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STABILITY FOR NON-AUTONOMOUS LINEAR EVOLUTION

EQUATIONS WITH Lp-MAXIMAL REGULARITY
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(Received May 31, 2012)

Abstract. We study stability and integrability of linear non-autonomous evolutionary
Cauchy-problem

(P)

{

u̇(t) +A(t)u(t) = f(t) t-a.e. on [0, τ ],

u(0) = 0,

where A : [0, τ ] → L (X, D) is a bounded and strongly measurable function and X, D

are Banach spaces such that D →֒

d
X. Our main concern is to characterize Lp-maximal

regularity and to give an explicit approximation of the problem (P).

Keywords: maximal regularity; on-autonomous evolution equation; stability for linear
evolution equation; integrability for linear evolution equation

MSC 2010 : 35K90, 47D06

1. Introduction

We study Lp-maximal regularity for non-autonomous evolutionary linear Cauchy-

problems.

Let (X, ‖ · ‖) and (D, ‖ · ‖D) be two Banach spaces such that D is continuously

and densely embedded in X . Let A : [0, τ ] → L (X, D) be a bounded and strongly

measurable function. Let p ∈ (1,∞). We say that A has Lp-maximal regularity on

the bounded real interval [0, τ ] (and we write A ∈ MRp(0, τ)) if for all subintervals

[a, b] of [0, τ ] and for every f ∈ Lp(a, b; X) there exists a unique u ∈ MRp(a, b) :=

This work was financially supported by the Deutscher Akademischer Austauschdienst
(DAAD).
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Lp(a, b; D) ∩ W 1,p(a, b; X) such that

CP(a, b)

{

u̇(t) + A(t)u(t) = f(t) t-a.e. on [a, b],

u(a) = 0.

In particular u̇ and Au have the same regularity as the inhomogeneity f . This

property is the reason for the name maximal regularity. Recall that W 1,p(a, b; X) ⊂

C([a, b]; X), so the condition u(a) = 0 above makes sense.

For the autonomous case, that is if A(·) = A is independent of t ∈ [0, τ ],

Lp-maximal regularity is independent of the bounded interval [a, b] and if A ∈

MRp(0, τ) for some p ∈ (1,∞) then A ∈ MRp(0, τ) for all p ∈ (1,∞) [22], [8].

Thus we denote by MR the set of all operators A ∈ L (D, X) having Lp-maximal

regularity. It is also well known that if A has Lp-maximal regularity then A is closed

as unbounded operator on X [6] and −A generates a holomorphic C0-semigroup on

X [12] and [17]. De Simon [10] showed that the converse is true if X is a Hilbert

space. However, the restriction to Hilbert spaces is essential by a result of Kalton

and Lancien [16].

Maximal regularity has been studied by many authors in recent years. The reader

may consults [1], [2], [4], [5], [6], [11], [14], [15], [19], [20] and the references therein

for different sufficient conditions for Lp-maximal regularity in the non-autonomous

case and for applications.

It is known [7, Lemma 1.2] that if A ∈ MR then there exists a constantM(A) > 0

such that

(1.1) ‖(̺ + A + B)−1‖L (Lp(a,b;X),MRp(a,b)) 6 M(A) and

‖(̺ + A + B)−1‖L (Lp(a,b;X)) 6
M(A)

1 + ̺

for all intervals [a, b] ⊂ [0, τ ] and all ̺ > 0, where B is the distributional deriva-

tive with domain D(B) = {u ∈ W 1,p(a, b; X), u(a) = 0} and A the multiplication

operator with domain Lp(a, b; D) defined by (A f)(s) = Af(s) a.e.

In the case where A is not constant, we obtain a comparable result. Indeed, if

A ∈ MRp(0, τ), then we show in Proposition 2.2 below that ̺ + A ∈ MRp(0, τ) for

all ̺ ∈ C and there exists M(A) > 0 such that

̺1/p‖(̺ + A + B)−1‖L (Lp(a,b;X)) 6 M(A) and

‖(̺ + A + B)−1‖L (Lp(a,b;X),Lp(a,b;D)) 6 M(A)

for all intervals [a, b] ⊂ [0, τ ] and all ̺ > 0.
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In Lemma 4.1 we will see that the constant M(A(t)) in (1.1) corresponding to

each A(t) ∈ MR does not depend on t provided that A is relatively continuous.

The notion of relative continuity was introduced recently in [7] by Arendt, Chill,

Fornaro and Poupaud, who proved in [7, Theorem 2.7] Lp-maximal regularity as-

suming only that A is bounded, strongly measurable and relatively continuous, and

that A(t) ∈ MR for every t ∈ [0, τ ].

Theorem 2.7 in [7] establishes existence and uniqueness of a solution of the problem

CP(0, τ). But at least from a theoretical point of view, it is very important to exhibit

an explicit approximation of this solution. Our goal is to characterize Lp-maximal

regularity of CP(0, τ). In particular, our approach gives an explicit approximation

of the problem CP(0, τ), which may have some interest.

Let Λ = λ0 < λ1, . . . , < λn+1 = τ be a subdivision of [0, τ ] and AΛ : [0, τ ] →

L (D, X) be given by

t 7→ AΛ(t) :=

{

Ak for λk 6 t < λk+1,

An for t = τ,

where

Akx :=
1

λk+1 − λk

∫ λk+1

λk

A(r)xdr (x ∈ D, k = 0, 1, . . . , n).

The function A is said to be relatively p-approximable if for all ε > 0 there exist

δ > 0, η > 0 such that for all f ∈ Lp(0, τ ; D) and all subdivisions Λ of [0, τ ] of

modulus |Λ| := max
j=0,1,...,n

(λj+1 − λj) 6 δ we have

‖AΛf − A f‖Lp(0,τ ;D) 6 ε‖f‖Lp(0,τ ;D) + η‖f‖Lp(0,τ ;X).

Assume that A is relatively p-approximable. We show (see Proposition 3.4) that

if A ∈ MRp(0, τ) then there exists δ0 > 0 such that AΛ ∈ MRp(0, τ) for all

subdivisions Λ of [0, τ ] such that |Λ| 6 δ0. This implies in particular that the means

Ak are inMR, k = 0, 1, . . . , n. Moreover, if for each [a, b] ⊂ [0, τ ] the unique solution

uΛ ∈ MRp(a, b) (see Section 3) of

PΛ(a, b)

{

u̇Λ(t) + AΛ(t)uΛ(t) = f(t) t-a.e. on [a, b],

uΛ(0) = 0

converges in MRp(a, b) as |Λ| → 0 then A ∈ MRp(0, τ). In this case u := lim
|Λ|→0

uΛ

is the unique solution of CP(a, b) belonging to MRp(a, b) (see Theorem 3.5). Our

main result shows that this convergence holds if A is relatively continuous. This

gives an alternative proof of Theorem 2.7 in [7]. We prove this result in Theorem 4.5
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by a more general approach based on the stability of the problem CP(0, τ). An

application to a non-autonomous diffusion equation is given in Section 5.

2. Preliminaries

Throughout this paper (D, ‖ · ‖D) and (X, ‖ · ‖) are two Banach spaces such that

D is continuously and densely embedded into X . We write D →֒
d

X . Let A : [0, τ ] →

L (D, X) be a bounded, strongly Bochner measurable function. Let p ∈ (1,∞) be

fixed throughout this section.

Definition 2.1. We say that A has Lp-maximal regularity on the bounded in-

terval [0, τ ], and we write A ∈ MRp(0, τ), if for all intervals [a, b] ⊂ [0, τ ] and every

f ∈ Lp(a, b; X) there exists a unique function u belonging to the maximal regularity

space MRp(a, b) := Lp(a, b; D) ∩ W 1,p(a, b; X) such that

CP(a, b)

{

u̇(t) + A(t)u(t) = f(t) t-a.e. on [a, b],

u(a) = 0.

The space MRp(a, b) is a Banach space for the norm

‖u‖MR := ‖u‖Lp(a,b;D) + ‖u‖W 1,p(a,b;X).

Let MR0(a, b) be the closed subspace of MRp(a, b) consisting of all u satisfying

u(a) = 0.

It is useful to reformulate the property of Lp-maximal regularity in terms of sum

methods, as initiated by Da Prato and Grisvard [9]. For this, consider for each

interval [a, b] ⊂ [0, τ ] the unbounded linear operators A = Aa,b and B = Ba,b with

domains D(A ) = Lp(a, b; D) and D(B) = {u ∈ W 1,p(a, b; X), u(a) = 0} defined by

(A f)(t) = A(t)f(t) and (Bu)(t) = u̇(t) for almost every t ∈ [a, b].

In fact, if C := sup
t∈[0,τ ]

‖A(t)‖L (D,X), it is easy to see that A f is Bochner measurable

and

‖(A f)(t)‖ 6 C‖f(t)‖D t-a.e. on [a, b],

for all f ∈ Lp(a, b; D). It follows that ‖A ‖L (Lp(a,b;D),Lp(a,b;X)) 6 C.

Thus A has the property of Lp-maximal regularity if and only if for all [a, b] ⊂ [0, τ ]

the unbounded operator A + B with domain D(A + B) = MR0(a, b) is invertible.

It follows that if A ∈ MRp(0, τ) then for each subinterval [a, b] of [0, τ ] and f ∈

Lp(a, b; X) the problem CP(a, b) has a unique solution u ∈ MRp(a, b) and

(2.1) ‖u‖MR 6 c‖f‖Lp(a,b;X)
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for some constant c > 0 which is independent of f and of the interval [a, b]. We

do not need to assume here that the operators A(t) are closed. Observe that D is

a Banach space and A : [0, τ ] → L (D, X) is bounded and strongly measurable. By

unique solvability of the problem CP(a, b), for every interval [a, b] ⊂ [0, τ ] and every

f ∈ Lp(a, b; X), the operator (Aa,b + Ba,b)
−1 can be seen as the restriction of the

operator (A0,τ + B0,τ )−1 to the space of functions in Lp(0, τ ; X) which vanish on

[0, a]. This shows, in particular, that the constant c in (2.1) does not depend on the

interval [a, b] ⊂ [0, τ ].

The following proposition is used in the next sections.

Proposition 2.2. Assume that A ∈ MRp(0, τ). Then the following holds.

(i) A ∈ MRp(0, τ) if and only if ̺ + A ∈ MRp(0, τ) for some (or all) ̺ ∈ C.

(ii) There exists M(A) > 0 such that

̺1/p‖(̺ + A + B)−1‖L (Lp(a,b;X)) 6 M(A) and

‖(̺ + A + B)−1‖L (Lp(a,b;X),Lp(a,b;D)) 6 M(A)

for all intervals [a, b] ⊂ [0, τ ] and all ̺ > 0.

P r o o f. (i) Let f ∈ Lp(0, τ ; X), ̺ ∈ C and g(t) := e̺tf(t). Let p∗ > 1 be such

that 1/p + 1/p∗ = 1. Then u satisfies

(2.2) u̇ + A(t)u + ̺u = f, a.e. on [0, τ ], u(0) = 0

if and only if v(t) := e̺tu(t) satisfies

(2.3) v̇ + A(t)v = g, a.e. on [0, τ ], v(0) = 0

which is assumed to have a unique solution in MRp(0, τ). Thus (i) holds.

(ii) It suffices to prove the estimates in (ii) for [a, b] = [0, τ ]. From the proof of (i)

we have that u(t) = e−̺tv(t) = e−̺t
∫ t

0 v̇(r) dr, where u and v are the solution of

(2.2) and (2.3), respectively. Thus, for all ̺ > 0

‖u(t)‖ 6 e−̺tτ1/p∗

‖v̇‖Lp(0,t,X) 6 e−̺tτ1/p∗

‖v‖MR(0,t) 6 cτ1/p∗

e−̺t‖g‖Lp(0,t,X).

Then

‖u‖p
Lp(0,τ ;X) 6 cpτp/p∗

∫ τ

0

∫ t

0

e−p̺(t−r)‖f(r)‖p dr dt = cpτp/p∗

‖e−p̺‖1‖f‖
p
Lp(0,τ ;X)

6 cp τp/p∗

p̺
‖f‖p

Lp(0,τ ;X).
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The first inequality follows. To prove the second inequality we integrate by parts.

Since ‖u(t)‖D = e−̺t‖v(t)‖D, then

‖u‖p
Lp(0,τ ;D) =

∫ τ

0

e−̺pt‖v(t)‖p
D dt

= e−̺pτ

∫ τ

0

‖v(t)‖p
D dt + ̺p

∫ τ

0

e−̺pt

∫ t

0

‖v(r)‖p
D dr dt.

It follows that

‖u‖p
Lp(0,τ ;D) 6 cp(e−̺pτ‖g‖p

Lp(0,τ,X) + ̺p

∫ τ

0

∫ t

0

e−̺p(t−r)‖f(r)‖p dr dt)

6 cp(1 + ̺p/̺p)‖f‖p
Lp(0,τ ;X) = 2cp‖f‖p

Lp(0,τ ;X).

Setting M(A) := 21/pc(1 + τ1/p∗

/p), the proof is complete. �

We may also consider the initial value problems

CP(a, b, x)

{

u̇(t) + A(t)u(t) = f(t) t-a.e. on [a, b],

u(a) = x ∈ X.

Assume that A ∈ MRp(0, τ). Then for all 0 6 a 6 b 6 τ the problem CP(a, b, x)

has a unique solution in MRp(a, b) for all f ∈ Lp(a, b; X) and for all x in the trace

space

Tr = {u(a), u ∈ MRp(a, b)}.

The trace space Tr is a Banach space with the norm ‖x‖Tr := inf{‖u‖MR :

u(a) = x}. Note that the trace space does not depend on the interval [a, b] and

does not depend on the choice of the point where the functions u ∈ MRp(a, b) are

evaluated. This means that for every τ ′ > 0 and t ∈ [0, τ ′]

Tr = {u(t) : u ∈ MR(0, τ ′)}.

Note that Tr is isomorphic to the real interpolation space (X, D)1/p∗,p, where 1/p∗+

1/p = 1 (see [18], Chapter 1 for more details). Moreover,

MRp(0, τ) →֒
d

C([0, τ ]; Tr).

The two following lemmas will be used in the sequel.
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Lemma 2.3. Let An : [0, τ ] → L (D, X) be a sequence of strongly measurable

and bounded functions such that ‖An(t)x‖ 6 c‖x‖D for all n ∈ N, x ∈ D and t-a.e.

for some constant c > 0. Assume that for all x ∈ D we have An(t)x → A(t)x

t-a.e. on [0, τ ] as n → ∞. Then An(·)wn(·) → A(·)w(·) in Lp(0, τ ; X) as n → ∞ if

wn ∈ Lp(0, τ ; D) are such that wn → w in Lp(0, τ ; D).

P r o o f. Let An : [0, τ ] → L (D, X) (n = 0, 1, 2, . . .) be strongly measurable

and bounded with ‖An(t)x‖ 6 c‖x‖D (x ∈ D, n ∈ N). Let x ∈ D and let Ω

be a measurable subset of [0, τ ]. We set w = x ⊗ 1Ω. Then ‖Anw − A w‖p
p =

∫

Ω ‖An(t)x − A(t)x‖p dt → 0 as n → ∞ by Lebesgue’s Theorem. It follows that

‖Anw − A w‖p as n → ∞ for all ω ∈ Lp(0, τ ; D). Let now (ωn)n∈N ⊂ Lp(0, τ ; D) be

such that wn → w in Lp(0, τ ; D). Then

‖Anωn − A ω‖p 6 c‖ωn − ω‖p + ‖Anω − A ω‖p

and the statement follows. �

Lemma 2.4. Let A : [0, τ ] → L (D, X) be a bounded and strongly Bochner

measurable function. Assume that there exists a sequence An : [0, τ ] → L (D, X),

n ∈ N, of strongly measurable functions such that

(i) An ∈ MRp(0, τ) for all n ∈ N,

(ii) for each x ∈ D one has ‖An(t)x − A(t)x‖ → 0 as n → ∞ a.e.,

(iii) sup
n

‖An(t)x‖ 6 c‖x‖D a.e. on [0, τ ] for some constant c > 0 and all x ∈ D.

Assume that for each [a, b] ⊂ [0, τ ] and for each f ∈ Lp(a, b; X) the unique solution

un in MRp(a, b) of

u̇n(t) + An(t)un(t) = f(t) t-a.e. on [a, b], un(a) = 0

converges in MRp(a, b) as n → ∞. Then A ∈ MRp(0, τ). Moreover, for each

[a, b] ⊂ [0, τ ] the limit u := lim
n→∞

un is the unique solution of the problem CP(a, b).

P r o o f. Let [a, b] ⊂ [0, τ ] and f ∈ Lp(a, b; X).

E x i s t e n c e : Let un be the unique solution in MRp(a, b) of

u̇n(t) + An(t)un(t) = f(t) t-a.e. on [a, b], un(a) = 0.

Let u ∈ MRp(a, b) such that un → u in MRp(a, b) as n → ∞. Hence u̇n → u̇ and

by Lemma 2.3, Anun → Au in Lp(a, b; X) as n → ∞. It follows that

(2.4) u̇(t) + A(t)u(t) = f(t) t-a.e. on [a, b], u(a) = 0.
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Un i q u e n e s s : Since (An + B)−1f = un converges in MRp(a, b) as n → ∞ to

some solution u of (2.4), it follows from the principle of uniform boundedness that

M := sup
n>0

‖(An + B)−1‖L (Lp(a,b;X),MRp(a,b)) < ∞.

Let v ∈ MRp(a, b) be such that

v̇(t) + A(t)v(t) = 0 t-a.e. on [a, b], v(a) = 0.

Since v = (An + B)−1(An + B)v, then ‖v‖MR 6 M‖(An + B)v‖Lp(a,b;X). Letting

n → ∞ and using Lemma 2.3 we obtain v = 0. �

3. Integrability

Let A : [0, τ ] → L (D, X) be strongly Bochner measurable. We want to charac-

terize Lp-maximal regularity under some additional regularity assumptions on A.

If A ∈ MRp(0, τ) is independent of t, the problem CP(a, b) being an autonomous

Cauchy problem, then −A seen as an unbounded operator on X with domain D

generates an analytic C0-semigroup (T (s))s>0 on X [6]. Hence A ∈ MRp(0, τ) if

and only if for every f ∈ Lp(0, τ ; X) the function

u(t) :=

∫ t

0

T (t − r)f(r) dr, 0 6 t 6 τ

belongs to MRp(0, τ) and is the unique solution of the problem CP(0, τ).

The case when A is a step function is also easy to understand. Let Λ = λ0 < λ1 <

. . . < λn+1 be a subdivision of [0, τ ]. Consider Ak ∈ L (D, X) for k = 0, 1, . . . , n and

let A be given by A(t) = AΛ(t) := Ak for λk 6 t < λk+1 and A(τ) = AΛ(τ) := An.

Choosing f with support in [λk, λk+1), we obtain that L
p-maximal regularity of each

Ak is a necessary condition on A to have Lp-maximal regularity. This condition is

also sufficient. In fact, assume that each Ak ∈ MR and let (Tk(s))s>0 denote the

C0-semigroup on X generated by −Ak (with domain D) for k = 0, 1, . . . , n. For each

interval [a, b] ⊂ [0, τ ] such that λm−1 6 a < λm < . . . < λl−1 6 b < λl we define the

operators PΛ(a, b) ∈ L (X) by

(3.1) PΛ(a, b) = Tl(b − λl−1)Tl−1(λl−1 − λl−2) . . . Tm+1(λm+1 − λm)Tm(λm − a),

and for λl−1 6 a 6 b < λl by

(3.2) PΛ(a, b) = Tl(b − a).
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It is easy to see that (a, b) 7→ PΛ(a, b) is strongly continuous on X for 0 6 a 6 b 6 τ .

Moreover, for every f ∈ Lp(a, b; X) the function

(3.3) uΛ(t) :=

∫ t

a

PΛ(r, t)f(r) dr

belongs to MRp(a, b) and is the unique solution of problem

CPΛ(a, b)

{

v̇(t) + AΛ(t)v(t) = f(t) t-a.e. on [a, b],

v(a) = 0.

Note also that, for all x ∈ Tr and f ∈ Lp(a, b, X) the function vΛ(t) = PΛ(a, t)x +
∫ t

a
PΛ(r, t)f(r) dr belongs to MRp(a, b) and is the unique solution of the initial value

problem

CPΛ(a, b, x)

{

v̇(t) + AΛ(t)v(t) = f(t) t-a.e. on [a, b],

v(a) = x.

The product given by (3.1)–(3.2), and also the existence of a limit of this product

as |Λ| converges to 0 uniformly on [a, b] ⊂ [0, T ], was studied in our work [13]. This

leads to a theory of integral product, comparable to that of the classical Riemann

integral. The notion of product integral has been introduced by Vito Volterra at the

end of the 19th century. We refer to Antonín Slavík [21] and the reference therein for

a discussion of the work of V. Volterra and for more details on product integration

theory.

Consider now the general case whereA : [0, τ ] → L (D, X) is bounded and strongly

measurable. We want to approximate A by step functions as follows:

Let Λ := λ0 < λ1 < . . . < λn+1 be a subdivision of [0, τ ] and AΛ : [0, τ ] →

L (D, X) be defined by AΛ(t) := Ak for λk 6 t < λk+1 and AΛ(τ) := An, where Ak

is given by

(3.4) Akx :=
1

λk+1 − λk

∫ λk+1

λk

A(r)xdr (x ∈ D, k = 0, 1, . . . , n).

The following lemma says that AΛ converges strongly and almost everywhere to A

as |Λ| → 0.

Lemma 3.1. Let A : [0, τ ] → L (D, X) be bounded and strongly measurable.

Then for all x ∈ D we have AΛ(t)x → A(t)x in X as |Λ| → 0 t-a.e.

P r o o f. Let C > 0 be such that ‖A(t)x‖X 6 C‖x‖D for all x ∈ D and for

almost every t ∈ [0, τ ]. Let Λ be any subdivision of [0, τ ] and Ak be given by (3.4)
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for k = 0, 1, . . . n. We have ‖Akx‖X 6 C‖x‖D for all x ∈ D. Let t be any Lebesgue

point of A(·)x. Let k ∈ {0, 1, . . . , n} be such that t ∈ [λk, λk+1). Then

AΛ(t)x − A(t)x =
1

λk+1 − λk

∫ λk+1

λk

(A(r)x − A(t)x) dr

=
1

λk+1 − λk

∫ t

λk

(A(r)x − A(t)x) dr +
1

λk+1 − λk

∫ λk+1

t

(A(r)x − A(t)x) dr

=
t − λk

λk+1 − λk

1

t − λk

∫ t

λk

(A(r)x − A(t)x) dr

+
λk+1 − t

λk+1 − λk

1

λk+1 − t

∫ λk+1

t

(A(r)x − A(t)x) dr.

Using [3, Proposition 1.2.2, page 16] we obtain that AΛ(t)x−A(t)x → 0 as |Λ| → 0.

The result follows since almost all points of [0, τ ] are Lebesgue points of A(·)x. �

In order to prove results on the convergence of the solutions uΛ of CPΛ(0, τ) we

need more regularity on A.

Recall that the function A is relatively continuous (in the sense of [7, Defini-

tion 2.5]) if for each t ∈ [0, T ] and all ε > 0 there exist δ > 0, η > 0 such that for all

s ∈ [0, T ], |t − s| 6 δ implies that

‖A(t)x − A(s)x‖ 6 ε‖x‖D + η‖x‖ for x ∈ D.

The relative continuity on the compact interval [0, τ ] is equivalent to uniform relative

continuity, that is, for every ε > 0 there exist δ > 0 and η > 0 such that for all x ∈ D

and for all t, s ∈ [0, T ] one has

‖A(t)x − A(s)x‖ 6 ε‖x‖D + η‖x‖

whenever |t − s| 6 δ. If A is relatively continuous then A is bounded (see [7,

Remark 2.6]).

Next we give some sufficient and necessary conditions for Lp-maximal regularity.

This is based on the following definition.

Definition 3.2. A function A : [0, τ ] 7→ L (D, X) is called relatively p-approxi-

mable if for all ε > 0 there exist δ > 0, η > 0 such that for all f ∈ Lp(0, τ ; D) and

for all subdivisions Λ of [0, τ ], |Λ| 6 δ implies that

(3.5) ‖AΛf − A f‖Lp(0,τ ;D) 6 ε‖f‖Lp(0,τ ;D) + η‖f‖Lp(0,τ ;X).

The relative p-approximability is weaker than relative continuity. Indeed each

relatively continuous function A is relatively p-approximable. The converse is not

true, a counterexample is given by step functions.

896



Proposition 3.3. Assume that A : [0, τ ] → L (D, X) is relatively continuous.

Then A is relatively p-approximable.

P r o o f. Let ε > 0. By the relative continuity there exist δ > 0 and η > 0 such

that |t − t′| 6 δ implies ‖A(t)x − A(t′)x‖ 6 ε‖x‖D + η‖x‖X (x ∈ D). Let Λ be

a subdivision of [0, τ ] with |Λ| < δ and let t ∈ [λk, λk+1). Since

‖AΛ(t)f(t) − A(t)f(t)‖X =

∫ λk+1

λk

‖A(r)f(t) − A(t)f(t)‖X
dr

λk+1 − λk

6 ε‖f(t)‖D + η‖f(t)‖X ,

it follows that ‖AΛf − A f‖Lp(0,τ ;D) 6 ε‖f‖Lp(0,τ ;D) + η‖f‖Lp(0,τ ;X). �

Proposition 3.4. Let A : [0, τ ] → L (D, X) be strongly measurable and rela-

tively p-approximable. Assume that A ∈ MRp(0, τ). Then there exists δ0 > 0 such

that for each subdivision Λ of [0, τ ] with |Λ| 6 δ0 we have AΛ ∈ MRp(0, τ).

P r o o f. According to point (1) of Proposition 2.2, it suffices to prove the propo-

sition for ̺ + AΛ for some ̺ > 0. Let M(A) be the constant from Proposition 2.2.

For ε0 = 1/[2M(A)], since A(·) is relatively p-approximable, there exist δ0 > 0 and

η0 > 0 such that |Λ| 6 δ0 implies that

‖AΛf − A f‖Lp(0,τ ;D) 6 ε0‖f‖Lp(0,τ ;D) + η0‖f‖Lp(0,τ ;X)

for all f ∈ Lp(0, τ ; D). Let Λ be a subdivision of [0, τ ] such that |Λ| 6 δ0 and let

f ∈ Lp(0, τ ; X). Then

‖(AΛ − A )(̺ + A + B)−1f‖Lp(0,τ ;X)

6
1

2M(A)
‖(̺ + A + B)−1f‖Lp(0,τ ;D) + η0‖(̺ + A + B)−1f‖Lp(0,τ ;X)

6
1

2
‖f‖Lp(0,τ ;X) +

η0M(A)

̺1/p
‖f‖Lp(0,τ ;X).

Thus, for ̺ > ̺0 := (4M(A)η0)
p we have ‖(AΛ − A )(̺ + A + B)−1‖L (Lp(0,τ ;X)) 6

3/4. Therefore, (̺ + AΛ + B) is invertible whenever |Λ| 6 δ0 and ̺ > ̺0. �

The main result of this section is the following.
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Theorem 3.5. Let A : [0, τ ] → L (D, X) be strongly measurable and relatively

p-approximable. Then the following assertions are equivalent.

(i) A ∈ MRp(0, τ).

(ii) There exists δ0 > 0 such that AΛ ∈ MRp(0, τ) for all subdivisions Λ of [0, τ ]

such that |Λ| 6 δ0 and for each [a, b] ⊂ [0, τ ] the solution uΛ of CPΛ(a, b), given

by (3.3), converges in MRp(a, b) as |Λ| → 0.

P r o o f. (i)=⇒(ii) Let δ0 > 0 and ̺ = ̺0 be as in the proof of Proposition 3.4.

Let Λ and Γ be two subdivisions of [0, τ ] such that |Λ|, |Γ| 6 δ0. Let [a, b] ⊂ [0, τ ].

We have ‖(AΛ − A )(̺ + A + B)−1‖L (Lp(a,b;X)) 6 3/4. Hence

(̺ + AΛ + B)−1 = (̺ + A + B)−1
∞
∑

k=0

((AΛ − A )(̺ + A + B)−1)k.

The same is also true if we replace Λ by Γ. Let now ε > 0 and f ∈ Lp(a, b; X). Let

n0 ∈ N be such that

∥

∥

∥

∥

∞
∑

k=n0+1

((AΛ − A )(̺ + A + B)−1)k −

∞
∑

k=n0+1

((AΓ − A )(̺ + A + B)−1)k

∥

∥

∥

∥

L (Lp(a,b;X))

6
ε

2M(A)
.

We set Ik,Λ := ((AΛ −A )(̺ + A + B)−1)k and Ik,Γ := ((AΓ −A )(̺ + A + B)−1)k

for k = 0, 1, . . . , n0.

By Lemma 3.1 we conclude that I1,Λf − I1,Γf = (AΛ − AΓ)(̺ + A + B)−1f

converges to 0 on Lp(a, b; X) as |Λ|, |Γ| → 0. It is not difficult to deduce that also

all Ik,Λf − Ik,Γf converge to 0 as |Λ|, |Γ| → 0.

Then let δ′ > 0 be such that

|Λ|, |Γ| 6 δ′ =⇒ ‖Ik,Λf − Ik,Γf‖Lp(a,b;X) 6 ε((n0 + 1)M(A))−1

for every 0 6 k 6 n0.

We deduce that ‖uΛ − uΓ‖MR 6 ε/2‖f‖+ ε/2 whenever |Λ|, |Γ| 6 min{δ0, δ
′}.

The implication (ii)=⇒(i) is given by Lemma 2.4. �
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4. Stability and maximal regularity

In this section we give a stability result for the Lp-maximal regularity.

Throughout this section we assume that A : [0, τ ] 7→ L (D, X) is strongly mea-

surable and relatively continuous and A(t) ∈ MR for all t ∈ [0, τ ]. We assume also

that there exists an approximation An : [0, τ ] 7→ L (D, X) (strongly measurable) of

A with the following properties.

(H1) There exists C > 0 such that ‖An(t)‖L (D,X) 6 C for all t ∈ [0, τ ] and n ∈ N.

(H2) For each x ∈ D one has An(t)x → A(t)x as n → ∞ in X t-a.e. on [0, τ ].

(H3) For every ε > 0 there exist η > 0, n0 ∈ N such that for all x ∈ D, n > n0, t ∈

[0, τ ] one has

‖An(t)x − A(t)x‖ 6 ε‖x‖D + η‖x‖.

(H4) An ∈ MR(0, τ) for all n ∈ N.

We have seen in Lemma 2.4 that if there exists a sequence An satisfying the

assumptions (H1)–(H4) then A ∈ MRp(0, τ) provided that for each [a, b] ⊂ [0, τ ]

and for every f ∈ Lp(a, b; X) the unique solution un in MRp(a, b) of

u̇n(t) + An(t)un(t) = f(t) t-a.e. on [a, b], un(a) = 0

converges in MRp(a, b) as n → ∞. The main result is Theorem 4.5 which says, in

particular, that this convergence holds if A is relatively continuous. We also show

that AΛ : [0, τ ] 7→ L (D, X) defined in the previous section satisfies (H1)–(H4) as

|Λ| → 0 provided that A is relatively continuous. This gives an alternative proof of

Theorem 2.7 in [7].

We begin with the following useful auxiliary result. For each t0 ∈ [a, b] ⊂ [0, τ ]

we denote by A (t0) = A (t0)a,b the unbounded operator on Lp(a, b; X) with domain

Lp(a, b; D) defined by (A (t0)f)(s) = A(t0)f(s) s-a.e.

Lemma 4.1. Let A : [0, τ ] 7→ L (D, X) be strongly measurable and relatively

continuous. Assume that A(t) ∈ MR for all t ∈ [0, τ ]. Then there exist M > 0,

̺0 > 0 independent of t ∈ [0, τ ] such that

‖(̺ + A (t) + B)−1‖L (Lp(a,b;X),MRp(a,b)) 6 M

and ‖(̺ + A (t) + B)−1‖L (Lp(a,b;X)) 6
M

1 + ̺
,

for all intervals [a, b] ⊂ [0, τ ] and all ̺ > ̺0.
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P r o o f. a) Let [a, b] ⊂ [0, τ ]. For each t ∈ [a, b] there exist ηt > 0, δt > 0 such

that for all s ∈ [t − δt, t + δt] we have

‖A(t)x − A(s)x‖ 6
1

2M(A(t))
‖x‖D + δt‖x‖ (x ∈ D),

where M(A(t)) is the constant in (1.1) (see Section 1). By compactness we find

ti ∈ [a, b] such that [a, b] ⊂
n
⋃

i=0

[ti − δti
, ti + δti

]. We may assume that this covering is

minimal. Thus ti 6= tj for i 6= j. We arrange then ti in such way that a 6 t0 < t1 <

t2 < . . . < tn 6 b. Thus

ti − δti
6 ti+1 − δti+1

6 ti + δti
6 ti+1 + δti+1

.

Setting τ0 = a, τi = max{ti−1, ti − δi}, i = 1, . . . , n − 1 and τn = b we obtain that

τ0 < τ1 < . . . < τn form a subdivision of [0, τ ] with ti ∈ [τi, τi+1] ⊂ [ti − δti
, ti + δti

]

and for all t ∈ [τi, τi+1].

‖A(t)x − A(ti)x‖ 6
1

2M(A(ti))
‖x‖D + δti

‖x‖ (x ∈ D, i = 0, 1, . . . , n).

b) Let [a, b] ∈ [0, τ ] and let f ∈ Lp(a, b; X). Let t ∈ [a, b] and let i be such that

t ∈ [τi, τi+1]. It follows from step a) that

‖(A (t) − A (ti))(̺ + A (ti) + B)−1f‖Lp(a,b;X)

6
1

2M(A(ti))
‖(̺ + A (ti) + B)−1f‖Lp(a,b;D) + ηti

‖(̺ + A (ti) + B)−1f‖Lp(a,b;X)

6
1

2M(A(ti))
‖(̺ + A (ti) + B)−1f‖MRp(a,b) + ηti

‖(̺ + A (ti) + B)−1f‖Lp(a,b;X)

6
1

2
‖f‖Lp(a,b;X) +

ηti
M(A(ti))

1 + ̺
‖f‖Lp(a,b;X)

for all ̺ > 0. Hence we find ̺0 > 0 such that for all ̺ > ̺0 we have ‖(A (t) −

A (ti))(̺ + A (ti) + B)−1‖L (Lp(a,b;X)) 6 3/4. Thus,

(̺ + A (t) + B)−1 = (̺ + A (ti) + B + A (t) − A (ti))
−1

= (̺ + A (ti) + B)−1(I + (A (t) − A (ti))(̺ + A (ti) + B)−1)−1.
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Therefore,

‖(̺ + A (t) + B)−1‖L (Lp(a,b;X),MRp(a,b))

6 ‖(̺ + A (t) + B)−1‖L (Lp(a,b;X),MRp(a,b))

× ‖(I + (A (t) − A (ti))(̺ + A (ti) + B)−1)−1‖L (Lp(a,b;X))

6 sup
j=1,...,n

M(A(tj))

∞
∑

k=0

‖(A (t) − A (ti))(̺ + A (ti) + B)−1‖k
L (Lp(a,b;X))

6 M := 4 sup
j=1,...,n

M(A(tj)).

This completes the proof. �

We now show that the problems CP(a, b) are well posed in Lp(a, b; X) for all

subintervals [a, b]which are small enough, provided (H1)–(H4) hold andA is relatively

continuous. For the proof we need the following Lemma.

Lemma 4.2. Assume that the family An, n ∈ N satisfies the condition (H3). Then

there exist δ > 0, ̺1 > 0 and n0 ∈ N such that for each [a, b] ⊂ [0, τ ], |b − a| 6 δ

implies that

‖(An − A (t))(̺ + A (t) + B)−1‖L (Lp(a,b;X)) 6 3/4,

for all t ∈ [a, b], n > n0 and all ̺ > ̺1.

P r o o f. Let ε := 1/(4M), where M is the constant from Lemma 4.1. By the

assumption on A, there exist δ > 0 and η1 > 0 such that for all s1, s2 ∈ [0, τ ],

|s2 − s1| 6 δ implies

‖A(s1)x − A(s2)x‖ 6
1

4M
‖x‖D + η1‖x‖ (x ∈ D).

By the assumption (H3) there exist η2 > 0 and n0 ∈ N such that for all x ∈ D,

n > n0 and t ∈ [0, τ ] one has

‖An(t)x − A(t)x‖ 6
1

4M
‖x‖D + η2‖x‖ (x ∈ D).

Let now [a, b] be a subinterval of [0, τ ] such that |b − a| 6 δ. Let f ∈ Lp(a, b; X)

and ̺ > ̺0 (with ̺0 from Lemma 4.1). Using Lemma 4.1 we obtain that for each
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t ∈ [a, b] and n > n0

‖(An − A (t))(̺ + A (t) + B)−1f‖Lp(a,b;X)

=

(
∫ b

a

‖(An(s) − A(t))((̺ + A (t) + B)−1f)(s)‖p
X ds

)1/p

6

(
∫ b

a

[ 1

2M
‖((̺ + A (t) + B)−1f)(s)‖D

+ (η2 + η1)‖((̺ + A (t) + B)−1f)(s)‖X

]p

ds

)1/p

6
1

2M
‖(̺ + A (t) + B)−1f‖Lp(a,b;D) + (η2 + η1)‖(̺ + A (t) + B)−1f‖Lp(a,b;X)

6
1

2
‖f‖Lp(a,b;X) +

(η1 + η2)M

̺ + 1
‖f‖Lp(a,b;X).

Hence for all ̺ > ̺1 := max{̺0, 4(η2 + η1)M} we have ‖(An(·) − A (t))(̺ + A (t) +

B)−1‖L (Lp(a,b;X)) 6 3/4. �

Theorem 4.3. Assume that the family An, n ∈ N satisfies the conditions (H1)–

(H4). Then there exists η > 0 such that for all [a, b] ⊂ [0, τ ] with |b − a| < η and all

f ∈ Lp(a, b; X) the unique solution un in MRp(a, b) of

(4.1) u̇n(t) + An(t)un(t) = f(t) t-a.e. on [a, b], un(a) = 0

converges in MRp(a, b) as n → ∞ and u := lim
n→∞

un is the unique solution of

CP(a, b).

P r o o f. We use the same idea as in the proof of Theorem 3.5. Let δ, ̺1 and n0 be

the constants given by Lemma 4.2. According to Proposition 2.2 we can assume that

̺1 = 0. Let [a, b] ⊂ [0, τ ] be such that |b − a| 6 δ. Let t0 ∈ [a, b] and f ∈ Lp(a, b; X)

be fixed. Let ε > 0 and k0 ∈ N be such that

(4.2)

∥

∥

∥

∥

∞
∑

k=k0+1

(An − A (t0))(A (t0) + B)−1

∥

∥

∥

∥

k

L (Lp(a,b;X))

6
ε

2M

where M is the constant in Lemma 4.1. We have the following equality

(4.3) un = (An + B)−1f = (A (t0) + B)−1(I + (An − A (t0))(A (t0) + B)−1)−1.

For each k ∈ {0, 1, . . . , k0} and n ∈ N we set

Ik,n := ((An − A (t0))(A (t0) + B)−1)k.
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By the hypothesis (H2) we have I1,nf − I1,mf = (An − Am)(A (t0) + B)−1f , and

thus all In,kf − Im,kf converge to 0 on Lp(a, b; X) as n, m → ∞. Let N > 0 be such

that

(4.4) n, m > N =⇒ ‖In,kf − Im,kf‖Lp(a,b;X) 6
ε

(k0 + 1)M
for every 0 6 k 6 n0.

From (4.2), (4.3) and (4.4) we deduce that (un)n∈N is a Cauchy sequence on the

Banach space MRp(a, b). The last claim follows from Lemma 2.4. �

We are now ready for the proof of our main results. Let δ be the constant given

by Lemma 4.2 and [a, b] be a subinterval of [0, τ ] such that |a − b| 6 δ. Then we

have the following stability result.

Theorem 4.4. Assume that A is relatively continuous and A(t) ∈ MR for all

t ∈ [0, τ ]. We also assume that the An satisfy the hypothese (H1)–(H4). Let xn ∈ Tr

and fn ∈ Lp(a, b; X) be such that xn → x in Tr and fn → f in Lp(a, b; X). Then

the solution un of

(4.5) u̇n(t) + An(t)un(t) = fn(t) a.e. on [a, b], un(a) = xn

converges in MRp(a, b) and u := lim
n→∞

un is the unique solution of

(4.6) u̇(t) + A(t)u(t) = f(t) a.e. on [a, b], u(a) = x.

P r o o f. (a) Let fn ∈ Lp(a, b; X) be such that fn → f in Lp(a, b; X). We have

un = (An + B)−1fn = (An + B)−1(fn − f) + (An + B)−1f.

Theorem 4.3 implies that the second term on the right-hand side of the above equality

converges in MRp(a, b) to (A + B)−1f . Using the Banach-Steinhaus Theorem we

obtain

lim
n→∞

‖(An + B)−1fn − (A + B)−1f‖MR = 0.

(b) Now let xn → x and fn → f , respectively, in Tr and in Lp(a, b; X). There

exist wn, w ∈ MRp(a, b) such that wn(a) = xn, w(a) = x and lim
n→∞

‖wn−w‖MR = 0.

Let un ∈ MRp(a, b) be such that

u̇n(t) + An(t)un(t) = fn(t) a.e. on [a, b], un(a) = xn.

There exists a unique vn ∈ MRp(a, b) such that

v̇n(t) + An(t)vn(t) = −ẇn(t) − An(t)wn(t) + fn(t) a.e. on [a, b], vn(a) = 0.
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By unique solvability we have un = vn + wn. The assumption (H2) implies that

ẇn + Anwn + fn → ẇ + Aw + f in Lp(a, b; X). Thus from (a) it follows that vn → v

in MRp(a, b) and v is the unique solution in MRp(a, b) of

v̇(t) + A(t)v(t) = −ẇ(t) − A(t)w(t) + f(t) a.e. on [a, b], v(a) = 0.

Thus un → u := v + w in MRp(a, b) and

u̇(t) + A(t)u(t) = f(t) a.e. on [a, b], u(a) = x.

The uniqueness follows from (a). �

From Theorem 4.4 we deduce the following global stability result.

Theorem 4.5. Let A : [0, τ ] → L (D, X) be strongly measurable and relatively

continuous. Assume that A(t) ∈ MR for all t ∈ [0, τ ] and An satisfy the hypothese

(H1)–(H4). Let xn ∈ Tr and fn ∈ Lp(0, τ ; X) be such that xn → x in Tr and fn → f

in Lp(0, τ ; X). Then the unique solution un of

(4.7) u̇n(t) + An(t)un(t) = fn(t) a.e. on [0, τ ], un(0) = xn

converges in MRp(0, τ) and u := lim
n→∞

un is the unique solution of

(4.8) u̇(t) + A(t)u(t) = f(t) a.e. on [0, τ ], u(0) = x.

P r o o f. Let un be the solution of (4.7). From Theorem 4.4, un converges in

MRp(a, b) for all [a, b] ⊂ [0, τ ] such that |b − a| 6 δ. We put

τ1 := max{0 6 τ ′
6 τ, such that un → u in MR(0, τ ′)}.

Thus τ1 > δ. We show that τ1 = τ . Indeed, we assume by contradiction that τ1 < τ

and choose τ ′
1 < τ1 such that τ1 − τ ′

1 6 δ/2. Then un → u in MR(0, τ ′
1). On the

other hand, un coincides on the interval [τ
′
1, (τ

′
1 + δ) ∧ τ ] with the solution of

u̇(t) + An(t)u(t) = fn(t) a.e. on [τ ′
1, (τ

′
1 + δ) ∧ τ ], u(τ ′

1) = un(τ ′
1) ∈ Tr

which converges by Theorem 4.4 on MR(τ ′
1, (τ

′
1 + δ) ∧ τ). Then un → u on MR(0,

(τ ′
1 + δ) ∧ τ). Thus (τ ′

1 + δ) ∧ τ 6 τ1, which is a contradiction to the definition

of τ1. �
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We now consider the approximation AΛ : [0, τ ] 7→ L (D, X) introduced in Sec-

tion 2. We have proved in Lemma 3.1 and Proposition 3.3 that AΛ satisfies (H2)

and (H3). Moreover, since A : [0, τ ] → L (D, X) is relatively continuous, there exists

δ > 0 such that the coefficients Ak which are defined for all k = 0, 1, . . . , n by

Akx :=
1

λk+1 − λk

∫ λk+1

λk

A(r)xdr (x ∈ D),

belong to MR provided |Λ| 6 δ. Indeed, for t ∈ [λk, λk+1]

̺ + Ak + B = (Id + (Ak − A (t))(̺ + A (t) + B)−1)(̺ + A (t) + B).

By an analogous argument as in the proof of Lemma 4.2, we obtain that

‖(Ak − A (t))(̺ + A (t) + B)−1‖L (Lp(0,τ ;X)) 6 3/4

for all ̺ > ̺0 and |Λ| 6 δ for some ̺0 > 0 and δ > 0. Thus Ak ∈ MR, k = 0, 1, . . . , n.

This is equivalent as proved in Section 3 to the fact that AΛ ∈ MRp(0, τ). Thus

AΛ : [0, τ ] 7→ L (D, X) as defined above satisfies the hypothese (H1)–(H4) for all

subdivisions Λ of [0, τ ] such that |Λ| < δ. We have thus proved the following.

Corollary 4.6. Assume that A : [0, τ ] → L (D, X) is strongly measurable and

relatively continuous and A(t) ∈ MR for all t ∈ [0, τ ]. Then A ∈ MR(0, τ), and for

each [a, b] ⊂ [0, τ ] the unique solution u in MRp(a, b) of CP(a, b) satisfies

lim
|Λ|→0

‖u − uΛ‖MR = 0,

where uΛ is given by (3.3).

5. An example

Let Ω ⊂ R
n be an open set such that ∂Ω is bounded and of class C2. As example

we consider the non-autonomous diffusion equation which is described in [7]

(5.1)











∂tu(t, x) − A (t, x, D)u(t, x) = f(t, x) a.e. on (0, τ) × Ω,

u(t)(x) = 0 on (0, τ) × ∂Ω,

u(0, x) = u0(x) a.e. on Ω,

where A (t, x, D) is the partial differential operator defined by

(5.2) A (t, x, D)u(x) :=

n
∑

i,j=1

aij(t, x)∂i∂ju(x) +

n
∑

i,j=1

bj(t, x)∂ju(x) + b0(t, x)u(x),
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such that aij ∈ C([0, τ ]×Ω) for i, j = 1, . . . , n is uniformly continuous, bounded and

uniformly elliptic, i.e.
n

∑

i,j=1

aij(t, x)ξiξj > β|ξ|2

for some β > 0 and all ξ ∈ R
n, x ∈ Ω, t ∈ [0, τ ], and bj ∈ L∞((0, τ) × Ω) for

j = 0, 1, . . . , n.

Recall that if X and D are two Banach spaces and Y an intermediate space such

that D→֒Y →֒X then we say that Y is close to X compared with D if for each ε > 0

there exists η > 0 such that ‖x‖Y 6 ε‖x‖D + η‖x‖X , x ∈ D (see [7] for more details

and several examples).

Let p, q ∈ (1,∞). Let D := W 2,p(Ω) ∩ W 1,p
0 (Ω). The space W 1,p(Ω) is close to

Lp(Ω) compared with W 2,p(Ω). We deduce from [7, Theorem 2.10, Theorem 1.3]

that A : [0, τ ] → (D, Lp(Ω)) given by

A(t)u := −

n
∑

i,j=1

ai,j(t, x)∂i∂ju −

n
∑

i,j=1

bj(t, ·)∂ju − b0(t, ·)u (u ∈ D)

is relatively continuous and A(t) ∈ MR for all t ∈ [0, τ ]. Thus the problem (5.1) is

stable in the sense of Theorem 4.5 for all initial data u0 ∈ B
2/q∗

pq ∩ B̊
1/q∗

pq (Ω) (see [24]

for the Besov spaces B
2/q∗

pq ). Moreover, the unique solution

u ∈ C([0, τ ]; B2/q∗

pq ∩ B1/q∗

pq (Ω)) ∩ W 1,q(0, τ ; Lp(Ω)) ∩ Lq(0, τ ; W 2,p ∩ W 1,p
0 (Ω))

of (5.1) can be explicitly approximated as follows:

Let Λ := (λ0, λ1, . . . , λm) be a subdivision of [0, τ ] and define

ak
ij(·) :=

1

λk+1 − λk

∫ λk+1

λk

aij(r, ·) dr,

bk
j (·) :=

1

λk+1 − λk

∫ λk+1

λk

bj(r, ·) dr, and

bk
0(·) :=

1

λk+1 − λk

∫ λk+1

λk

b0(r, ·) dr

for i, j = 0, 1, . . . , n and k = 0, 1, . . . , m. The coefficients Ak, introduced in Section 3,

are then given in the situation of (5.2) as follows

Aku := −

n
∑

i,j=1

ak
ij(·)∂i∂ju dr −

n
∑

j=1

bk
j (·)∂ju − bk

0(·)u (u ∈ D).
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Let uΛ be the unique solution in W 1,q(0, τ ; Lp(Ω))∩Lq(0, τ ; W 2,p ∩W 1,p
0 (Ω)) of the

approximated problem











∂tu(t, x) − AΛ(t, x, D)u(t, x) = f(t, x) a.e. on (0, τ) × Ω,

u(t)(x) = 0 on (0, τ) × ∂Ω,

u(0, x) = u0(x) a.e. on Ω.

Then uΛ is given explicitly by (3.3) where

AΛ(t) :=

{

Ak for λk 6 t < λk+1, k = 0, 1, . . . , m,

Am for t = τ,

and by Corollary 4.6

lim
|Λ|→0

‖u − uΛ‖MR = 0.
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