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Abstract. We discuss the convergence of approximate identities in Musielak-Orlicz spaces
extending the results given by Cruz-Uribe and Fiorenza (2007) and the authors F.-Y.Maeda,
Y.Mizuta and T.Ohno (2010). As in these papers, we treat the case where the approximate
identity is of potential type and the case where the approximate identity is defined by
a function of compact support. We also give a Young type inequality for convolution with
respect to the norm in Musielak-Orlicz spaces.
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1. Introduction

Let κ be an integrable function on R
N . For each t > 0, define the function κt by

κt(x) = t−Nκ(x/t). Note that by a change of variables, ‖κt‖L1(RN ) = ‖κ‖L1(RN ).

We say that the family {κt}t>0 is an approximate identity if
∫

RN κ(x) dx = 1. Define

the radial majorant of κ to be the function

κ̂(x) = sup
|y|>|x|

|κ(y)|.

If κ̂ is integrable, we say that the family {κt}t>0 is of potential-type.

It is well known (see, e.g., [9]) that if {κt}t>0 is a potential-type approximate

identity, then κt ∗ f → f in Lp(RN ) as t → 0 for every f ∈ Lp(RN ) (p > 1).

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to dis-

cuss nonlinear partial differential equations with non-standard growth conditions

(see [3]). Cruz-Uribe and Fiorenza [1] gave sufficient conditions for the convergence
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of approximate identities in variable exponent Lebesgue spaces Lp(·)(RN ) when p(·)

is a variable exponent satisfying the log-Hölder conditions on RN , locally and at ∞,

as an extension of [2], [9], etc. In fact they proved the following:

Theorem A. Let {κt}t>0 be an approximate identity. Suppose that either

(1) {κt}t>0 is of potential-type, or

(2) κ ∈ L(p−)′(RN ) and has compact support, where p− := inf
x∈RN

p(x) (> 1) and

1/p− + 1/(p−)′ = 1.

Then

sup
0<t61

‖κt ∗ f‖Lp(·)(RN ) 6 C‖f‖Lp(·)(RN )

and

lim
t→0

‖κt ∗ f − f‖Lp(·)(RN ) = 0

for all f ∈ Lp(·)(RN ).

Recently, Theorem A was extended to the two variable exponents spaces

Lp(·)(log L)q(·)(RN ) in [4]. These spaces are special cases of the so-called Musielak-

Orlicz spaces ([8]).

Our aim in this paper is to extend these results to the Musielak-Orlicz spaces

LΦ(RN ) (see Section 2 for the definition of Φ). As a related topic, we also give

a Young type inequality for convolution with respect to the norm in LΦ(RN ).

2. Preliminaries

We consider a function

Φ(x, t) = tϕ(x, t) : R
N × [0,∞) → [0,∞)

satisfying the following conditions (Φ1)–(Φ4):

(Φ1) ϕ(·, t) is measurable on R
N for each t > 0 and ϕ(x, ·) is continuous on [0,∞)

for each x ∈ R
N ;

(Φ2) there exists a constant A1 > 1 such that

A−1
1 6 ϕ(x, 1) 6 A1 for all x ∈ R

N ;

(Φ3) ϕ(x, ·) is uniformly almost increasing, namely there exists a constant A2 > 1

such that

ϕ(x, t) 6 A2ϕ(x, s) for all x ∈ R
N whenever 0 6 t < s;
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(Φ4) there exists a constant A3 > 1 such that

ϕ(x, 2t) 6 A3ϕ(x, t) for all x ∈ R
N and t > 0.

Note that (Φ2), (Φ3) and (Φ4) imply

0 < inf
x∈RN

ϕ(x, t) 6 sup
x∈RN

ϕ(x, t) < ∞

for each t > 0.

If Φ(x, ·) is convex for each x ∈ R
N , then (Φ3) holds with A2 = 1; namely ϕ(x, ·)

is non-decreasing for each x ∈ R
N .

Example 2.1. Let p1(·), p2(·), q1(·) and q2(·) be measurable functions on R
N

such that

(P1) 1 6 p−j := inf
x∈RN

pj(x) 6 sup
x∈RN

pj(x) =: p+
j < ∞, j = 1, 2,

and

(Q1) −∞ < q−j := inf
x∈RN

qj(x) 6 sup
x∈RN

qj(x) =: q+
j < ∞, j = 1, 2.

Then

Φ(x, t) = (1 + t)p1(x)(1 + 1/t)−p2(x)(log(e + t))q1(x)(log(e + 1/t))−q2(x)

satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if p−j > 1, j = 1, 2, or q−j > 0, j = 1, 2.

As a matter of fact, it satisfies (Φ3) if and only if pj(·), qj(·) satisfy the following

conditions:

(1) qj(x) > 0 at points x where pj(x) = 1, j = 1, 2;

(2) sup
x : pj(x)>1

{min(qj(x), 0) log(pj(x) − 1)} < ∞, j = 1, 2.

Let ϕ̄(x, t) = sup
06s6t

ϕ(x, s) and

Φ(x, t) =

∫ t

0

ϕ̄(x, r) dr

for x ∈ R
N and t > 0. Then Φ(x, ·) is convex and

(2.1)
1

2A3
Φ(x, t) 6 Φ(x, t) 6 A2Φ(x, t)
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for all x ∈ R
N and t > 0. In fact, the first inequality is seen as follows:

Φ(x, t) >

∫ t

t/2

ϕ̄(x, r) dr >
t

2
ϕ(x, t/2) >

1

2A3
Φ(x, t).

Corresponding to (Φ2) and (Φ4), we have by (2.1)

(2.2) (2A1A3)
−1 6 Φ(x, 1) 6 A1A2 and Φ(x, 2t) 6 2A3Φ(x, t)

for all x ∈ R
N and t > 0.

Given Φ(x, t) as above, the associated Musielak-Orlicz space

LΦ(RN ) =

{

f ∈ L1
loc(R

N );

∫

RN

Φ(y, |f(y)|) dy < ∞

}

is a Banach space with respect to the norm

‖f‖LΦ(RN ) = inf

{

λ > 0;

∫

RN

Φ(y, |f(y)|/λ) dy 6 1

}

(cf. [8]).

By (2.2), we have the following lemma (see [7]).

Lemma 2.2.

(2.3) ‖f‖LΦ(RN ) 6 2

(
∫

RN

Φ(x, |f(x)|) dx

)σ

with σ = log 2/ log(2A3), if ‖f‖LΦ(RN ) 6 1.

We shall also consider the following conditions:

(Φ5) or every γ > 0, there exists a constant Bγ > 1 such that

ϕ(x, t) 6 Bγϕ(y, t)

whenever |x − y| 6 γt−1/N and t > 1;

(Φ6) there exist a function g ∈ L1(RN ) and a constantB∞ > 1 such that 0 6 g(x) < 1

for all x ∈ R
N and

B−1
∞ Φ(x, t) 6 Φ(x′, t) 6 B∞Φ(x, t)

whenever |x′| > |x| and g(x) 6 t 6 1.

If Φ(x, t) satisfies (Φ5) (resp. (Φ6)), then so does Φ(x, t) with Bγ = 2A2A3Bγ in

place of Bγ (resp. B∞ = 2A2A3B∞ in place of B∞).
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Example 2.3. Let Φ(x, t) be as in Example 2.1. It satisfies (Φ5) if

(P2) p1(·) is log-Hölder continuous, namely

|p1(x) − p1(y)| 6
Cp

log(1/|x − y|)
for |x − y| 6

1

2

with a constant Cp > 0,

and

(Q2) q1(·) is log-log-Hölder continuous, namely

|q1(x) − q1(y)| 6
Cq

log(log(1/|x − y|))
for |x − y| 6 e−2

with a constant Cq > 0.

Φ(x, t) satisfies (Φ6) with g(x) = 1/(1 + |x|)N+1 if

(P3) p2(·) is log-Hölder continuous at ∞, namely

|p2(x) − p2(x
′)| 6

Cp,∞

log(e + |x|)
whenever |x′| > |x|

with a constant Cp,∞ > 0,

and

(Q3) q2(·) is log-log-Hölder continuous at ∞, namely

|q2(x) − q2(x
′)| 6

Cq,∞

log(e + log(e + |x|))
whenever |x′| > |x|

with a constant Cq,∞ > 0.

In fact, if 1/(1 + |x|)N+1 < t 6 1, then (1 + t)|p1(x)−p1(x
′)| 6 2p+

1 −1, (1 +

1/t)|p2(x)−p2(x
′)| 6 e(N+1)Cp,∞ , (log(e + t))|q1(x)−q1(x

′)| 6 (log(e + 1))q+
1 −q−

1 and

(log(e + 1/t))|q2(x)−q2(x′)| 6 C(N, Cq,∞) for |x′| > |x|.

3. The case of potential type

Throughout this paper, let C denote various positive constants independent of the

variables in question.

First, we recall the following classical result (see, e.g., Stein [9]).
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Lemma 3.1. Let 1 6 p < ∞ and {κt}t>0 be a potential-type approximate

identity. Then, κt ∗ f converges to f in Lp(RN ) for every f ∈ Lp(RN ).

We denote by B(x, r) the open ball centered at x ∈ R
N and with radius r > 0.

For a measurable set E, we denote by |E| the Lebesgue measure of E.

For a nonnegative f ∈ L1
loc(R

N ), x ∈ R
N and r > 0, let

I(f ; x, r) =
1

|B(x, r)|

∫

B(x,r)

f(y) dy

and

J(f ; x, r) =
1

|B(x, r)|

∫

B(x,r)

Φ(y, f(y)) dy

in this section.

The following lemmas are due to [5], [6].

Lemma 3.2 ([5, Lemma 2.1], [6, Lemma 3.1]). Suppose Φ(x, t) satisfies (Φ5).

Then there exists a constant C > 0 such that

Φ(x, I(f ; x, r)) 6 CJ(f ; x, r)

for all x ∈ R
N , r > 0 and for all nonnegative f ∈ L1

loc(R
N ) such that f(y) > 1 or

f(y) = 0 for each y ∈ R
N and ‖f‖LΦ(RN ) 6 1.

Lemma 3.3 ([5, Lemma 2.2], [6, Lemma 3.2]). Suppose Φ(x, t) satisfies (Φ6).

Then there exists a constant C > 0 such that

Φ(x, I(f ; x, r)) 6 C {J(f ; x, r) + g(x)}

for all x ∈ R
N , r > 0 and for all nonnegative f ∈ L1

loc(R
N ) such that g(y) 6 f(y) 6 1

or f(y) = 0 for each y ∈ R
N , where g is the function appearing in (Φ6).

By using Lemmas 3.2 and 3.3, we show the following theorem.

Theorem 3.4. Suppose Φ(x, t) satisfies (Φ5) and (Φ6). If {κt}t>0 is of potential-

type, then

‖κt ∗ f‖LΦ(RN ) 6 C‖κ̂‖L1(RN )‖f‖LΦ(RN )

for all t > 0 and f ∈ LΦ(RN ).

P r o o f. Suppose ‖κ̂‖L1(RN ) = 1 and let f be a nonnegative measurable function

on R
N such that ‖f‖LΦ(RN ) 6 1. Write

f = fχ{y∈RN : f(y)>1} + fχ{y∈RN : g(y)<f(y)<1} + fχ{y∈RN : f(y)6g(y)} = f1 + f2 + f3,

938



where χE denotes the characteristic function of a measurable set E ⊂ R
N and g is

the function appearing in (Φ6).

Since κ̂t is a radial function, we write κ̂t(r) for κ̂t(x) when |x| = r. First note that

|κt ∗ fj(x)| 6

∫

RN

κ̂t(|x − y|)fj(y) dy =

∫ ∞

0

I(fj ; x, r)|B(x, r)| d(−κ̂t(r)),

j = 1, 2, and
∫

RN

|B(x, r)| d(−κ̂t(r)) = ‖κ̂t‖L1(RN ) = 1,

so that Jensen’s inequality yields

Φ(x, |κt ∗ fj(x)|) 6

∫ ∞

0

Φ (x, I(fj ; x, r)) |B(x, r)| d(−κ̂t(r)),

j = 1, 2.

Hence, by Lemma 3.2

Φ(x, |κt ∗ f1(x)|) 6 C

∫ ∞

0

J(f1; x, r)|B(x, r)| d(−κ̂t(r)) 6 C(κ̂t ∗ h)(x),

where h(y) = Φ(y, f(y)). The usual Young inequality for convolution gives

∫

RN

Φ(x, |κt ∗ f1(x)|) dx 6 C

∫

RN

(κ̂t ∗ h)(x) dx

6 C‖κ̂t‖L1(RN )‖h‖L1(RN ) 6 C.

Similarly, noting that g ∈ L1(RN ) and applying Lemma 3.3, we derive the same

result for f2.

Finally, noting that |κt ∗ f3(x)| 6 ‖κt‖L1(RN ) 6 1, we obtain

∫

RN

Φ(x, |κt ∗ f3(x)|) dx 6 C

∫

RN

|κt ∗ f3(x)| dx

6 C‖κt‖L1(RN )‖g‖L1(RN ) 6 C.

Thus
∫

RN

Φ(x, |κt ∗ f(x)|) dx 6 C,

which implies the required assertion. �
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Theorem 3.5. Suppose Φ(x, t) satisfies (Φ5) and (Φ6). Let {κt}t>0 be a po-

tential-type approximate identity. Then κt ∗ f converges to f in LΦ(RN ):

lim
t→0

‖κt ∗ f − f‖LΦ(RN ) = 0

for every f ∈ LΦ(RN ).

P r o o f. Given ε > 0, we find a bounded function h in LΦ(RN ) with compact

support such that ‖f − h‖LΦ(RN ) < ε. By Theorem 3.4 we have

‖κt ∗ f − f‖LΦ(RN ) 6 ‖κt ∗ (f − h)‖LΦ(RN ) + ‖κt ∗ h − h‖LΦ(RN ) + ‖f − h‖LΦ(RN )

6 (C‖κ̂‖L1(RN ) + 1)ε + ‖κt ∗ h − h‖LΦ(RN ).

Since |κt ∗ h| 6 ‖h‖L∞(RN ), we have

∫

RN

Φ(x, |κt ∗ h(x) − h(x)| dx 6 C′

∫

RN

|κt ∗ h(x) − h(x)| dx → 0

as t → 0 by Lemma 3.1. (Here C′ depends on ‖h‖L∞(RN ).) Hence ‖κt∗h−h‖LΦ(RN ) →

0 as t → 0 by Lemma 2.2, so that

lim sup
t→0

‖κt ∗ f − f‖LΦ(RN ) 6 (C‖κ̂‖L1(RN ) + 1)ε,

which completes the proof. �

4. The case of compact support

We know the following result due to Zo [10]; see also [1, Theorem 2.2].

Lemma 4.1. Let 1 6 p < ∞, 1/p + 1/p′ = 1 and {κt}t>0 be an approximate

identity. Suppose that κ ∈ Lp′

(RN ) and has compact support. Then for every

f ∈ Lp(RN ), κt ∗ f converges to f pointwise almost everywhere as t → 0.

In this section, we take p0 > 1 as follows. Let P be the set of all p > 1 such that

t 7→ t−pΦ(x, t) is uniformly almost increasing, and set p̃ = supP . Note that 1 ∈ P

by (Φ3), so that p̃ > 1 if p̃ 6∈ P . Let p0 = p̃ if p̃ ∈ P and 1 < p0 < p̃ otherwise.

Example 4.2. For Φ(x, t) in Example 2.3, p̃ = min{p−1 , p−2 }, so that p0 = 1 if

p−1 = 1 or p−2 = 1; and 1 < p0 6 min{p−1 , p−2 } if p
−
j > 1, j = 1, 2 (cf. [4]).
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Since t−p0Φ(x, t) is uniformly almost increasing in t, there exists a constant A′
2 > 1

such that

t−p0Φ(x, t) 6 A′
2s

−p0Φ(x, s) for all x ∈ R
N whenever 0 6 t < s.

Set

Φ0(x, t) = Φ(x, t)1/p0 .

Then Φ0(x, t) also satisfies all the conditions (Φj), j = 1, 2, . . . , 6. In fact, it trivially

satisfies (Φj) for j = 1, 2, 4, 5, 6 with the same g for (Φ6). Since

Φ0(x, t) = tϕ0(x, t) with ϕ0(x, t) = [t−p0Φ(x, t)]1/p0 ,

Φ0(x, t) satisfies (Φ3) with A2 replaced by A4 = (A′
2)

1/p0 .

Lemma 4.3. Suppose Φ(x, t) satisfies (Φ5). Let κ have compact support con-

tained in B(0, R) and let ‖κ‖L(p0)′ (RN ) 6 1. Then there exists a constant C > 0,

which depends on R, such that

Φ0(x, |κt ∗ f(x)|) 6 C

∫

RN

|κt(x − y)|Φ0(y, f(y)) dy

for all x ∈ R
N , 0 < t 6 1 and for all nonnegative f ∈ L1

loc(R
N ) such that f(y) > 1

or f(y) = 0 for each y ∈ R
N and ‖f‖LΦ(RN ) 6 1.

P r o o f. Given f as in the statement of the lemma, x ∈ R
N and 0 < t 6 1, set

F = |κt ∗ f(x)| and G =

∫

RN

|κt(x − y)|Φ0(y, f(y)) dy.

Note that ‖f‖LΦ(RN ) 6 1 implies

G 6 ‖κt‖L(p0)′ (RN )

(
∫

RN

Φ(y, f(y)) dy

)1/p0

6 t−N/p0(2A3)
1/p0 6 (2A3)

1/p0t−N

by Hölder’s inequality and (2.1).

By (Φ2), Φ0(y, f(y)) > (A1A4)
−1f(y), since f(y) > 1 or f(y) = 0. Hence F 6

A1A4G. Thus, if G 6 1, then

Φ0(x, F ) 6 (A1A4G)A4(A1A4)
(1−p0)/p0ϕ(x, A1A4)

1/p0 6 CG.

Next, let G > 1. Since Φ0(x, t) → ∞ as t → ∞, there exists K > 1 such that

Φ0(x, K) = Φ0(x, 1)G.
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Then K 6 A4G, since Φ0(x, K) > A−1
4 KΦ0(x, 1). With this K, we have

F 6 K

∫

RN

|κt(x − y)| dy + A4

∫

RN

|κt(x − y)|f(y)
ϕ0(y, f(y))

ϕ0(y, K)
dy.

Since

1 6 K 6 A4G 6 A4(2A3)
1/p0t−N 6 C(tR)−N ,

there is β > 0, independent of f , x, t, such that

ϕ0(x, K) 6 βϕ0(y, K) for all y ∈ B(x, tR)

by (Φ5). Thus, we have

F 6 K‖κt‖L1(RN ) +
A4β

ϕ0(x, K)

∫

RN

|κt(x − y)|f(y)ϕ0(y, f(y)) dy

= K‖κ‖L1(RN ) + A4β
G

ϕ0(x, K)

= K
(

‖κ‖L1(RN ) +
A4β

ϕ0(x, 1)

)

6 K
(

‖κ‖L1(RN ) + A
1/p0

1 A4β
)

6 CK.

Therefore by (Φ3), (Φ4), the choice of K and (Φ2),

Φ0(x, F ) 6 CΦ0(x, K) 6 CG

with constants C > 0 independent of f , x, t, as required. �

Lemma 4.4. Suppose Φ(x, t) satisfies (Φ6). Let M > 1 and assume that

‖κ‖L1(RN ) 6 M . Then there exists a constant C > 0, depending on M , such that

Φ(x, |κt ∗ f(x)|) 6 C

{
∫

RN

|κt(x − y)|Φ(y, f(y)) dy + g(x)

}

for all x ∈ R
N , t > 0 and for all nonnegative f ∈ L1

loc(R
N ) such that g(y) 6 f(y) 6 1

or f(y) = 0 for each y ∈ R
N , where g is the function appearing in (Φ6).

P r o o f. Let f be as in the statement of the lemma, x ∈ R
N and t > 0. By

(Φ4), there is a constant cM > 1 such that Φ(x, Mt) 6 cMΦ(x, t) for all x ∈ R
N and

t > 0. By Jensen’s inequality, we have

Φ(x, |κt ∗ f(x)|) 6 cMΦ

(

x,

∫

RN

(|κt(x − y)|/M)f(y) dy

)

6 (cM/M)

∫

RN

|κt(x − y)|Φ(x, f(y)) dy.
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If |x| > |y|, then Φ(x, f(y)) 6 B∞Φ(y, f(y)) by (Φ6).

If |x| < |y| and g(x) < f(y), then Φ(x, f(y)) 6 B∞Φ(y, f(y)) by (Φ6) again.

If |x| < |y| and g(x) > f(y), then

Φ(x, f(y)) 6 Φ(x, g(x)) 6 g(x)Φ(x, 1) 6 A1A2g(x)

by (2.2).

Hence,

Φ(x, f(y)) 6 C{Φ(y, f(y)) + g(x)}

in any case. Therefore, we obtain the required inequality. �

Theorem 4.5. Suppose Φ(x, t) satisfies (Φ5) and (Φ6). Suppose that κ ∈

L(p0)
′

(RN ) and has compact support in B(0, R). Then

‖κt ∗ f‖LΦ(RN ) 6 C‖κ‖L(p0)′ (RN )‖f‖LΦ(RN )

for all 0 < t 6 1 and f ∈ LΦ(RN ), where C > 0 depends on R.

P r o o f. Let f be a nonnegative measurable function on R
N such that

‖f‖LΦ(RN ) 6 1 and assume that ‖κ‖L(p0)′ (RN ) = 1. Note that ‖κ‖L1(RN ) 6

|B(0, R)|1/p0 by Hölder’s inequality.

Write

f = fχ{y∈RN : f(y)>1} + fχ{y∈RN : g(y)<f(y)<1} + fχ{y∈RN : f(y)6g(y)} = f1 + f2 + f3,

where g is the function appearing in (Φ6). We have by (2.1) and Lemma 4.3,

Φ(x, |κt ∗ f1(x)|) 6 A2Φ0(x, |κt ∗ f1(x)|)p0 6 C(|κt| ∗ h(x))p0 ,

where h(y) = Φ(y, f(y))1/p0 . Since ‖h‖p0

Lp0(RN )
6 2A3, the usual Young’s inequality

for convolution gives

∫

RN

Φ(x, |κt ∗ f1(x)|) dx 6 C

∫

RN

(|κt| ∗ h(x))p0 dx

6 C
(

‖κt‖L1(RN )‖h‖Lp0(RN )

)p0
6 C.

Similarly, applying Lemma 4.4 with M = |B(0, R)|1/p0 and noting that g ∈

L1(RN ), we derive the same result for f2.

Finally, since |κt ∗ f3(x)| 6 ‖κt‖L1(RN ) 6 M , we obtain

∫

RN

Φ(x, |κt ∗ f3(x)|) dx 6 C

∫

RN

|κt ∗ f3(x)| dx

6 C‖κt‖L1(RN )‖g‖L1(RN ) 6 C.
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Thus, we have shown that

∫

RN

Φ(x, |κt ∗ f(x)|) dx 6 C,

which implies the required result. �

Theorem 4.6. Suppose Φ(x, t) satisfies (Φ5) and (Φ6). Let {κt}t>0 be an ap-

proximate identity such that κ ∈ L(p0)
′

(RN ) and has compact support. Then κt ∗ f

converges to f in LΦ(RN ):

lim
t→0

‖κt ∗ f − f‖LΦ(RN ) = 0

for every f ∈ LΦ(RN ).

P r o o f. Let f ∈ LΦ(RN ). Given ε > 0, choose a bounded function h with

compact support such that ‖f − h‖LΦ(RN ) < ε. As in the proof of Theorem 3.5,

using Theorem 4.5 this time, we have

‖κt ∗ f − f‖LΦ(RN ) 6 (C‖κ‖L(p0)′ (RN ) + 1)ε + ‖κt ∗ h − h‖LΦ(RN ).

Obviously, h ∈ Lp0(RN ). Hence by Lemma 4.1, κt ∗h → h almost everywhere in RN ,

and hence

Φ(x, |κt ∗ h(x) − h(x)|) → 0

almost everywhere in R
N . Since {κt ∗ h − h} is uniformly bounded and there is

a compact set S containing all the supports of κt ∗ h, {Φ(x, |κt ∗ h(x) − h(x)|)} is

uniformly bounded and S contains all the supports of Φ(x, |κt ∗h(x)−h(x)|). Hence

the Lebesgue convergence theorem implies

∫

RN

Φ(x, |κt ∗ h(x) − h(x)|) dx → 0

as t → 0. Then, by Lemma 2.2, we see that ‖κt ∗h−h‖LΦ(RN ) → 0 as t → 0, so that

lim sup
t→0

‖κt ∗ f − f‖LΦ(RN ) 6 (C‖κ‖L(p0)′ (RN ) + 1)ε,

which completes the proof. �

944



5. Young type inequality

Lemma 5.1. Suppose Φ(x, t) satisfies (Φ6). Let κ ∈ L1(RN ) ∩ L∞(RN ) with

‖κ‖L1(RN ) 6 1. For f ∈ L1
loc(R

N ), set

I(f ; x) =

∫

RN\B(0,|x|/2)

|κ(x − y)f(y)| dy

and

J(f ; x) =

∫

RN

|κ(x − y)|Φ(y, |f(y)|) dy.

Then there exists a constant C > 0 (depending on ‖κ‖L∞(RN )) such that

Φ(x, I(f ; x)) 6 C {J(f ; x) + g(x/2)}

for all x ∈ R
N and f ∈ LΦ(RN ) with ‖f‖LΦ(RN ) 6 1, where g is the function

appearing in (Φ6).

P r o o f. Let k > 0. Since t 7→ Φ(x, t)/t is nondecreasing,

I(f ; x) 6 k

∫

RN

|κ(x − y)| dy + k

∫

RN\B(0,|x|/2)

|κ(x − y)|Φ(y, |f(y)|)

Φ(y, k)
dy.

If g(x/2) 6 k 6 1, then Φ(x, k) 6 CΦ(y, k) for |y| > |x|/2 by (Φ6). Hence

(5.1) I(f ; x) 6 k
(

1 +
CJ(f ; x)

Φ(x, k)

)

whenever g(x/2) 6 k 6 1.

Since J(f ; x) 6 ‖κ‖L∞(RN ), there exists Kx ∈ [0, 1] such that

Φ(x, Kx) =
J(f ; x)

‖κ‖L∞(RN )

Φ(x, 1).

If Kx > g(x/2), then taking k = Kx in (5.1), we have

I(f ; x) 6 Kx

(

1 +
C‖κ‖L∞(RN )

Φ(x, 1)

)

6 CKx,

so that

Φ(x, I(f ; x)) 6 CΦ(x, Kx) 6 CJ(f ; x).

If Kx < g(x/2), then

J(f ; x) = ‖κ‖L∞(RN )
Φ(x, Kx)

Φ(x, 1)
6 CΦ(x, g(x/2)).

Hence, taking k = g(x/2) in (5.1), we have I(f ; x) 6 Cg(x/2), so that

Φ(x, I(f ; x)) 6 CΦ(x, g(x/2)) 6 Cg(x/2).

Hence, we have the assertion of the lemma. �
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Here, we recall the following result on the boundedness of the maximal operator

M on LΦ(RN ) (see [6, Corollary 4.4]):

Lemma 5.2. Suppose Φ(x, t) satisfies (Φ5), (Φ6) and the other condition

(Φ3∗) t 7→ t−ε0ϕ(x, t) is uniformly almost increasing on (0,∞) for some ε0 > 0.

Then the maximal operator M is bounded from LΦ(RN ) into itself, namely

‖Mf‖LΦ(RN ) 6 C‖f‖LΦ(RN )

for all f ∈ LΦ(RN ).

Theorem 5.3. Suppose Φ(x, t) satisfies (Φ5), (Φ6) and (Φ3∗). Let p0 = 1 + ε0

(> 1) and R > 0. Assume that κ ∈ L1(RN ) ∩ L(p0)
′

(B(0, R)) and |κ(x)| 6 cκ|x|
−N

for |x| > R. Then there is a constant C > 0 such that

‖κ ∗ f‖LΦ(RN ) 6 C(‖κ‖L1(RN ) + ‖κ‖L(p0)′ (B(0,R)))‖f‖LΦ(RN )

for all f ∈ LΦ(RN ).

P r o o f. Let f ∈ LΦ(RN ) and f > 0. Assume that ‖f‖LΦ(RN ) 6 1 and

‖κ‖L1(RN ) + ‖κ‖L(p0)′ (B(0,R)) 6 1.

Let κ0 = κχB(0,R) and κ∞ = κχRN\B(0,R).

By Theorem 4.5,

‖κ0 ∗ f‖LΦ(RN ) 6 C.

Hence it is enough to show that

(5.2)

∫

RN

Φ(x, |κ∞| ∗ f(x)) dx 6 C.

Write

|κ∞| ∗ f(x) =

∫

B(0,|x|/2)

|κ∞(x − y)|f(y) dy +

∫

RN\B(0,|x|/2)

|κ∞(x − y)|f(y) dy

= I1(x) + I2(x).

Since |κ∞(x − y)| 6 cκ|x − y|−N and |x − y| > |x|/2 for |y| 6 |x|/2,

I1(x) 6 2Ncκ|x|
−N

∫

B(0,|x|/2)

f(y) dy 6 2Ncκ|x|
−N

∫

B(x,3|x|/2)

f(y) dy 6 CMf(x).
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Hence,
∫

RN

Φ(x, I1(x)) dx 6 C

by Lemma 5.2.

On the other hand, by Lemma 5.1,

Φ(x, I2(x)) 6 C{|κ∞| ∗ h(x) + g(x/2)},

where h(y) = Φ(y, f(y)). Since

‖|κ∞| ∗ h‖L1(RN ) 6 ‖|κ∞|‖L1(RN )‖h‖L1(RN ) 6 1

and g ∈ L1(RN ), it follows that

∫

RN

Φ(x, I2(x)) dx 6 C.

Hence we obtain (5.2), and the proof is complete. �
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