since their Z-degrees are unequal, [f, zozy| and [f, z€;] are linearly independent.
(2) If f contains some &, where | € T and D;(f) # 0, then f has only two
possibilities.
(a) f contains ™. Since f ¢ spang{z™{“a(y)}, there exists a j € T such that &,
does not occur in f. So we can suppose that f = z™y ¢ + ..., where u # () and

j ¢ {u}. Then

[fa zf]] [ ] e )\gugj .. #0,
2o = [f,xi&j] = —[i]z™ CigAgu &+...#0.
It is easy to see that z; and 2o are linearly independent.
(b) There is some ¢ € M such that «]* does not appear in f. If ¥ occurs in f,

then we may assume that f = xFy ¢ + ..., where k; # m; for some i € M. Hence
there exists a ¢t (0 <t < s;) such that zkgpe # 0. Then

2= [foa? o) = (—1)akarereemO) o,

2= [fLa? ] = (~1)ldaRar e gm0 4 g,

and they are linearly independent.
If ¢; does not arise in f for some j € T', then we let

= y)\gu Z al'r]'ux Yy fv

l,n,v
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where aj,, € F and u # (. By the assumption, we see that j ¢ {u}, j ¢ {v}, ki <m;
and [; < m;. Now let « € {u}. Then

21 = [f,&&5] = (~D)lgkyren=We, 4 £ 0.
By virtue of k; < m;, there is a t € {0,1,...,s;} such that akapiei # 0. Then
i [fa?" 6] = () Makar e 2o,

and our assertion follows.
(3) If f contains some &, where [ € T and D;(f) = 0, then f = &y +.... We see
that

[fizows) = =27 tay& + ... £ 0, [fimox)] = -2 zpy& + ... #£0,

and they are linearly independent. O
Let L be a finite-dimensional Z-graded Lie superalgebra. We denote by e(f) the

nonzero Z-homogeneous component of f € L with the least Z-degree.

Lemma 3.3. Let f1,..., fr € L\{0}. If {f;; i =1,...,t} are linearly dependent,
then {(f;); i =1,...,t} are linearly dependent.
Lemma 3.4. Let f € h(T') and f & spanp{z™{“a(y)}. Then I(ad f) > s+ 2.

Proof. According to Lemma 3.3, we can suppose that f is a Z-homogeneous
element. We shall proceed in two steps.
(i) [f,y*] =0 for A € H'\ {0}. Then f does not contain zy. Let

Rlz{ieMl; [faxiy)\]:()v AGH/\{O}}v
Ry={j €T; [f,¢&y*) =0, A€ H \ {0}}.

(a) If R1URy = M UT, then neither x; nor §; occur in f foralli € M and j € T
Thus we may assume that f =y*, A € H'. Then

[f,2"€"] = [yt 2"€") = k(A — )2t~ oyrer.

Hence I(ad f) > (pot! — 1)p>iem CitDoa > () — 1)pr29 > r 4 g+ 2 =5+ 2.
(b) Let Ry =0, |R1| < 1. If |[Ry| = 0, i.e., Ry = 0, then {[f,z:3], [f,&v)]; i €
My, j €T,y e H \{0}} are linearly independent. If |R;| = 1, we suppose R = {l}.
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We see that {[f,z;v*],[f, &y i € Mi\{l}, j € T, y € H \ {0}} are linearly
independent. Thus

Iad f) > (r+q—1)p" > (r+q—1)p>s+2.

(c) Let @ #£ RiURy # M UT. Set J' = {i € Ry; i’ € R1}. So we may assume that
J’ = {il,ill,...,iu,i/u}. Put J1 = R1 \ J/ = {iu+17~'~71’u+t} and R2 = {jl,...,jh}.
Let Jy = {i;+1, C.. ,ZLH} and J = (M1 UT) \ (R1 URyU Jg) Put

€k v vj
) = Hx’Yk r, Wk:()vla"'vﬂkaf = ngjvvjzoa]-'
keJ’ JER2

For any I’ € Jo and B € {1,2,...,p — 1}, we see that
(3.1) [f, 2YaPrer €9] = [1) By Dy (f)a Y aPrer —ergv,
For all j € J we obtain

(3.2) [f, a7 ;€"] = [§'1D;r (f)27€",

(3.3) [f,27€°¢)) = (~)VD;(f)a"€".

Since I' € Jo, Di(f)y* # 0. As f does not contain x; for all i € J’, we have
Di(f), Di(f)zY # 0. By a similar argument we obtain D;(f)az7¢” # 0 and then
Dy(f)xvgvalrer—er +£ 0. Similarly, Dj (f)x7€ # 0 and D;(f)z7€¥ # 0. It is easy
to see that the nonzero elements on the right-hand side of equalities (3.1), (3.2) and
(3.3) are linearly independent. Therefore,

I(ad f) > p2ier Gitoh(p 1) 4 p2ies (itDoh(s 2y — 2t — h)
p?e2h(p — 1)t + p?*2" (s — 2u — 2t — h)

=p?“2"(s — 2u — h + (p — 3)t).

2
2

Let 2u+h >0.Ift >0, by s=r+q > 2n+ 2 > 4 we have

I(ad f) > 2%t (s — (2u+ h) + (p — 3)t)
=2%2uth (s — (2u + h)) +2%th(p - 3)¢
>2(s—1)>s+2.

If t =0, then s > 4 implies that
I(ad f) > p*2"(s — (2u+ h))
= ((p—2) +2)*2"(s — (2u + h))
(p —2)%2"(s — (2u + h)) + 2% (s — (2u + 1))

=
> 2022 (s — (2u+h))) = 2(2(s— 1)) =5+ (35 —4) > 5+ 2.
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Let 2u +h = 0. Then v = h = 0. As RiURy # 0, t > 0. If t > 1, then
IHadf) 2 s+ (p—3)t 2 s+4>s+2 Ift =1, we see that Ry = () and |R;| = 1.
Part (b) then yields I(ad f) > s + 2.

(ii) [f, 1] # 0. If there exists a j € T such that [f,&;] = 0, then

0 [f.1] = —[f. 16,8 = —[If.&1.&] — (D), [f.6] = 0,

a contradiction. So [f,&;] # 0 for all j € T.
(a) Set Ry = {i € My; [f,z;] = 0}. Then R3 # 0. If i € R3, then ¢/ € Rj.
Otherwise,

[Z] [fa y2)\] = [fa [xiy’\, xi’y/\]] = [[fa xiy)\]a xi’] + [xia [f7 xi’y/\]] =0,

contradicting [f,1] # 0. Thus we may assume that Ry = {1,...,t}. Put J =
{t,i'; i=1,...,t}and J = (M7 UT)\ J. Set

P={kiev+...+keyv; 0<k;<p-—-1,i=1,...,t}

For all g € spang{z*; k € P}, we will show that if [f, g] = 0, then g = 0. Otherwise,
if g # 0, we choose g € spang{z"; k € P} with the least Z-degree satisfying [f, g] = 0.
If zd(g) = —2, we let g = 1. Then [f,1] = 0, a contradiction. Let zd(g) > —2, then
there is an ¢ € {2,...,t} such that D;/(g) # 0. Hence [z;,[f,g]] = [[x:, fl,9] +
[f,[zingl) = [f,[®i,9]] = [If, Di(g)] = 0. This contradicts the choice of g with
the least Z-degree and our assertion is true. It is easy to see that [f,z;] # 0 and
[f, &) #0forall je J. Because |P| = pt, |j| =s—2t and t > 0, we have

Iadf)>p'+s—2t>1+tlp—1)+(s—2t) =s+1+t(p—3) > s+2.

(b) R3 = 0. Then [f,x;] # 0 for all ¢ € M;. Moreover, [f,&] # 0 for all
j € T. According to Lemma 3.2, there exist two basis elements f; and fo with
zd(f;) >0, j =1,2, such that [f, f1] and [f, fo] are linearly independent. Therefore
{21 ) 1 &l 1S, f5]; @ € R, j = 1,2} arelinearly independent. Thus I(ad f) >
5+ 2.

(iii) [f,1] = 0 and [f,y*] # 0 for A € H’\ {0}. Then we may assume that
f =xy. Put S = {i € My;mu; = 0}. Clearly, if i € S, then i ¢ S. Thus
[f,z;] # 0 for i € S. By computation, we see that {[f,zc], [f,zizs&"], [f,&],
f,zer&&); €S, i€ My, j,l €T, ue B(q)\ Bo} are linearly independent. Hence

IHad f) Zn+n2'—1)+q+ngl¢g—1)>2n+q+2=s+2,

as desired. 0
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Lemma 3.5. Let f; = g; + hi, where f;,g;,h; € L, i = 1,2,...,t. If {g;; i =
1,2,...,t} are linearly independent and spang{g;; i = 1,2,...,t} Nspang{h;; i =
1,2,...,t} =0, then {f;; i =1,2,...,t} are linearly independent.

Lemma 3.6. I(ad( > ymfﬂ)) > s+ 2 and I(yDy) > s+ 2.
ieM

Proof. SetV; = {z"¢%y"; ko =k; =0,2< ks <m, k€ Q,ucB(q),neH,
t € My \ {i}} for i € M;. By computation, we see that

o (X 5T ) () = B + e Di(e) £0. Y2 € i
ieM
Clearly spang{yx{°9d(2); z € Vi}Nspang{yx]' Dy (2); z € Vi} = 0. Since {yx]' Dy (2);
2 € V;} are linearly independent, it follows from Lemma 3.5 that {ad( 3" y2Ti™')(2);

icM
z € V;} are linearly independent. Hence

r(oa(Swr)) > T 097 2207 202720 542

ieM FEM\{i}
As yDq(zFyrev) = zF—eoy et £ 0 for 1 < ko < mp, we have
I(yDo) > (p*o+! — 1)p2icmn (it DFmoa 5 () _ 1)pr+19a 5 4 9,

O

Theorem 3.1. I(Der(T')) = s+ 2. If ¢ € h(Der(T')), then I(p) = s + 2 if and
only if 0 # ¢ € spang{B}.

Proof. Lemma 3.1 implies that I(h(Der(I'))) < s + 2. Let ¢ € h(Der(T)).
Then I(¢) < s + 2. By virtue of Lemma 2.1, we suppose that

Si
p=adf+ Z B ad(yxT ) + yyDo + Z Zaiva + Do,
ieM €M v=1

where f € E, Bi, v, aiy € F. We will prove that 3; = v = a;, =0 and 6 = 0.
Suppose that there is an [ € M such that ay, # 0. Put ¢ = max{v;ay, # 0}. Let

U={keQ; k=p" p <k; <m, Vie M\ {l}}.
For any k € U, we have
p(atyen) = ant Pyt 4 g,
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where o € F and ¢ is indeed a F-linear combination of some elements of {xk/ynfv;
k; # 0}. It follows from Lemma 3.5 that

{axkfptely)‘fu +g; kelU, Xe H, ue B(Q)}

are linearly independent. Then I(p) > (p — 1)"p™27 > s + 2, contradicting I(p) <
s+ 2. So a4, = 0.
Now let o = ad f + Y. B;ad(yz* ) + yyDo + Dg. Put e(f) = h. Assume y # 0.
ieM
Set W = {z*¢v; 1< k‘j < mo}. If zd(h) = —2, then e(¢(2)) = ad h(z) + yyDo(z) for
z € W. Since h # y, we have spang{ad h(z); z € W}nNspang{yyDo(z); z € W} = 0.
As {vyDy(z); z € W} are linearly independent, {e(p(2)); z € W} are linearly
independent by Lemma 3.5. It follows from Lemma 3.6 that I(yDg) > s + 2. Thus
I(p) > s+ 2, a contradiction. So zd(h) # —2. Let zd(h) > —1. Then e(¢(2)) =
vyDo(z). Lemma 3.6 means that I(yDg) > s+ 2, a contradiction. Thus v = 0.
Now let o = ad f+ 3 Biad(yz[ ")+ Dy. If zd(h) = —1, then e(¢(2)) = ad h(2)
for 2 € T. As I(ad(h36)M> s+ 2, we have I(p) > s+ 2, a contradiction. Hence
zd(h) > 0. Suppose that § # 0. Then there is an n € H such that 6(n) # 0. If

zd(h) > 1, we set

U, = {xkyngu; 2ko + Z ki + |u| =2, 6(77) # 0}'

i€ My

Then e(p(2)) = Dg(z) = 6(n)z for all z € Uy. So {e(¢(2)); z € Uy} are linearly
independent. Thus I(¢) > s+ 2, a contradiction. Let zd(h) = 0. Set

h= ( Z ;T + Z bijri€; + Z Ci;&i&; +H~’U0>y)‘;

1,jEM1 i€My,je€T i,j€T

where a;j, bij, cij, 0 € F. Put
¢
U2 = { H&"Jrjyn; = 177(J} U{xteitheﬂynEw; i= 17"'7”7 t= 1;75}
j=1

By direct computation , we have
e(p(2))) = (adh + Dg)(2) #0, Vz e Us.

Considering the Z-degree of €(¢(z)), we obtain that {e(p(z)); z € Uz} are linearly
independent. So I(y) > 5n+ g > s + 2, a contradiction; that is, = 0.
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Now ¢ =ad f + Y Biad(yz]*™). If zd(h) < m — 1, then £(¢(2)) = ad h(2) for
€M

all z € T'. As I(ad(h)) > s+ 2, we have I(¢) > s+ 2, a contradiction. Suppose

zd(h) = m; — 1 and f3; # 0. For z € V; in Lemma 3.6, we have £(p(2)) = ad h(z) +

B; ad(yxT 1) (2) # 0. Considering the Z-degree of £(p(z)), we obtain that {e(p(2));

z € V;} are linearly independent. Hence I(¢) > s+ 2, a contradiction; that is, 5; = 0

for all i € M. Let zd(h) > m; — 1. Then e(p(z)) = ad( > Biyx?"ﬂ)(z) forall z € T.
ieM

It follows from Lemma 3.6 that I(ad( > ﬁiyxf"ﬂ)) > s+ 2. Then I(p) > s+ 2,
a contradiction. Thus 3; = 0. <

Now let ¢ = ad f. Lemma 3.4 implies that I(Der(2)) = s+ 2 and if I(¢) = s+ 2,
then ¢ = adz™¢a(y). Assume that a(y) € spang{x(y)}. Since spang{x(y)} is
the only one-dimensional ideal of F[y] (see [18]), there is a v € H such that «a(y)
and «(y)y” are linearly independent. Now p(y”) = [z™¢“a(y),y"] = (v — 1) x
™0 a(y)y” implies that the images of the s+1 elements 1, y”, z;, &; are linearly
independent for all i € M and j € T. So I(¢) > s+ 2. This contradicts the fact that

I(p) = s + 2. Therefore a(y) € spang{x(y)} and ¢ € spany{B}. O

Let o be the induced representation of € on I'/€, i.e.,

o(f): T/¢—T/e
(9+C)—[f,g]+¢€, where fe€ gel.

Lemma 3.7. € is an invariant maximal subalgebra of T.

Proof. First we will show that g is irreducible.
For all f € T, the element f + ¢ € I'/¢€ will be denoted by f. Assume that V is
a nonzero submodule of I'/€ and

0£F=v1+0T0+ Y oTi+ » Bi& eV,

i€ My JeET

where v, 6, o, §; € F. If there is an i € M (or j € T') such that o; # 0 (or 3; # 0),
then
g(xixi/)f = Z |:{Ei£L'i/, Z aixi] + ¢ = [i']aix_i cV
i€ M
<0r o(&&)f = |:€i€ja Zﬁjﬁj] +€=gj& € V)-
jeT

If oy = B; =0 for all i € M; and j € T, when ~ # 0, we obtain

o(zoxi) [ = [xowi, 7] + [wows, 0] + € = 7T € V (o1 o(z0&;) [ =& € V).
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If v =0, we let 6 #0. Then for A € H we have

o(xi(1 =y f = [z:(1 = ), 6z] + €
= —5((1 = ) — (1 — pa)yMai — dAziy” + € = —dAzy> € V;
that is, 7; = x;y* € V. Similarly, §; = ;9 € V. In all cases we have 7; € V (or
& € V) for some i € M (for some j € T). So
[(o(A1 (1 =y )77 = AT — yMze, 2] + €
=AM —yM+e=1+C=1€V (or —poA\ (1 —-yNE)E =1€V).
Thus Ty = o(27'22)(1) € V, 7 = o(wox;)(1) € V and &; = o(xo&;)(1) € V for all
i€ My and j € T. It follows that V =T'/¢.
¢ is invariant according to Lemma 3.1 and Theorem 3.1. Let L be any subalgebra

containing €, then L/€ is a submodule of I'/€. By the proof above, L=T or L = &
and thereby € is maximal. 0

Let ' = T'(r,H,q,s) and IV = T'(+',H',q’,s') be two Lie superalgebras. Let
'~y =T, T = ¢ and define

(3.4) Loy ={f €Tu—ny; [f; Tl CTu—p}, Vi= 1.

Then we obtain a descending filtration of I': {I'¢;y; @ > —1}. Similarly, I possesses
a filtration: {I';); ¢ > —1} imitating the definition above with & = I',. Set
B = spang {z7¢“x(y)} and B’ = spang{z™ £ X' (y)}, where 7/ = (x}),...,7.) and
W="+1,...,7+¢),

Lemma 3.8. If ¢ is an isomorphism of I" onto I, then o(I" (o)) = F/(o) .

Proof. From Lemmas 3.4 and 3.1, we see that o(B) = B’. As
[fv%]:() — [O'(f),(f(%)]zo, VfeT,
we have

o(T() = 0o(€) =o{f €T; [f,B] =0} = {o(f) € I"; [f,B] = 0}
={o(f)el’; [0(f),0(B)] =0} ={gel’; [3,B] =0} =¢ =T"(y.

By virtue of equality (3.4) and Lemma 3.8, we obtain the following theorem.
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Theorem 3.2. Let o be an isomorphism of I" onto I". Then o(I'(;y) = I"(;) for
alli > —1.

Corollary 3.1. The filtration of T' is invariant under the automorphism group
of T.

Proof. This is a direct consequence of Theorem 3.2. ([

Corollary 3.2. I'(r,H,q,s) = T'("',H',¢',s') <= r=1",m=m', ¢=¢, so =
sy and

(3'5) {{817 51’}5 RS {Sm Sn’}} = {{8/15 8/1’}5 RS {5217 521’}}

Proof. We only need to prove the necessary condition. Since dimT' = dimT",
ie., 20p2ienm(sit)tm — 2q'pzieM’(S;+1)+m/, we have ¢ = ¢/. If ¢ is an isomorphism
of ' onto IV and D € DerI, then the mapping D +— oDo ™! is an isomorphism
of DerT" onto DerI”, ie., DerI" = DerI”. Hence I(DerT') = I(DerI”); that is,
r+q=1"+¢. Thus r = v’. Furthermore, since the outer derivation subspace has
the same dimension and the outer derivation Dy is not ad-nilpotent, m = m’.

Note that ' = € &M and TV = & § 9. One may easily verify that o(91) = N by
Lemma 3.8. Recall that o(T',) = I",, where a € Z5. Put

(3.6) Vi={fe Iy nTy; adfMnTy) =0}, i>-—1,
Vi ={geT{,NTq; adg(M' NT7) =0}, i>—L

Then V; = T'(r, H,5);) and V) =T(r,H',5") ). Let V.= (J Viand V' = U V.
2_

i>—1 i>—1

It is easy to show that V = I'(r, H,s) and V' = T'(r, H',s’). It follows from (3.6)
and (3.7) that o(V;) = V; for all i > —1. Hence (V) = V'. Therefore I'(r, H, s) =
I'(r,H',s'). By the consequence of Lie algebra (see [6]), we obtain sy = sj and
equality (3.5) holds. O

4. PROPERTIES

In this section, k € 7 denotes that there exists an ¢ € M such that k; > m;. We
adopt the convention that if k; < 0 or k; > m;, then xf =0 for i € M. It is easily
seen that if 0 < k;, k; < p, then xfxfﬂ = xf_le

The following lemma is easy:
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p—1
Lemma 4.1. Let a € F and ¢ € II. Then [] (a — js) = o — asP™L.
§=0

Let L = & L; be a finite-dimensional simple Z-graded Lie superalgebra. Put

i=—r

-1 s
L~ =@ Liand LT :=@ L. Then L=L" ® Lo® L™.
i=—Tr i=1
The proofs of Lemmas 4.2 and 4.4 are given in reference [32] in Chinese. For the

convenience of the reader, their proofs in English will be given in Appendix.

Lemma 4.2 ([32]). Let L = @ L; be a finite-dimensional simple Z-graded Lie

i=—7
superalgebra. Suppose that \ # 0 is an associative form on L. Then the following

statements hold.
(2) A

LoxL _ is nondegenerate and dimy L; = dimg Ly_,_;, where —r < i < s.

Lemma 4.3 ([24]). Suppose that A\: L x L. — F is a supersymmetric bilinear
form such that
(1) X is L™ -invariant, i.e., A([x,y],2) = Az, [y, 2]), Yo,z € L, y € L™,
(2) )\|List =0 fori> —r;
(3) )‘|L_T><Ls is Lo-invariant, i.e., A([z,y],2) = M, [y,2]), Vo € L_,, y € Ly,
z € L.
Then ) is an associative form on L.

Lemma 4.4 ([32]). Let LoN Ly # 0. If L has a nondegenerate trace form, then
r=s.

Theorem 4.1. The algebra I'(r, H, q,s) admits a nondegenerate associative form
if and only if 3+mn —271¢=0 (mod p).

Proof. Let A be a nondegenerate associative form on I". By Lemma 4.2
we see that )\|FT><1“_2 is nondegenerate. Then A(1,27&¥) # 0. As A is associative,
A1, o], z™€¥) = A(1, [z0, 2™€¥]). By computation, we get —A(1,27¢%) = (2+n —
27 1) A(1,27€%). Since A(1,27E9) # 0, we have 3+n —271¢ =0 (mod p).

Conversely, suppose 3 +n —271¢ =0 (mod p). Define o, : I' — F such that

k
Uﬂ'w( E Cknud ynfu) = Or0w;

k,n,u

where oy, € F. Clearly, o, is a linear mapping. We define

M T xT—F, Mf9)=orl(fg)

It is easy to see that )\ is a super-symmetric bilinear form.
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For the basis elements f = zFy7¢* and g = 2'y°€¥ with ¢ € H, we will prove
Lemma 4.3 (1) holds:

(4.1) My, £1.9) + Af 110, g]) = (0 = 1) (kg o (a0 2ty 1 0g0e?)

+ lgo_ﬂ_w(xkxlfeoy(SJrnJrGé-ué-v)).

If (k+l—ep,d+n+06,{u}U{v}) # (7, 0,{w}), by the definition of o, we see that
the right hand side of equality (4.1) equals zero.

If (k+1—eo,0+n+0,{u} U{v}) = (7,0,{w}), then ko+lo—1 = mp and k; +1; = m;
for all ¢ € M;. Thereby the right hand side of equality (4.1) equals (6 — 1)(k§ + 1§)-
As ko 4+ lp — 1 = 7o, k} + 1§ = p. Thus the right hand side of equality (4.1) equals
Z€ro.

Similarly, for ¢ € M; we have

(4.2) Mz, f1,9) + A [y’ g)) = (i + 6 — 1) (k§ome (20 aalyo TrH01e?)
4 lSwa (xkxl—eoxiyé-i-n—i-éfugv)) + [i](k;o‘ww (xk—ei/ l‘ly6+n+9§u§v)

A G e S )]

Note that k +1 — ey + e and k + [ — ey cannot equal w in the mean time. If
neither of them is equivalent to 7, then both the sum of the first two terms and
the sum of the last two terms on the right-hand side of equality (4.2) equal zero. If
(k+l—eo+ei,d+n+6,{u}U{v}) = (7,0, {w}), then the sum of the last two terms
on the right-hand side of equality (4.2) equals zero. Since k+1— eg+ ey = 7 so that
k§ 4+ 15 = p, the sum of the first two terms on the right-hand side of equality (4.2)
equals (i +6 —1)(k§ +15) =0. I (k+1—ey,0 +n+ 6, {u} U {v}) = (7,0,{w}),
then the sum of the first two terms on the right-hand side of equality (4.2) equals
zero. As k + 1 — ey = 7w so that k + [ = p, the sum of the last two terms on the
right-hand side of equality (4.2) equals [i](k} + 1) = 0.
For j € T we obtain

43)  Mf&9°19) = M/ 6000 g]) = (271 = 6) (kgomu (a0 alyT1H0cueved)
+ 160-71-“) (xkxl—eoy5+n+9£u£v£j)) + ((_1)|u\o_ﬂ_w (xkxlyé—i-n-l—@fu—(j)fv)

+ O (xkxlyéJrnJrOfufvf(j))).

Similarly, if (k+1—eg,0 +n+60,{u} U{v}U{j}) = (7,0, {w}), then both the sum
of the first two terms and the sum of the last two terms on the right-hand side of
equality (4.3) equal 0. If (k+ 1,0 +n+60,{u} U{v}\ {j}) = (7,0,{w}), then the
sum of the first two terms on the right-hand side of equality (4.3) equals 0. Since
gu=Ugv = —(=1)lvlgugv=0) | the sum of the last two terms on the right-hand side
of equality (4.3) equals 0. Thus X is I'"-invariant.
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Now we show that Lemma 4.3 (3) holds. If § + 8 +7 =0,by 3+n—-2"1¢ =0
(mod p), we get

A[zoy®, ¥°), 2™ y"€%) + M7, [xoy’, 2™ y"€¥]) = B +n—271q) — (6 + 6 +n) = 0.

Thus /\‘F_2><1“ is Fzoy’ —invariant. Similarly, one may easily prove that /\‘r_2><1“
is T'p-invariant. Finally, by equality (2.2) and the definition of A, Lemma 4.3 (2)
holds. It follows that A is an associative form on I'. As A # 0 and T is simple, it is

nondegenerate. O

Theorem 4.2. The Killing form of each algebra in the family T" is degenerate.

-

Proof. AsT'= @ T;,wherer = > m+2m+q—2, we see that ToNTg #0
i=—2 i€M;

and 7 # 2. By Lemma 4.4, every trace form of I" is degenerate. Since the trace form

of the adjoint representation is the Killing form, the Killing form of I' is degenerate.
O

Lemma 4.5. Let so = s; =0 for i € My and n € H'. Suppose f = zFy"¢* € T,
where |u| = 0 or |u| is an even number and v € H. The following statements hold.
(1) If |u| # 0, then (ad f)Py" = 0.
(2) If |lu] = 0, then (ad f)Py" = 0 or «apy", where o, € F. In particular, if
(ad f)Py" # 0, then we have f = zoy".

Proof. (1) As |u| > 2, the assertion holds by direct computation.
(2) We will prove by induction on m that

(4.4) (ad f)™y" = 0 or az™ e y™ I with ay, € F.

For the case m = 1, we have (ad f)y” = 0 or k(1 — n)z¥=c0y*+7. Suppose the
assertion is true for m. Then
(ad f)" "y = (ad f)((ad f)™y") = [2"y", ama™E o0y

= (Brg — Boh)y " £ N (i (mk K ) (i — Ry,
i€ M,

where (31, B2 € F and

_ xkfeoxmkfmeov h = xkxmkf(erl)eo;

_ ‘,Ekfeixmk*meo76,:/7 hi _ xkfei/xmkfmegfei.
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By equality (2.1), we obtain g; = h; = {0, z(m+TDk—meo—ei=es . that is, g; — h; = 0.
Also by equality (2.1), we get g, h € {0, z(m+Dk=(m+Deo) Tt follows that

(ad f)m-i-lyn =0 or am+1x(m+1)k—(m+1)eoy(m—i-l)u-i—n.

Put m = p. If pk—pey £ 7, then (ad f)Py" = 0. Let pk—peg < w. As s9 =s; =0,
we have kg = O or 1, and k; = 0 for all i € My. If kg = 0, then (ad f)Py? =
(ad f)P~y",y"] = 0. If kg = 1, then (ad f)Py" = 0 or (ad f)Py" = apy?’ ™" = a,y"
by k; = 0 and equality (4.4).

In particular, if (ad f)Py" # 0, then kg = 1 and k; = 0 for all ¢ € M, ie.,
I =z0y". O

Lemma 4.6. Let so = s; = 0 for i € M. Let f = xFy°¢* € 'y, where |u] is an
odd number and ¥ € H. Then (ad f)?Py" =0 forn € H'.

Proof. If |u| > 1, a simple computation shows that

(ad f)y" = [*y"e",y"] = k5 (1 — a0y ey,
(ad £)%y" = (ad f)((ad f)y") = k§(1 — n)[z"y"¢", a* =y 1¢"] = 0.

It follows that (ad f)*y" =0 .
If lul = 1, we let f = 2Fy’¢;. First, we show that (adf)?™y” = 0 or
agmx2mk*m60y2mﬁ+" with g, € F by induction on m. If m =1, then

(ad f)y" = [2"y7&;,y"] = ki(1 — n)ah— oy trg;,
(ad f)2y" = kg(1 —n)[2"y” &, a" 0y t1¢] = ki (n — 1)ahab—eoy? .

Clearly, z¥z%=¢ = 0 or z%~°. Thus (ad f)?y" = 0 or azx?~°0y2*+1 where

ag = ki(n—1) € F. Suppose that the assertion is true for m. Then we have

(ad £y = (ad £)((ad £)*"y") =[5y, qama® 0y

= (Brg — Bah)y PV 4 gy > (2mk S (gi — )y PTG,

i=1
where 31, 82 € F,

2mk—meg

g= $k760$ , _ xkamkf(erl)eo;

2mk—meo—e;r

h
gi = $k76i$ , hz _ xkfei/mekfmeofei.
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From equality (2.1), we obtain g; = h; = {0, z(?m+TDk—meo—ci=es} ‘i o g: — h; = 0,
and g, h € {0,z HDE=(m4Deo) Tt follows that

(ad f)2m+1y'r] _ ,yx(2m+1)k7(m+1)eoy(2m+1)19+n£j7 = =

Moreover,

(ad f)Q(m—i-l)yn — [xkyﬂgﬁ,yx(Qm-i-l)k—(m—i-l)eoy(2m+1)19+n§j]

— a2(m+1)xkx(2m+l)k—(m+1)eoy2(m+1)19+n,
where ag(;y1) € F. As abg@mADk=—(m+len —  op g2(m+DE=(miDeo our assertion
is true for m + 1. The induction is complete.

Set m = p. It is easy to see that (ad f)?Py" = 0 or ag,z?Pk~Peoy" If 2pk —pey £ T,
then (ad f)?Py" = 0. Let 2pk —pep < 7. As s = s; = 0, we have kg = k; = 0
for all i € M;. Thus f = y”¢;. By computation, we have [y”¢;,4"] = 0. Hence
(ad f)?y" = 0. O

A Lie superalgebra L = L@ L is called restricted if L is a restricted Lie algebra
and if Lg is a restricted Lg-module (see [15], [22]). Let p(f) = p if f € Lg, and
p(f)=2pif f € L1.

Theorem 4.3. The algebra I'(r,H,q, s) is a restricted Lie superalgebra if and
only if H=1I and s) = s; =0 for all i € Mj.

Proof. Suppose I is a restricted Lie superalgebra in the family. We see that
(ad1)? is an inner derivation of degree —2p. Lemma 2.1 implies (ad1)? = 0. It
follows that 0 = (ad 1)P2™ = (p — 1)lz™ P°. Thus sp = 0. Similarly, (adz;)? is an
inner derivation of degree —p and (ad z;)? = 0. Then we have 0 = (ad x;)Pz™ ™ =
(p— 1)lgm moco~P% Hence s; = 0 for all ¢ € M.

Assume H # II. Put 0(n) = n—nP for all n € H. As H # II, § is a nonzero
additional mapping from H into F. Then there exists an n € H such that 6(n) # 0;
that is, Dy is a nonzero derivation of I'. Clearly, Dy is also a nonzero derivation of
I'5. Lemma 2.1 implies that Dy is not an inner derivation. In addition, I'y is a re-
stricted Lie algebra, whose every derivation is an inner derivation, a contradiction.
Consequently, H = II.

Now we prove the sufficient condition. By the result in [22], we only need to prove
that there is g € I' such that (ad f)?/) = ad g for every basis element f = xFy"¢v.
By Lemma 2.1, we suppose

(ad f)p(f) =adg+ Dy + ayDy + fad(z"y°&”) + Z i ad(yx;”“),
ieM
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where g € T, a, # and ; € F. According to Lemmas 4.5 and 4.6, we have
(ad £)PY) (1) = Do(g) + Ba™ Y’ + yoyai® = 0 or oy
Clearly, 5 =70 = 0 and Dy(g) =0 or ap. Then

(4.5) (ad /)P = ad g + Do +ayD1 + Y yiad(ya*).
i€ My

Let fo and go be Z-homogeneous components of f and g of degree 0, respectively.
Acting on oz by equality (4.5) we have

(ad fo)?D) (zoxy) = ad go(woxs) + azpy + Yyiya] wo.
Considering the Z-degree of every term, we get a = ; = 0 for all ¢ € M;. Then
(4.6) (ad f)PP) = ad g + Dy.

(1) f € T If Ju| # 0, by (1) of Lemma 4.5 we have 0 = (ad f)?(1) = adg(1) =
Dyg, i.e., Dgg = 0 or Dog = 1y, where ¢ € F. Then 0 = (ad f)Py" = (1 — n)y"™* +
O(n)y" for all n € H'\ {0}. It follows that #(n) = 0 and ¢+ = 0. In particular,
0 = (ad f)P(zoy) = ad g(woy) + De(xoy) = 9(g)y + 6(1)zey. Since ¢ does not occur
in g, 6(1) =0. Thus § = 0.

Let |u| = 0 and f = 2*y”. Suppose § # 0 and 6(n) # 0 for n € H'. By Lemma 4.5
and equality (4.6), we have (ad f)Py? = ad g(y?) + Do(y*) = —Do(g)y> + 0(2)y> = 0
or apy®. Then g does not contain zg or Do(g) € F\ {0}. If g does not contain zy,
by equality (4.6) we have (ad f)Py" = 6(n)y" # 0. Lemma 4.5 implies f = xoy”
with v € H = II. It follows from equality (4.6) that (ad zoy”)Px; = adg(z;) for

p—1
all i € My. Thus Dy g = [i']ax;, where a; = [[ (1 — pg; — jv). Then we may
§=0
assume that g = > [i|ajzizi + h, where h € T does not contain z¢ and Dyh =0
i€M,
for all i € M;. Comparing the coefficient of (adzoy”)Pz? = ad g(z?), we obtain
p—1
IT (1= 2u — jv) = 204. Since vP~! = 1, we have p; = 0 by Lemma 4.1. Similarly,

7=0
e = 0, contradicting py + py = 1. Now let Dog = € # 0, where ¢ € F. Then

p—1

e=adg(1) = (ad f)P(1) = (adzoy”)*(1) = [[ (1 - jv) =0,
=0

a contradiction. So (1) = 0 for n € H'. As 0 = 0(2) = 6(1+1) = 6(1) + 6(1),
6(1) = 0. Hence 6 = 0; that is, (ad f)P = ad g.
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(2) f € ;. Lemma 4.6 yields 0 = (ad f)?(1) = ad g(1) + Dg(1) = (—1)19/Dyg,
i.e., Dog = 0 or 1y, where ¢ € F. Thus (ad f)??y" = ad g(y") + De(y") = 6(n)y" or
t(1 = n)y"™L +0(n)y" for 0 #n € H'. As (ad f)?Py" = 0 by Lemma 4.6, we have
6(n) =0 forn € H'. Since 0 = 0(2) = 6(1 +1) = 6(1) + 6(1), we have 6(1) = 0.
It follows that & = 0; that is, (ad f)?” = adg. Consequently, I' is a restricted Lie
superalgebra. O

APPENDIX

Proof of Lemma4.2. (1) Clearly A is nondegenerate. We define ¢: L — L*
by means of ¢(z)(y) = A(x,y), for all 2,y € L, where L* denotes the dual space
of L. The mapping ¢ is linear and as kerp = 0, ¢ is injective. Note that L* is
Z-graded and ¢ = ) ¢;, where ¢; € Homr(L,L*);. We shall prove that kery; is
a right ideal (Zg—grgedzed is not necessary) of L for j € Z. We denote by zh(L) the
set of all Z-homogeneous elements of L. By the definition of ¢ and the invariance

of A, we have ¢([z,y])(2) = ¢(x)([y, 2]) for all ,y, z € zh(L). Then Z oi([z,y])(z) =
> pi()([y, 2]). It follows that

vi(lz,y])(2) = ¢;(@)([y, 2]), VjeZ

Since ¢; is Z-homogeneous, ker¢; is a Z-graded subspace of L. Suppose z €
zh(ker ;) in the equality above, then ¢;([x,y])(z) = 0, for all x € zh(ker ¢;), for all
y,z € zh(L). Thus ¢;([z,y]) =0, for all x € zh(ker ¢,), y € zh(L). Furthermore,

@;([z,b]) =0, Vaz€zh(kery;), be L.

For a € kery,, as kerp; is a Z-graded subspace of L, we have a = ) a;, where

a; € L; Nker ;. By the equality above, we get ¢;([a,b]) =0, i.e., [a,D] é ker ¢;, for
all a € ker p;, b € L. Then ker ¢; is a right ideal of L.

Since ¢ is an isomorphism of linear spaces, there is an index j such that ¢; #
0. Then ker¢; is a proper right ideal (Z,-graded is not necessary) of L. Thus
ker ¢; = 0 and then ¢; is injective. It follows that ¢;(L_,) # 0 and ¢;(Ls) # 0. As

T

L*= & (L*);, we have —s < j —r, j+ s < r, which implies that j = r — s. Hence

o=
For x € L;, i € Z, we see that p(z) = ¢r—s(x) € (L*)itr—s. Noting that the
Z-gradation of F is trivial, we have A(z,y) = ¢(z)(y) =0fori+j#s—r,Vy € L,.
(2) Note that A is nondegenerate. The assertion follows directly from (1). O
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Proof of Lemma 4.4. Note that any algebraically closed field is an infinite
field. By Lemma 1.4.7 in [20], Lg N Lo has a Cartan subalgebra. Let H be a Cartan
subalgebra of Lg N Ly. Put

(16) H={x¢€Lg; YheH, In(h) eN: (ad h)""(z) = 0}.

Theorem 3.2.3 in [20] implies that H is a Z-graded Cartan type subalgebra of Ly; that
o s __ __
is, H= Y, HNL;NLgand Hy = H. Let k, be the trace form of the representation

i=—7

oof L:
kot Lx L —F, ko(z,y) =str(o(z)o(y)), Vz,y€L,

where str is the supertrace (see [16]).

Let L = @ L, be the weight space decomposition of L with respect to H. Then
acA
Ko: LiN Ly X Ly_r_;NL_, — F is nonsingular. Noting that &, is a homogeneous

linear mapping of degree 0, we obtain
Kot LiNnLoNLygx Le_p_;NL_oNLy—F
is nonsingular, which yields
dim(L; N Lo O Lg) = dim(Ls_y—; N L_o N Lg).

Since H is a Cartan subalgebra of LN Ly, we have H # 0 and H = LyNLoN Ly with
zero weight 6. Set i = s —r and o = 0 in the equality above. Then dim(Ls_, N Ly N
Lg) = dim(Lo N Lg N Lg) # 0. It follows from equality (16) that H D Ly N Ly. Thus
H, ,=HNLs_,NLs>Ls_,NLyN Lg+# 0. Observing that H5 = H, we see that
H,_, is H-invariant. As H is nilpotent, ady is a nilpotent linear transformation
of Hy_, for every y € H C H. According to Engel’s Theorem, there exists a
0 # 2 € Hy_, such that [y,z] = (ady)(z) = 0, for all y € H. Since L is simple,
y € LM, Suppose s # r. Then x is ad-nilpotent by € Hy_, = HNL,_, N L. Thus
ko(z,y) = 0 for y € H, which indicates that k,: Ls_, NLyNLyx LoNLyN Ly — F
is singular by H = Lg N Ly N Lg, a contradiction. Hence s = r. 0
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