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Abstract. A subset of the plane is called a two point set if it intersects any line in exactly
two points. We give constructions of two point sets possessing some additional properties.
Among these properties we consider: being a Hamel base, belonging to some σ-ideal, being
(completely) nonmeasurable with respect to different σ-ideals, being a κ-covering. We
also give examples of properties that are not satisfied by any two point set: being Luzin,
Sierpiński and Bernstein set. We also consider natural generalizations of two point sets,
namely: partial two point sets and n point sets for n = 3, 4, . . . ,ℵ0, ℵ1. We obtain consistent
results connecting partial two point sets and some combinatorial properties (e.g. being an
m.a.d. family).

Keywords: two point set; partial two point set; complete nonmeasurability; Hamel basis;
Marczewski measurable set; Marczewski null; s-nonmeasurability; Luzin set; Sierpiński set
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1. introduction

At the beginning of the 20th century Mazurkiewicz in [11] constructed a set in

the plane which meets any line in exactly two points. Any such set is called a two

point set.

Any two point set must be somehow complex, namely Larman in [9] showed that

it cannot be Fσ. It is a long standing open problem whether there is a Borel two

point set (see [10]). The best known approximation to that problem is due to Miller

who, assuming V = L, proved that there is a coanalytic two point set [12].

Szymon G ląb has been supported by the Polish Ministry of Science and Higher Education
Grant No IP2011 014671 (2012-2014). The work of R. Ra lowski and Sz. Żeberski has been
partially financed by NCN means granted by decision DEC-2011/01/B/ST1/01439.
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The aim of this paper is to construct two point sets which possess some addi-

tional properties. First, we focus on their being Hamel base and being completely

I-nonmeasurable. (A is completely I-nonmeasurable if the intersection A ∩ B does

not belong to I for any Borel set B /∈ I; see e.g. [3], [14], [15], [18].) We also construct

a two point set which does not belong to the σ-algebra s (of Marczewski measurable

sets). In contrast, we prove that there exists a two point set which belongs to the

σ-ideal s0 (of Marczewski null sets). In particular, we generalize a result from [13].

Recently Schmerl proved in [16] that there is a two point set which can be covered

by countably many circles. In particular, there is a two point set which is meager

and null.

We affirmatively answer the question whether every n point set (for n = 2, 3, . . .)

can be represented as a union of n bijections. We also show that no two point set

contains an additive function. We construct a two point set which does not contain

any measurable function.

We observe that a two point set cannot be any of the following: a Luzin set,

a Sierpiński set, or a Bernstein set. However, under CH, we construct a partial two

point set which is a strong Luzin set (or a strong Sierpiński set).

We also compare the notion of the κ point set with the notion of the κ-covering

and κ-I-covering. (A is a κ-covering if for every subset X of size κ there exists

a translation h of R2 such that h[X ] ⊆ A; A is a κ-I-covering if for every subset X

of size κ there exists an isomorphism h of R2 such that h[X ] ⊆ A; see [7].)

We give some consistent examples of partial two point sets which are, in a sense,

m.a.d. families, maximal families of eventually different functions.

2. Completely I-nonmeasurable Hamel base

We say that I is a σ-ideal of subsets of R2 if I is closed under taking subsets and

closed under taking countable unions.

Let I be a σ-ideal of subsets of R2 containing all singletons and having a Borel

base (i.e. for every I ∈ I there is a Borel set B ∈ I such that I ⊆ B). We recall

the notion of completely I-nonmeasurability which was studied e.g. in [3], [7], [14],

[15], [18]. This notion is also known as the I-Bernstein set.

Definition 2.1. We say that a set A ⊆ R2 is completely I-nonmeasurable if it

intersects all I-positive Borel sets (i.e. sets which are in Borel\I) but does not contain

any of them.

When I = [R2]6ω then the notion of a completely I-nonmeasurable set coincides

with the notion of a Bernstein set.
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We will assume that I is a σ-ideal of subsets of R2 with the property that for every

I-positive Borel set there are c many pairwise disjoint lines each of which intersects

it in a set of cardinality c.

Let us observe that the σ-ideal of null sets N and the σ-ideal of meager sets M

on the real plane (by Fubini Theorem and by Kuratowski-Ulam Theorem) fulfil this

condition.

We say that H ⊆ R2 is a Hamel base if H is a base of R2 treated as a linear space

over Q.

Theorem 2.2. There exists a two point set A ⊆ R2 that is a completely I-

nonmeasurable Hamel base.

P r o o f. Let {lξ : ξ < c} be an enumeration of all straight lines in the plane R2,

let {Bξ : ξ < c} be an enumeration of all I-positive Borel sets in the plane R2 and let

{hξ : ξ < c} be a Hamel base of R2. We will define, by induction on ξ < c, a sequence

{Aξ : ξ < c} of subsets of R2 such that for every ξ < c:

(1) |Aξ| < ω,

(2)
⋃

ζ6ξ

Aζ does not have three collinear points,

(3)
⋃

ζ6ξ

Aζ contains precisely two points of lξ,

(4) Bξ ∩
⋃

ζ6ξ

Aζ 6= ∅,

(5)
⋃

ζ6ξ

Aζ is linearly independent over Q,

(6) hξ ∈ spanQ

(

⋃

ζ6ξ

Aζ

)

.

To make an inductive construction assume that for some ξ < c we have already

defined the sequence {Aζ : ζ < ξ} which fulfils (1)–(6). Let A<ξ =
⋃

ζ<ξ

Aζ . Clearly

|A<ξ| < c. Let L be the family of all lines which meet A<ξ in exactly two points.

Then |L| 6 |A2
<ξ| < c. Moreover, | spanQ(A<ξ)| < c. We will define Aξ in three

steps. In each step we will focus on one of the desired properties of Aξ.

Step I (two point set). Note that (2) implies that lξ ∩A<ξ has at most two points.

If |lξ ∩ A<ξ| = 2, then set A
(1)
ξ = ∅.

Let us focus on |lξ ∩ A<ξ| < 2. Then |lξ ∩ l| 6 1 for any l ∈ L. Therefore

|lξ \
⋃

L| = c. Choose

x(1) ∈ lξ \ span
Q

(

A<ξ ∪
⋃

l∈L

(l ∩ lξ)
)

,

y(1) ∈ lξ \ span
Q

(

A<ξ ∪ {x(1)} ∪
⋃

l∈L

(l ∩ lξ)
)

.

Set A
(1)
ξ = {x(1), y(1)} if A<ξ ∩ lξ = ∅ and set A

(1)
ξ = {x(1)} if A<ξ ∩ lξ is a singleton.
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Step II (complete I-nonmeasurability). Let L′ be the family of all lines which meet

A<ξ ∪A
(1)
ξ in exactly two points. Then |L′| < c and L ⊆ L′. Since Bξ is an I-positive

Borel set, we can find a line l such that l ∩ (A<ξ ∪ A
(1)
ξ ) = ∅ and |l ∩ Bξ| = c.

Choose

x(2) ∈ (l ∩ Bξ) \ span
Q

(

A<ξ ∪ A
(1)
ξ ∪

⋃

l∈L′

(l ∩ lξ)
)

.

Set A
(2)
ξ = {x(2)}.

Step III (Hamel base). Let us focus on the condition (6). If hξ ∈ spanQ(A<ξ ∪

A
(1)
ξ ∪A

(2)
ξ ), then set A

(3)
ξ = ∅. Assume now that hξ /∈ spanQ(A<ξ ∪A

(1)
ξ ∪A

(2)
ξ ). Let

L′′ be the family of all lines which meet A<ξ∪A
(1)
ξ ∪A

(2)
ξ in exactly two points. Then

|L′′| < c and L ⊆ L′ ⊆ L′′. Choose a line l parallel to hξ, with l∩(A<ξ∪A
(1)
ξ ∪A

(2)
ξ ) =

∅. Choose

x(3) ∈ l \ span
Q

(

A<ξ ∪ A
(1)
ξ ∪ A

(2)
ξ ∪ {hξ} ∪

⋃

l∈L′′

(l ∩ lξ)
)

.

Set y(3) = x(3) + hξ. Then

y(3) ∈ l \ span
Q

(

A<ξ ∪ A
(1)
ξ ∪ A

(2)
ξ ∪

⋃

l∈L′′

(l ∩ lξ)
)

.

Set A
(3)
ξ = {x(3), y(3)}.

Finally, set Aξ = A
(1)
ξ ∪ A

(2)
ξ ∪ A

(3)
ξ .

Clearly conditions (1)–(6) are satisfied. So, the inductive construction is com-

pleted.

The set A =
⋃

ξ<c

Aξ will have the desired properties. Evidently, conditions (2) and

(3) imply that the set A is a two point set. Since every I-positive Borel set must have

an uncountable section, the set A does not contain any set from {Bξ : ξ < c} and

(4) makes sure it intersects all of them, so the set A is completely I-nonmeasurable.

Moreover, conditions (5) and (6) imply that A is a Hamel base of R2. �

Considering I = N , we get the following corollary.

Corollary 2.3. There exists a two point set A ⊆ R2 that is a Hamel base such

that λ∗(A) = λ∗(R
2 \ A) = 0, where λ∗ denotes the inner Lebesgue measure on the

plane.
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3. Marczewski null and Marczewski nonmeasurable set

In this section we will consider the σ-ideal s0 and the σ-algebra s of subsets of R2

that were introduced by Marczewski (see e.g. [17], [6]).

Definition 3.1. We say that a set A ⊆ R

(1) belongs to s0 if for every perfect set P there exists a perfect set Q ⊆ P such

that Q ∩ A = ∅.

(2) is s-measurable if for every perfect set P there exists a perfect set Q ⊆ P such

that Q ∩ A = ∅ or Q ⊆ A.

(3) is s-nonmeasurable if A is not s-measurable.

Definition 3.2. We say that a subset A ⊆ R2 is a Bernstein set if for every

perfect set P ⊆ R2

A ∩ P 6= ∅ ∧ Ac ∩ P 6= ∅.

Let us recall that every Bernstein set is s-nonmeasurable.

Let us start with the result connected with the σ-ideal s0 of Marczewski null sets.

Theorem 3.3. There exists a two point set A ⊆ R2 that belongs to s0.

P r o o f. Let {lξ : ξ < c} be an enumeration of all straight lines in the plane R2.

Let {Qξ : ξ < c} be an enumeration of all perfect sets in R2 such that every perfect

set occurs c many times.

We will define, by induction on ξ < c, sequences {Aξ : ξ < c} of subsets of R2 and

{Pξ : ξ < c} of perfect or empty sets such that

(⋆) for every perfect set Q there is ξ0 < c such that Pξ0
6= ∅ and Pξ0

⊆ Q;

and for every ξ < c,

(1) |Aξ| < ω,

(2)
⋃

ζ6ξ

Aζ does not contain three collinear points,

(3)
⋃

ζ6ξ

Aζ contains precisely two points of lξ,

(4) Pξ ⊆ Qξ,

(5)
⋃

ζ6ξ

Pζ ∩
⋃

ζ6ξ

Aζ = ∅,

(6)
∣

∣

∣
lη \

⋃

ζ6ξ

Pζ

∣

∣

∣
= c for every η > ξ.

Assume that for some ξ < c the sequences {Aζ : ζ < ξ} and {Pζ : ζ < ξ} are

already constructed. Set A<ξ =
⋃

ζ<ξ

Aζ .
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Assume first that for every line l in a plane, |Qξ ∩ l| < c. Then |Qξ ∩ l| 6 ω.

Since |A<ξ| < c we can choose a perfect set Pξ ⊆ Qξ such that Pξ ∩ A<ξ = ∅ and

|Pξ ∩ l| 6 ω for every line l. Since the intersection of Pξ with any line is at most

countable hence
∣

∣

∣
lη \

⋃

ζ6ξ

Pζ

∣

∣

∣
= c, for every η > ξ and

⋃

ζ6ξ

Pζ ∩
⋃

ζ<ξ

Aζ = ∅.

Assume now that there exists a line l such that |l ∩ Qξ| = c. If l = lα for some

α > ξ, then put Pξ = ∅. If l = lα for some α < ξ, then |l∩A<ξ| = 2 and since l∩Qξ

is closed with |l∩Qξ| = c one can choose a perfect set Pξ ⊆ Qξ ∩ l disjoint with A<ξ.

Then
∣

∣

∣
lη \

⋃

ζ6ξ

Pζ

∣

∣

∣
= c for every η > ξ and

⋃

ζ6ξ

Pζ ∩
⋃

ζ<ξ

Aζ = ∅.

As in Theorem 2.3 we can choose a set Aξ satisfying (1)–(3) outside the set
⋃

ζ6ξ

Pζ

and so complete the inductive construction.

Finally, there exist sequences {Aξ : ξ < c} and {Pξ : ξ < c}, satisfying (1)–(6) and

by the construction they fulfil the condition (⋆).

Then the set A =
⋃

ξ<c

Aξ will have the desired property. �

Let us note here that the unit circle intersects any line in at most two points but

cannot be extended to a two point set. In [5] and [4] the authors investigated how

small should be a subset of the unit circle to be extendable to a two point set. It

turns out that sets of inner positive measure on the unit circle cannot be extended

to two point sets. We will show that there is a subset of the unit circle of full outer

measure which can be extended to a two point set.

Theorem 3.4. There exists a two point set A ⊆ R2 that is s-nonmeasurable.

Moreover, A contains a subset of the unit circle of full outer measure.

P r o o f. Let us observe that if B is a Bernstein set in some uncountable closed

set C then B is s-nonmeasurable. Moreover, if a set D is such that D ∩C = B then

D is also s-nonmeasurable.

We construct a two point set A such that its intersection with the unit circle is

a Bernstein subset of the unit circle. Let {lξ : ξ < c} be an enumeration of all straight

lines in R2. Let {Pξ : ξ < c} be an enumeration of all perfect subsets of the unit

circle.

We will define inductively a sequence {Aξ : ξ < c} of subsets of R2 and a sequence

{yξ : ξ < c} of points from the unit circle such that for every ξ < c:

(1) |Aξ| < ω,

(2)
⋃

ζ6ξ

Aζ does not contain three collinear points,

(3)
⋃

ζ6ξ

Aζ contains precisely two points of lξ,

(4) Pξ ∩
⋃

ζ6ξ

Aζ 6= ∅,
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(5) yξ ∈ Pξ,

(6) Aξ ∩ {yζ : ζ 6 ξ} = ∅.

The existence of the sequence {Aξ : ξ < c} follows in a way similar to that in

Theorem 2.3. Here, the key observation is that for each perfect set Pξ of the unit

circle there exist c many straight lines passing through Pξ and the origin.

Setting A =
⋃

ξ<c

Aξ we obtain a two point s-nonmeasurable set. Clearly, A is of

full outer measure on the unit circle. �

Using the method from the previous section we can strengthen the results in the

following way.

Theorem 3.5. Let I be a σ-ideal of subsets of R2 with the property that for

every I-positive Borel set there are c many pairwise disjoint lines which intersect it

on a set of cardinality c.

(1) There exists a two point set A ⊆ R2 that is a completely I-nonmeasurable, s0

Hamel base.

(2) There exists a two point set B ⊆ R2 that is a completely I-nonmeasurable,

s-nonmeasurable Hamel base.

To prove it one should combine the ideas of Theorems 2.3, 3.3 and 3.4.

The first part of the above theorem generalizes the result from [13].

4. A union of graphs of functions

In this section we will focus on the question of whether a two point set can be

decomposed into a union of two functions having some additional properties.

Let us start with a simple observation.

Proposition 4.1. Every two point set is a union of two functions.

P r o o f. Let A be a two point set. In particular, it intersects every vertical line

in exactly two points. For x ∈ R let us denote Ax = A ∩ ({x} × R). Clearly Ax

has two elements, so Ax = {(x, y1), (x, y2)}. Define functions f1, f2 : R → R by

f1(x) = y1, f2(x) = y2. Then we get that A = f1 ∪ f2. This completes the proof. �

Let us introduce a notion which generalizes in a natural way the notion of a two

point set.

Definition 4.2. Let κ be a cardinal number, κ > 2. We say that a subset of the

plane is a κ point set if it meets any line in exactly κ points.
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Proposition 4.3. Let n > 2 be a natural number. For any n point set A there is

no additive function f ⊆ A.

P r o o f. Let A be an n point set and suppose that there is an additive function

f ⊆ A. Notice that f(2) = f(1 + 1) = f(1) + f(1) = 2f(1) and, more generally

for k > 1, f(k) = kf(1). So points (1, f(1)), (2, 2f(1)), . . . , (n + 1, (n + 1)f(1)) are

members of A which lie on the same line. This is a contradiction. �

Now, let us focus on the class of bijections.

We will use the following theorem (see e.g. [1]).

Theorem 4.4 ([Hall]). Assume that X , Y are infinite sets. Let R ⊆ X × Y be

a relation such that for every x ∈ X there are at most finitely many y ∈ Y with

(x, y) ∈ R possessing the following property:

(∀k ∈ N)(∀X ′ ⊆ X) (|X ′| = k ⇒ |R[X ′]| > k),

where R[X ′] = {y : (∃x ∈ X ′)((x, y) ∈ R)}. Then there exists an injection h : X → Y

such that h ⊆ R.

We will also use the following theorem (see e.g. [6]).

Theorem 4.5 ([Cantor, Bernstein]). LetX, Y be any sets. Assume that f : X →

Y and g : Y → X are injections. Then there exist A ⊆ X and B ⊆ Y such that

f ↾ A : A → Y \ B and g ↾ B : B → X \ A are bijections.

Theorem 4.6. Fix a natural number n. Let A ⊆ R2 be such that its intersection

with every horizontal and vertical line has exactly n elements. Then there exist n

bijections F0, . . . , Fn−1 : R → R such that A = F0 ∪ . . . ∪ Fn−1.

P r o o f. Let us notice that A ⊆ R×R fulfils the assumptions of Theorem 4.4. So

there exists an injection f : R → R such that f ⊆ A.

A set A−1 = {(x, y) : (y, x) ∈ A} also fulfils the assumptions of Theorem 4.4. So

there exists an injection g : R → R such that g ⊆ A−1.

By Theorem 4.5 we can construct a bijection F0 : R → R of the form F0 =

(f ↾ A) ∪ (g−1 ↾ (R \ A)). So, F0 ⊆ A.

Let us notice that A \ F0 is such that its intersection with every horizontal and

vertical line has exactly n− 1 elements. So, the proof can be completed by a simple

induction. �

We get the immediate corollary:
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Corollary 4.7. Let n > 2 be a natural number. Any n point set can be decom-

posed into n bijections.

One can ask whether any two point set can be decomposed into two measurable

(with Baire property) functions. We will prove that this is not the case. Moreover,

there is a two point set which does not admit a measurable (with Baire property)

uniformization.

We will use the following, probably well-known, lemma. We give a short proof of

it for the reader’s convenience.

Lemma 4.8. There exists an unbounded Fσ set C ⊆ R+ of measure zero such

that its intersection with any interval in R+ is of cardinality c. (In particular, C is

meager.)

P r o o f. Let C denote the standard ternary Cantor set. Let Q+ denote the set of

positive rationals. Set

C = C + Q+ = {x + y : x ∈ C ∧ y ∈ Q+}.

This completes the proof. �

Theorem 4.9. For any Bernstein set B ⊆ R there exists a two point set A ⊆ R2

which is null and meager such that for any function f ⊆ A, f−1((0, 1)) is B.

P r o o f. Let B ⊆ R be a Bernstein set and let {lξ : ξ < c} be an enumeration

of all straight lines in the plane R2. Let C∗ = {r · eit : t ∈ [0, 2π], r ∈ C} where C

is the set from Lemma 4.8. Notice that C∗ is an Fσ-set. By Fubini’s Theorem and

Ulam’s Theorem the set C∗ is meager and of measure zero in the plane R2. Notice

that |lξ ∩ C∗| = c for any ξ < c. We will define, by induction on ξ < c, a sequence

{Aξ : ξ < c} of subsets of C∗ such that for every ξ < c,

(1) |Aξ| < ω;

(2)
⋃

ζ6ξ

Aζ does not have three collinear points;

(3)
⋃

ζ6ξ

Aζ contains precisely two points of lξ;

(4) if lξ is a vertical line with x-coordinate xξ ∈ B then
⋃

ζ6ξ

Aζ ∩ lξ ⊆ {xξ}× (0, 1);

(5) if lξ is a horizontal line with y-coordinate yξ ∈ (0, 1) then
⋃

ζ6ξ

Aζ∩lξ ⊆ B×{yξ};

(6) if neither (4) nor (5) then
(

⋃

ζ6ξ

Aζ ∩ lξ

)

∩ (B × (0, 1)) = ∅.

Assume that for some ξ < c the sequence {Aζ : ζ < ξ} is already defined. Set

A<ξ =
⋃

ζ<ξ

Aζ . Let L be the family of all lines which meet A<ξ in exactly two points.
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Then |L| 6 |A2
<ξ| < c. Note that lξ ∩A<ξ has at most two elements. Consider three

cases.

Case 1 (lξ is a vertical line with x-coordinate xξ ∈ B). If |lξ ∩ A<ξ| = 2 then

put Aξ = ∅. If |lξ ∩ A<ξ| < 2, then |lξ ∩ l| 6 1 for any l ∈ L. Choose two numbers

y1
ξ , y2

ξ ∈ (0, 1) such that (xξ, y
1
ξ ), (xξ, y

2
ξ ) ∈ (C∗ ∩ lξ) \

(

⋃

l∈L

l ∩ lξ

)

. This is possible

since |C∗ ∩ lξ| = c and
∣

∣

∣

⋃

l∈L

l ∩ lξ

∣

∣

∣
< c. Set Aξ = {(xξ, y

1
ξ ), (xξ, y

2
ξ )} if lξ ∩A<ξ = ∅ or

Aξ = {(xξ, y
1
ξ )} if |lξ ∩ A<ξ| = 1.

Case 2 (lξ is a horizontal line with y-coordinate yξ ∈ (0, 1)). Since lξ ∩ C∗ is

uncountable Fσ, it contains a perfect set and |π1[lξ ∩ C∗] ∩ B| = c. If |lξ ∩ A<ξ| = 2

then put Aξ = ∅. If |lξ ∩ A<ξ| < 2, then |lξ ∩ l| 6 1 for any l ∈ L and choose

arbitrary two points x1
ξ , x

2
ξ ∈ B such that (x1

ξ , yξ), (x
2
ξ , yξ) ∈ (C∗ ∩ lξ) \

(

⋃

l∈L

l ∩ lξ

)

.

Set Aξ = {(x1
ξ , yξ), (x

2
ξ , yξ)} if lξ ∩ A<ξ = ∅ or Aξ = {(xξ, y

1
ξ )} if |lξ ∩ A<ξ| = 1.

Case 3 (otherwise). If |lξ ∩ A<ξ| = 2 then set Aξ = ∅. If |lξ ∩ A<ξ| < 2 then

|lξ∩l| 6 1 for any l ∈ L and choose arbitrary (x1
ξ , y

1
ξ ), (x2

ξ , y
2
ξ ) ∈ (C∗∩lξ)\

(

⋃

l∈L

l∩lξ

)

with x1
ξ , x

2
ξ /∈ B and y1

ξ , y2
ξ /∈ (0, 1). It is possible since |π1[lξ ∩C∗]∩ (R \B)| = c. Set

Aξ = {(x1
ξ , y

1
ξ ), (x2

ξ , y
2
ξ )} if lξ ∩ A<ξ = ∅ or Aξ = {(x1

ξ, y
1
ξ )} if |lξ ∩ A<ξ| = 1.

Finally, set A =
⋃

ξ<c

Aξ. Since A ⊆ C∗, it is meager and null. By (4)–(6) if f ⊆ A

then f−1((0, 1)) = B.

�

5. Luzin and Sierpiński sets

We start this section with the definitions of special subsets of the real plane R2.

Definition 5.1. We say that a subset A ⊆ R2 is a Luzin set if the intersection

of the set A with every meager set is countable.

Moreover, a set A ⊆ R2 is a strongly Luzin set if A is a Luzin set and the inter-

section of A with every Borel nonmeager set has cardinality c.

Definition 5.2. We say that a subset A ⊆ R2 is a Sierpiński set if the intersec-

tion of the set A with every null set is countable.

Moreover, a set A ⊆ R2 is a strongly Sierpinński set if A is a Sierpiński set and the

intersection of A with every Borel set of positive Lebesgue measure has cardinality c.

The following remark holds.

Remark 5.3. Assume A ⊆ R2 is a two point set. Then

(1) A is not Bernstein,
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(2) A is not Luzin,

(3) A is not Sierpiński.

P r o o f. (1) Each line l is a perfect set such that |A ∩ l| = 2, so A cannot be

a Bernstein set.

(2) and (3) Let N be a perfect null subset of R. Then N is a nowhere dense set

and then N × R is null and meager set with

|(N × R) ∩ A| = 2|N | = c.

So, A cannot be a Luzin set and a Sierpiński set. �

Let us give the following definition.

Definition 5.4. A set A ⊆ R2 is a partial two point set if A intersects every line

in at most two points.

Theorem 5.5 ([CH]).

(1) There exists a partial two point set A that is a strong Luzin set.

(2) There exists a partial two point set B that is a strong Sierpiński set.

P r o o f. Let us focus on the Luzin set. The case of the Sierpiński set is similar.

Fix a base {Bα : α < ω1} of the ideal of meager sets and let {Dα : α < ω1} be

the enumeration of Borel nonmeager sets such that each set appears ω1 many times.

We will construct a sequence {xα : α < ω1} having the following properties:

(1) Aα = {xξ : ξ 6 α} does not contain three collinear points,

(2) xα ∈ Dα \
⋃

ξ<α

Bξ.

We will show that at any α step we can pick xα such that (1) and (2) are fulfilled.

Since Aξ is countable so is
⋃

ξ<α

Aξ. Therefore the set

L<α =
{

l : l is a line and
∣

∣

∣
l ∪

⋃

ξ<α

Aξ

∣

∣

∣
= 2

}

is countable. Hence, both L<α and
⋃

ξ<α

Bξ are meager. Consequently, one can

pick a point xα from Dα that meets neither L<α nor
⋃

ξ<α

Bξ. So, the inductive

construction is done.

Finally, set A = {xα : α < ω1}. It is a required partial two point set that is strong

Luzin. �
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Let us remark that Luzin sets and Sierpiński sets are s0. Moreover, A is strongly

null and B is strongly meager. For the definitions of strongly meager and strongly

null we refer the reader to [2].

Theorem 5.5 can be strengthen. If we assume that add(M) = cof(M) = κ then

we can construct a partial two point set A such that |A| = κ and for every Borel set

B, |B ∩ A| < κ if and only if B ∈ M.

An analogous observation is true in the case of null sets N .

6. κ-covering

At the beginning of this section we will recall the notion of a κ-covering and

a κ-I-covering (see [7]).

Definition 6.1. Let κ be a cardinal number. A set A ⊆ R2 is called a κ-

covering if

(∀X ∈ [R2]κ)(∃y ∈ R
2) y + X ⊆ A

where y + X stands for {y + x : x ∈ X}.

Let Iso(R2) be the group of all isometries of the real plane R2.

Definition 6.2. Let κ be a cardinal number. A set A ⊆ R2 is called a κ-I-

covering if

(∀X ∈ [R2]κ)(∃g ∈ Iso(R2)) g[X ] ⊆ A.

Obviously, if A is a κ-covering then A is a κ-I-covering and if λ < κ, then A is

a κ-covering (κ-I-covering) implies that A is a λ-covering (λ-I-covering).

Let us start with the following result.

Theorem 6.3. There exists an ℵ0 point set which is not a 2-I-covering.

P r o o f. Let us enumerate the set of all lines Lines = {lξ : ξ < c} in R2. We

construct a transfinite sequence (Aξ : ξ < c) of countable subsets of R2 such that for

every ξ < c:

(1) l ∩ Aξ = ∅ for every l ∈ L<ξ,

(2) if lξ /∈ L<ξ then |lξ ∩ Aξ| = ℵ0,

(3) d(a, b) 6= 1 for every a, b ∈
⋃

ζ<ξ

Aζ

where L<ξ =
{

l ∈ Lines :
∣

∣

∣
l ∩

⋃

ζ<ξ

Aζ

∣

∣

∣
= ℵ0

}

and d : R2 × R2 → R+ denotes the

standard metric on R2.

Let us notice that L<ξ ⊆
{

l ∈ Lines :
∣

∣

∣
l ∩

⋃

ζ<ξ

Aζ

∣

∣

∣
> 2

}

. So, |L<ξ| < c and the

inductive construction can be done.
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Now, setting A =
⋃

ξ<c

Aξ, we obtain the requested set. Indeed, (1) and (2) imply

that A is an ℵ0 point set and (3) guarantees that A is not a 2-I-covering. �

Theorem 6.4. There exists an ℵ0 point set which is an ℵ0-covering.

P r o o f. Let us enumerate the set of all lines Lines = {lξ : ξ < c} and the family

of all countable subsets of the real plane [R2]ω = {Xξ : ξ < c}. We construct

a transfinite sequence ((Aξ, yξ) ∈ [R2]ω × R2 : ξ < c) with the following properties:

(1) l ∩ Aξ = ∅ for every l ∈ L<ξ,

(2) if lξ /∈ L<ξ then |lξ ∩ Aξ| = ℵ0,

(3) yξ + Xξ ⊆ Aξ

where L<ξ =
{

l ∈ Lines :
∣

∣

∣
l ∩

⋃

ζ<ξ

Aζ

∣

∣

∣
= ℵ0

}

.

Let us notice that
{

y : y + Xξ ∩
⋃

L<ξ 6= ∅
}

= {y : ∃x ∈ Xξ ∃ l ∈ L<ξy + x ∈ l} =
⋃

l∈L<ξ

⋃

x∈Xξ

l − x.

This set, as a union of < c many lines, does not cover the whole R2. Set yξ in such

a way that yξ /∈
⋃

l∈L<ξ

⋃

x∈Xξ

l− x. The rest of the inductive construction is similar to

that in Theorem 6.7.

The resulting set A =
⋃

ξ<c

Aξ is an ℵ0 point set by (1) and (2). So, yξ’s constructed

in (3) witness that A is an ℵ0-covering. �

Theorem 6.5. If there is a family F ⊆ [c]ω1 of size c such that for every X ∈ [c]ω1

there exists Y ∈ F with X ⊆ Y , then there exists an ℵ1 point set in the plane which

is an ℵ1-covering.

P r o o f. Let us consider V , a model of ZFC such that V � c = 2ℵ1 = ℵ2. Such

a model can be obtained by adding ω2 Cohen reals to the constructible universe L.

The rest of the proof goes in way similar to the proof of Theorem 6.4. �

Moreover, we can state the following theorem provided by referee.

Theorem 6.6. Suppose the continuum c is singular of cofinality ω1, e.g. c = ℵω1
,

then there is no ℵ1 point set in the plane which is an ℵ1-I-covering.

P r o o f. Suppose X ⊆ R×R were such set. Let Yα ∈ [R×{0}]ω1 for α < c list all

subsets of the x-axis isometric to l∩X for some line l. Let κα for α < ω1 be strictly

increasing with sup c. For each α < ω1 choose

pα ∈ R× {0} \
⋃

β<κα

Yβ .
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Then X fails to contain an isometric copy of {pα : α < ω1}, contradicting that it is

an ℵ1-I-covering. �

We can obtain the following result.

Theorem 6.7. Fix an integer n > 2.

⊲ There exists an n point set which is not a 2-I-covering.

⊲ There exists an n point set which is a n-covering.

P r o o f. The proof of this theorem is similar to the proofs of Theorem 6.3 and

Theorem 6.4. �

Let us recall that A is a 2-covering iff A−A = R2. This gives the following result.

Corollary 6.8. There exists a two point set A such that A − A = R2.

7. Combinatorial properties

Let us recall that a family A of infinite subsets of ω is an almost disjoint family

(ad) if any two distinct members of A have finite intersection. A is a maximal almost

disjoint family (mad) if it is an ad family which is maximal with respect to inclusion.

Analogously, we say that B ⊆ ωω is a family of eventually different functions if

every two distinct members x, y ∈ B coincide only on a finite subset of ω.

Let κ be a cardinal number. We say that the family {Aξ ∈ [ω]ω : ξ < κ} is a

tower if

⊲ (∀ ξ, η < κ)ξ < η ⇒ Aη ⊆∗ Aξ and

⊲ there is no B ∈ [ω]ω (∀ξ < κ) B ⊆∗ Aξ. Here, A ⊆∗ B means that |A \ B| < ω.

Theorem 7.1 ([CH]). Let h : R → ωω be a bijection. There exists a partial two

point set A ⊆ R2 such that the family h[π1[A] ∪ π2[A]] forms a maximal family of

eventually different functions. (πi denotes the projection on the i-th coordinate.)

P r o o f. Let ωω = {fα : α < ω1}. By transfinite induction we will construct a set

A = {aξ : ξ < ω1} ⊆ R2 such that for every α < ω1

(1) Aα = {aξ : ξ < α} is a partial two point set,

(2) Fα = h[π1[Aα] ∪ π2[Aα]] is a family of eventually different functions,

(3) (∃ξ 6 α)(∃i ∈ {0, 1}) |fα ∩ h(πi(aξ))| = ℵ0.

Assume now that we have already constructed the set Aα.

Case 1. (fα is eventually different from every function of the form h(πi(aξ)) for

ξ < α and i ∈ {0, 1}) Set xα = h−1(fα). We can find yα ∈ R such that

⊲ (xα, yα) does not belong to any line from L(Aα),
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⊲ h(yα) is eventually different from every function from Fα ∪ {fα}, where L(Aα)

denotes the family of all lines intersecting Aα in exactly two points. A point yα

can be found since Aα is countable.

Case 2. (|fα ∩ h(πi(aξ))| = ℵ0 for some ξ < α and i ∈ {0, 1}) Then we can find

xα, yα ∈ R such that

⊲ (xα, yα) does not belong to any line from L(Aα),

⊲ Fα ∪ {h(xα), h(yα)} is a family of eventually different functions. Again, the

construction is possible since Aα is countable.

Set aα = (xα, yα). The inductive step is proved.

Let us notice that the resulting set A =
⋃

α<ω1

Aα is a partial two point set by (1).

h[π1[A] ∪ π2[A]] is a family of eventually different functions by (2). The maximality

of this family follows from (3). �

Remark 7.2. The same result is true if we replace a maximal family of eventually

different functions by a mad family. (In this case we consider a bijection h : R →

[ω]ω.)

In the proof of the next theorem we adopt the method from Kunen’s theorem

about the existence of an indestructible mad family (see [8]).

Theorem 7.3. Let us fix a standard Borel bijection h : R → [ω]ω. It is consistent

with ZFC+¬CH that there exists a partial two point set A such that h[π1[A]∪π2[A]]

forms a mad family of size ω1.

P r o o f. Let us consider a model V ′ obtained from V � CH by adding κ > ω1

Cohen reals (i.e. using forcing Fn(κ, 2)). It suffices to construct a partial two point

set A in V which remains maximal in the generic extension V ′.

Let us notice that, since every subset of ω has a name in Fn(I, 2) for some countable

I ⊆ κ, it is enough to consider names in Fn(ω, 2).

In V , let us enumerate all possible pairs (pξ, τξ) : ω 6 ξ < ω1 (by CH), where

pξ ∈ Fn(ω, 2) and τξ is a nice name for an infinite subset of ω. Take any countable

sequence (F i
n : n ∈ ω ∧ i ∈ {0, 1}) of pairwise disjoint countable subsets of ω.

Now we define a transfinite sequence (F i
ξ : ω 6 ξ < ω1 ∧ i ∈ {0, 1}) satisfying the

following conditions for every ξ < ω1:

(1) (F i
ζ : ζ < ξ ∧ i ∈ {0, 1}) is an almost disjoint family,

(2) if (∀η < ξ)(∀i ∈ 2)pξ 
 |τξ∩F i
η | < ω then pξ 
 |τξ∩F 0

ξ | = ω or pξ 
 |τξ∩F 1
ξ | = ω,

(3) {aζ = (h−1[{F 0
ζ }], h

−1[{F 1
ζ }]) : ζ < ξ} forms a partial two point set.

To see that this recursion is possible let us assume that the construction at the step

ξ < ω1 is done. Now let us enumerate {F i
η : η < ξ ∧ i ∈ 2} = {Bn : n ∈ ω} by ω. If

the assumption in condition (2) is not fulfilled then choose any F 1
ξ almost disjoint
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with every F i
η for η < ξ and i ∈ 2 what is possible since |ξ| = ω. Now, let us assume

that the assumption of (2) is fulfilled. We show that

(⋆⋆) (∀n ∈ ω)(∀q 6 pξ)(∃m > n)(∃r < q) r 
 m ∈ τξ \ (B0 ∪ . . . Bn).

Let us fix any n ∈ ω and q < pξ. By assumption pξ 
 |τξ ∩ (B0 ∪ . . . Bn)| < ω. So

pξ 
 (∃m > n) m ∈ τ \ (B0 ∪ . . . ∪ Bn).

q is stronger than pξ, so it forces the same sentence. Now, we can find a stronger

condition r < q and a positive integer m > n such that

r 
 m ∈ τ \ (B0 ∪ . . . Bn).

This completes the proof of (⋆⋆). �

Now let us enumerate the set ω × {q ∈ Fn(ω, 2): q 6 pξ} = {(nj, qj) : j < ω}.

Then for every j < ω there exist mj ∈ ω and rj < qj such that nj < mj and

rj 
 mj ∈ τξ \ (B0 ∪ . . . Bnj
).

Let F 1
ξ = {mj : j < ω}. Then F i

η ∩ F 1
ξ is finite, so yξ = h−1[{F 1

ξ }] is a real different

from the other coordinates appearing in the previous step of the construction.

Now we will construct the first coordinate of the new point. To do this, set

A<ξ = {(h−1(F 0
η ), h−1(F 1

η )) : η < ξ} ⊂ R2. Denote by L<ξ the set of all lines l ⊆ R2

in the real plane such that |l ∩ A<ξ| = 2. Let us observe that the set

Y = {z ∈ R : (∃l ∈ L<ξ)(z, yξ) ∈ l}

is countable. Let us enumerate Y = {zn : n < ω}. Now, consider the sequence

Cn = h(zn), n ∈ ω.

To define the set F 0
ξ we will use a diagonal argument. Let us arrange elements of

each set Cn = {cn
i : i ∈ ω} in an increasing sequence and let us define the increasing

sequence (dn)n∈ω of nonnegative integers by

dn = max{cn
i : i 6 n}.

Now, let us choose an increasing sequence (mn)n∈ω such that for every n ∈ ω we

have

⊲ dn < mn and

⊲ mn ∈ ω \ F 1
ξ ∪ B0 ∪ . . . ∪ Bn.
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Set F 0
ξ = {mn : n ∈ ω}. It is easy to see that

(1) F 0
ξ 6= Cn for every n ∈ ω,

(2) |F 0
ξ ∩ Bn| < ω for every n ∈ ω,

(3) |F 0
ξ ∩ F 1

ξ | < ω.

The first property ensures that the set A<ξ ∪{(h−1(F 0
ξ ), h−1(F 1

ξ ))} does not contain

three collinear points. The second and third properties imply that the set {F i
η :

η 6 ξ ∧ i ∈ 2} forms an almost disjoint family.

Our construction of the sequences (F 0
ξ : ξ < ω) and (F 1

ξ : ξ < ω1) is completed.

It remains to prove that


Fn(ω,2) {F 0
ξ : ξ < ω1} ∪ {F 1

ξ : ξ < ω1} is a mad family.

If not then there exists a condition p ∈ Fn(ω, 2) and a nice name τ ∈ V Fn(ω,2) for an

element of P (ω) such that

p 
 (∀ξ < ω1)(∀(i ∈ 2)) |τ ∩ F i
ξ | < ω.

There exists ξ < ω1 such that (p, τ) = (pξ, τξ). So, the assumption in the condi-

tion (2) is fulfilled. We know that τ witnesses that there exist q < p and n ∈ ω such

that

q 
 τ ∩ F i
ξ ⊂ n.

On the other hand, there exist r < q and m > n such that r 
 m ∈ τ ∩ F 0
ξ or there

exist r′ < q and m′ > n such that r′ 
 m′ ∈ τ ∩ F 1
ξ , a contradiction. �

Theorem 7.4. Let us fix a standard Borel bijection h : R → [ω]ω. It is consistent

with ZFC+¬CH that there exists a partial two point set A such that h[π1[A]∪π2[A]]

forms a tower of size ω1.

We will omit the proof because it is very similar to the proof of Theorem 7.3.

Theorem 7.5. It is consistent with ZFC + ¬CH that there exists a partial two

point set C ⊆ R2 of size ω2 such that C is a Luzin set and

(∃A ∈ N )(∀D ∈ [C]ω1) A + D = R
2.

P r o o f. Let us start with V � CH. Consider the generic extension V [cα : α < ω2]

obtained by adding ω2 independent Cohen reals. We can assume that cα ∈ R2 for

every α < ω2. Set C = {cα : α < ω2}.
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C is a partial two point set. Indeed, take any line l which intersects two different

points of C : cα, cβ. Take any γ ∈ ω2 \ {α, β}. Then cγ is a Cohen real over V [cα, cβ ]

and l is a meager set coded in V [cα, cβ]. So, cγ /∈ l.

C is a Luzin set. Take any Borel meager set M from V [cα : α < ω2]. Then M is

coded in V [cα : α ∈ I] for some countable I. So, M ∩ {cα : α ∈ ω2 \ I} = ∅.

Now, let us fix the Marczewski decomposition: R2 = A∪B, where A ∈ N , B ∈ M

and A ∩ B = ∅. Let us recall that A, B are coded in V . Take any D ⊆ C of size ω1.

Take any x ∈ R2 (in V [cα : α < ω2]). Then x is in V [cα : α ∈ J ] for some countable

J . So, x − B is a meager set coded in V [cα : α ∈ J ]. Take c ∈ D \ {cα : α ∈ J}.

Then c /∈ x − B. So, x ∈ A + c. This shows that R2 ⊆ A + D. �

In a similar way one can show the following result.

Theorem 7.6. It is consistent with ZFC + ¬CH that there exists a partial two

point set R ⊆ R2 of size ω2 such that R is a Sierpiński set and

(∃B ∈ M)(∀D ∈ [R]ω1) B + D = R
2.
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