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Abstract. Let {Y;, —0o < i < oo} be a doubly infinite sequence of identically distributed
-mixing random variables, and {a;, —co < i < co} an absolutely summable sequence of real
numbers. We prove the complete g-order moment convergence for the partial sums of moving

o0
average processes {Xn = > ai¥iyp,n= 1} based on the sequence {Y;, —0co < i < oo}
1=—00
of p-mixing random variables under some suitable conditions. These results generalize and
complement earlier results.
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1. INTRODUCTION

We assume that {Y;, —co < i < oo} is a doubly infinite sequence of identically
distributed random variables. Let {a;,—00 < i < oo} be an absolutely summable
sequence of real numbers, and

o0
(1.1) X, = Z aiYign, n>1.

i=—00
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n
We denote S, = > X, n > 1, the sequence of partial sums. The limiting behavior
k=1

of the moving average process {X,,,n > 1} has been extensively investigated when
the random variables {Y;, —0co < ¢ < oo} form a sequence of independent random
variables. For example, Ibragimov [8] established the central limit theorem, Burton
and Dehling [2] obtained a large deviation principle, and Li et al. [11] obtained
the complete convergence. Motivated by applications to sequential analysis of time
series and to the renewal theory, the complete convergence was extended to weakly
dependent (p-mixing and e-mixing) sequences by a lot of authors (cf. Lai [10], Shao
[15], [16], and Peligrad [14]). Hsu and Robbins [7] first discussed the concept of
complete convergence, and proved complete convergence for the partial sums of a
sequence of i.i.d random variables as follows:

Theorem A. Suppose {X,,n > 1} is a sequence of i.i.d random variables. If

EX; =0 and E|X;|?> < oo, then Y. P{|S,| > en} < oo for all € > 0.
n=1

The following theorem due to [11] extended the above result for moving average
processes.

Theorem B. Suppose {X,,n > 1} is the moving average process based on a
sequence {Y;, —0o0 < i < oo} of i.i.d random variables with EY; = 0 and E|Y1|? < .

&)
Then 3 P{|S,| > en} < oo for all ¢ > 0.
n=1

We know that if {V;, —co < i < oo} is a sequence of i.i.d random variables, the
moving average random variables {X,,n > 1} are dependent, which is called weak
dependence. Recently, some limiting results on complete convergence for moving av-
erage processes based on the dependent sequences have been obtained. For example,
Yu and Wang [17] and Baek et al. [1] under the negative dependence assumption,
Chen et al. [3] under the negative association random variables, and Zhang [18] under
the p-mixing assumption. Chen et al. [4] further improved the result of [18].

When {X,k > 1} is a sequence of i.i.d random variables with mean zeros and
positive finite variances, Chow [6] obtained the following result on complete moment

convergence:

Theorem C. Suppose that {X,,n > 1} is a sequence of i.i.d random variables
with EX1 =0. For 1 <p < 2andr >p, if E{|X;1|" 4+ |X1|log(1+ |X1])} < oo, then

o0
an/”_Q_l/pE{|Sn| —ent/P}, < o0

n=1

for any € > 0, where and in the following x = max{0,z} and z% = (x4 ).
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Li and Zhang [13] showed that this kind of result also holds for moving average
processes under negatively associated random variables, and Kim and Ko [9] to
moving average processes under p-mixing assumptions. Then, Zhou [19] improved
the result of [9].

Recently, Li and Spataru [12] obtained the refinement of complete convergence

/ Zn’“ 2P{ ZX —nb

k=1
under some suitable moment conditions for a sequence of i.i.d random variables
{Xn,n =21}, where 0 < p<2,r>1,¢>0,and b= EX ifrp > 1 and b = 0 if
0 < rp < 1. Chen and Wang [5] pointed out that the two concepts of the refinement of

>x1/qn1/p}da:<oo for all € > 0,

complete convergence and the complete g-order moment convergence are equivalent,
because they showed that for all ¢ > 0

/ ZanPﬂZ | > 2V, } dz < oo

and

oo

Z anE{b; ' Z,| — e}l < 00

n=1
are equivalent for any a,, > 0, b, > 0, ¢ > 0, and any sequence of random variables
{Zn,n =1}

As we know, the complete moment convergence can describe the convergence rate
of a sequence of random variables more exactly than the complete convergence. In
this paper, we shall show complete g-order moment convergence of moving average
processes based on the p-mixing sequence. Our results extend the results of Chen
et al. [4] on complete convergence to the complete g-order moment convergence, and
improve the results of Zhou [19] under more optimal moment conditions. Section 2
states the main results and some technical lemmas. Proofs of the main results are
provided in Section 3.

2. THE MAIN RESULTS AND SOME LEMMAS

Recall that a sequence {Y;, —0co < i < oo} is said to be p-mixing if the mixing
coeflicient satisfies

¢(m) = supsup{|P(B|A) — P(B)|, A€ F* _,P(A) #0,B € F3,,} — 0
k>1

as m — oo, where F)' = o(Y;,n <i<m), —oco <n<m < 0.
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In the following, C' will represent a positive constant although its value may change
from one appearance to the next, and [z] indicates the maximum integer not larger
than z.

Now we state our main results and some lemmas. The proofs of main results will
be given in the next section.

Theorem 2.1. Let ¢ > 0, 1 < p < 2, r > 1. Suppose that {X,,n > 1} is
a moving average process based on a sequence {Y;,—oco < i < oo} of identically
distributed p-mixing random variables. If EY; = 0 and

EVi|"? < o0, ifg<rp,
E|Y1|"Plog(1 + |Y1]) < 00, ifq=rp,
E|Y1|? < o0, ifq>rp,

then
o0
(2.1) 2 nT*Q*q/pE{lgl&xn |Sk| — s—:nl/p}?|r < oo foralle >0,
and
(2.2) Z n""2E{sup k" VP|S)| —e}% < 0o for all ¢ > 0.
n=1 kzn

When r = 1, we get the following theorems.

oS}
Theorem 2.2. Let 1 < p < 2 and ¢ > 0. Assume that . l|a;|? < oo, where
1=—00

0 belongs to (0,1) if p =1 and 8 =1 if 1 < p < 2. Suppose that {X,,n > 1}
is a moving average process based on a sequence {Y;, —o0o < i < oo} of identically

distributed @-mixing random variables with . ¢'/?(m) < co. If EY; = 0 and

m=1

EYi)P <oo, ifg<p,
EY1|Plog(1 +[Y1]) < oo, ifg=p,

ElV1)|? < 00, ifq > p,

then

(o)
(2.3) Z n_l_‘I/pE{lrgnl?%(n |Sk| —ent/P}e < oo for all € > 0.
n=1
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Theorem 2.3. Under the conditions of Theorem 2.2, if EY; = 0 and

EY1[Plog(1 + [Y1]) < 0o, ifq<p,
EYi[Plog®(14 V1)) < 00, ifq=p,
EY1|? < o0, ifq>p,

then
—1—q/p _ enl/PVa
(2.4) nz::ln lognE{lrgnkagn |Sk| —en'/P}l < oo foralle >0,
and
o0
(2.5) ZnilE{sup k=P8 — e}f < oo foralle > 0.
k>n

n=1

Remark 2.1. Theorems 2.1-2.3 provide complete g-order moment convergence
statements for the maximums and supremums of partial sums of moving average pro-
cesses based on a sequence of p-mixing random variables. When r > 1, Theorem 2.1
provides the results without any mixing rate. Theorems 2.2 and 2.3 cover the case

oo
where r = 1, which require the mixing rate to satisfy . ¢'/?(m) < occ.
m=1

Remark 2.2. Theorems 2.1 and 2.2 extend respectively Theorems 1 and 2 of
Chen et al. [4] on complete convergence to complete g-order moment convergence,
and improve Theorems 2.1 and 2.2 of Zhou [19] under more optimal moment condi-
tions, if we ignore some insignificant details connected with slowly varying functions.
Theorem 2.3 is similar to Theorem 2.2, but it is a new result.

The following lemmas will be useful. In the first two lemmas we assume that
k+n
{Y,,n > 1} is a p-mixing sequence and Si(n) = >, Y;,n>1,k>0.
i=k+1

Lemma 2.1 (Shao [15]). Let EY; = 0 and EY;? < oo for all i > 1. Then for all
n >1 and k > 0 we have

[log n]
ES2%(n) <8000 6 1/2 (91 EY?2.
i(n) nexp{ Z; P22 max BY;
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Lemma 2.2 (Shao [15]). Suppose that there exists an array {Cj n,k > 0,n > 1}
of positive numbers such that I£1a<x ESk( i) < Cy,p, for every k > 0 and n > 1. Then

for any s > 2 there exists C = C(s, ¢(+)) such that for any k > 0 and n > 1

E max |Sk(i)|* \C(C5/2+E( max |Yz|g))

1<ign k<i<k+n

Lemma 2.3. Let 1 < p < 2, r > 1. Suppose that {X,,n > 1} is a moving
average process based on a sequence {Y;, —co < i < oo} of identically distributed
p-mixing random variables. If Y, = 0 and E|Y1|"™ < oo, then

o0
an*QP{ max |Sg| > enl/p} < oo foralle>0.
—~ 1<k<n

Lemma 2.4. Let 1 < p < 2. Assume that Z la;|? < oo, where 6 belongs to
i=—00

(0,1)ifp=1and 0 =1if1 <p< 2. Suppose that {X,,,n > 1} is a moving average
process based on a sequence {Y;,—oo < i < oo} of identically distributed ¢-mixing

o0
random variables with > ¢'/?(m) < co. If EY; = 0 and E|Y1|P < oo, then

m=1
1
Z —P{ max |Sy| > en'/P} < oo foralle > 0.
=’ Ci<k<n

Remark 2.3. The proofs of Lemmas 2.3 and 2.4 are similar to those of Theo-
rems 1 and 2 of Chen et al. [4] and so they are omitted.

3. PROOF OF MAIN RESULTS

Proof of Theorem 2.1.  First, we prove (2.1). Let Y; = Y;I[|Y;| < 2'/9] —
EY;I[|Y;] < 2'/9], and I(n) = n"~2~9/P. Recall that

+n
ZX%Z > avie= w3 Y,
k=11i1=—oc0 1=—00 j=i+1
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o0
and since Y. |a;| < oo, for & > n9/? we have

i=—00

max /4

1<k<n

i+k

E fj a; Y YI[Y;| <t/

i=—o0  j=i+l

0o itk
EY a0 Y viI[yy] > 2
i=—o0  j=i+l
oo i+n
<e V1N Jail S B > 29

i=—co  j=i+l

= max z~ /¢
1<k<n

<z Vi Y e B |IY1] > 2]

< CzYagPla gy, |I|v3] > 21/9)
< CEMWPI[Y:] > 29 — 0, as & — oo.

Hence, for x large enough one gets

(3.1)

We have

(3.2)

n=1

00 i+n
E DY a Y YiIly; <V <e/4

i=—oco  j=itl

z—Va

I(n)E{ max [Sy| —en/P}%

1<k<n
o o0

= Zl(n)/ P{ max |Si|—en'/?P > '/} du
ot 0 1<k<n

nd/p

o0
1/p 1/q
—l—Zl(n)/n . P{éll?%{n'Sk' >en/P /9 do

=1 a/

(o)
< a/Pl(n) P 1/p
nz::ln I(n) {1r<nka%<n|5k| >en/P}

q/p 1<ksn

+Zl(n)/ P{ max |S| > z"/9}dz =: I,
n=1 n

For I;, by Lemma 2.3 we have

(3.3)

o0
_ r—2 1/p
I Zn P{lglggn |Sk| > en™/P} < 0.

n=1

(BY; = 0)

Zl(n)/ P{ max [Si| > en'/? + 29} dx
n=1 0 1<k<n
o0

+ Is.
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For I, from (3.1) we have

= > itk
' S 1/q > 1/q

n=1 Pt S

i+k

214
+CZ[ /n(z/p {121152(” Z @i Z Yx] > /4} dz
1=—00 j=i+1
=: Io1 + I2o.

For I, by Markov’s inequality and the mean-value theorem we have

3.5 Iy <CY ln / v Y9E max
( ) 2 Z na/p

1<k<n

i+k

Z a; > YiI[y;] > 2'/9|d

1=—00 j=i+1

[ee]
< cz I(n) /nq/p na VB |I[|Y1| > 29 da

00 e} (m+1)’1/P
_ CZ ni(n) Z / e VIB I > 29 de
ma/p

cz nl(n Z md/PYPL B Y| I(|YL| > m/P]

CZ q/p—1/p— 1E|Y1|I[|Y1| >m1/p an q/p—1

n=1

Z m =YL EY | I]|Y| > m!/P), if ¢ < rp,

m=1

C E mr1/p- Yog(1 + m)E|Y1|I[|Y1] >m1/p] if g =rp,

m=1
C'S mir LB I]Y:] > mY/P), if ¢ > rp,
m=1
CE|Y1|TP < 00, if q<T7p,
< CEY1["Plog(1l + [V1]) < 0o, if ¢ = 1rp,
CE|Y1|? < o0, if ¢ > rp.

For Is3, by Markov’s and Holder’s inequalities, the mean-value theorem, Lem-
mas 2.1 and 2.2, one gets that for any s > 2

o0 o0
(3.6) In2 < Z // 2 %/9F max

1<k<n

i+k

>y v

i=—00 Jj=i+1

S

%) o i+k
r5/4 1-1/s 1/s
Z: Aq/p E|:Z_z:oo(|a | )(|a | lréll?é(n ;1 Yz] >:| dx
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i+k

—s/ ) .
<ot e (Y rel) (3wl | 3 v )as
n=1 1=—00 i=—00 J=i+1
oo 00
< C’Zl(n)/ i A
n=1 nda/p
[log k] s/2
1/2 (o] 2
X Z |az|< max k:exp{ Z ©’2(27) }i+1r£]a<)<i+kEYx]) dz
1=—00
00 oo
—s/ )
+Cz:11 /nq/px qlz |a;|E max |Vas]® dae
n= 1=—00
o 00
< CZl(n)/ z e/
n—1 na/p
00 [log n] s/2
4 129 2
X Z |az|<neXp{ Z @ }i+1r£ja<)<i+nEYm) dz
1=—00
o0
03 im / 713 njas|BYa | do
n—1 na/» i——oo
oo - llog 7] ‘ o2
Z / x=%/ <nexp{6 Z 301/2(2])}E|Y1|21[|Y1| < xl/q]) dz
n—1 na/p j=1
Z / TL(EiS/qE|Y1|SI[|Y1| < xl/q] da =: Iso1 + Ioo9.
— na/p
[log n]
Note that p(m) — 0 as m — oo, hence > ¢'/?(27) = o(logn). Therefore, for
7j=1

[log n]
any A >0 and t > 0, exp{)\ Z 301/2(23)} o(nt).

For I551, we consider the followmg two cases.

If rp < 2, take s > 2 and let u = st/2. We have that » — (r — 1)s/2 < 1. Then
take ¢ > 0 small enough such that u > 0 is so small that r — (r — 1)s/2 +u < 1. By
the mean-value theorem we have

o o]
(3.7) Izg1 < czn<1+t>s/21(n)/ ¥ Y B PI]V;] < 2V9))*/? da

n—1 nal/p
m a/p
_ s/2+u (m+1) 75/q 2 1/q1\s/2
c}jn I(n §j / (B IV < /)2 d

<Czns/2+ul Z md/p—s/p—1 E|Y1|2 (Y1) < (m+1)1/p])8/2
n=1 =
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n=1

=€ 32 mil =t EMPINL < mo+ DY) 3/ 1(n)

<O w2 P (B TP PRIV < (mo 1))

m=1
[eS)

<O YD BB PV < (mot 1))

m=1

o
<C Z mr—(r—l)s/2+u—2 < 0.

m=1

If rp > 2, take s > max(2p(r — 1)/(2 — p),q) and let u = st/2. We have that
r —$/p+s/2 < 1. Then, take ¢t > 0 small enough such that v > 0 is so small that
we have r — s/p + s/2 4+ u < 1. In this case, we note that E|Y;]?> < co. Therefore,

one gets

e 00
B8 B <O n ) [ e Y PI <)

na/r

_ C«an—s/p+s/2+u—2 < oo,

n=1

So, by (3.7) and (3.8) we get
(39) Ir91 < 00.

For I529, by the mean-value theorem we have

(m+1 q/p
3.10) I = C ) nl(n / xS BY P I[|Y:] < 2V/9) dz
( 222 Z z:: » [Yi[*I[[Y1] ]

8

<cznz Z md/P= P B Y P Y] < (m+ 1)YP]
n=1

m=n

m
—C Z md/pP—s/p— LEY P I < (m+ 1)1/p] Z n"—4/p=1

n=1

c Z m" PP IV < (m+ 1)),

C Z ma/P=s/p= Yog(1 +m)E|Y1|*I[|Y1] < (m—i—l)l/p],

¢ Z md/P= LB [P I3 < (m+ 1)Y7),

if ¢ < rp,

if g =rp,

if ¢ > rp,



CEY1|"? < oo, if g < rp,
< { CEY:|™Plog(1 + [Y1]) < o0, if ¢ = 7p,
CEYi7 < oo, if g > rp.

Thus, (2.1) follows from (3.2)—(3.6), (3.9), and (3.10).
Now, we prove (2.2). We have

an—QE{sup |k’%5’k| —e}d
n=1 k>n
= 1
=) " / P{sup |k™# S| > e + '/} dt
n=1 k>n
oo 20-1
= Z Z . 2/ P{Suplk 7 S| > e+ Y/} dt
=1 27 1
> oo . 2-1
< CZ/ P{ sup |k"7S| >¢e+t/}dt Z 9i(r—2)
i=170 k>2i-1 vl
> [ ) k
< CZT(T*D/ P{ sup |k~ P il > €+t1/q}dt
i—1 0 k>2i—1 =
%) 00 o
{r=1) p 1/q
S 022 Z/O P{ 2’}1n<alii<21 ke >ett }dt
i=1 I=i —1
%) 00 k
1/q i(r—1)
<Clz;/0 P{Ql_rlngagizl z; >e+t }dt;2
©0 oo k
I(r—1) . 1/q\o(-1)/p
% |p] e >3] > (e 8102 ba
(letting y = 2(=Da/Py)
> o0
<C zzwkq/p)/ p x| > 20-07me g1/l g
2 | P{ max, Z /b ay
s k
r-2-d/ , 1/pg-1/ 1/
CZn ‘”’/ P{l?}?gn ZXJ'>7L P27 Pe +y q}dy
n=1 j=1
(lettlng £0 = 271/1)5)
[e.¢] k q
— —2—q/ 1y
D I N DR B S
= j=1 +
Thus, (2.2) holds. 0
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Proof of Theorem 2.2. Here, let I(n) = n~'~%P. Similarly to the proof of (3.1)
and (3.2) we have

3 q
| enl/p
(3.11) Zl(n)E{ max. > x| en }
n=1 = N
> k
= a/p ‘ U
= Zn l(n)P{ max ZX] >en }
n=1 =
o0 o k
. 1/q _.
! ;l(n) /nq/p P{ 121&)(” ;XJ >z }da: STy + s
For J;, by Lemma 2.4 we have
k

(3.12) Ji=) %P{ max

n=1

For Js, similarly to the proof of (3.4) we have

(3.13)
%) 00 o i+k /
Jo<C l(n / P{ max a; YI[|Y:| > 29| > 2t/e Z}dx
P ; (n) e | 1<k<n i;w zjz; (Y] ] /

i+k

D Y Ve

i=—o0  j=itl

0 o0
+ anz:l I(n) /nq/p P{ 121152)("

> xl/q/4} dz =: Jo1 + Joo.

For Js1, by Markov’s and C). inequalities we have

%) i+k

Dy Vil >t

i=—o0  j=i+l

0
dx

na/r 1<k<n

(3.14) Jo < CZl(n)/ 7 9E max
n=1
o o]
<0y nl(n)/ e IEY P TV, | > 29 dx
n—1 na/p

0 o] (m—+1)4/? o) ) "
:C’an(n) Z/ § 2= E T I|Y1] > /9] da
n=1 m=n "~ m¥?

m=n

oo (oo}
<CD nl(n) Y mP T B YOI Ye] > mt]
n=1

=C Z md/P=0/P= By P I V1| > m/P] Z n—a/p

m=1 n=1
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o0
c > m’(’/pE|Y1|OI[|Y1| > ml/p], if ¢ < p,

m=1
o)
< { S mar o log(1l + m)BIYi I[Vi] > m/P], i g = p,
m=1
&)
C > my/P= LBy I Ya| > m! /P, if ¢ > p,
m=1
CE1|P < o0, if ¢ < p,
< { CE|Y1|Plog(1 + |Y1]) < o0, if ¢ =1,
CEY1|? < o0, if ¢ > p.

For Jjo, similarly to the proof of I, taking s = 2 in Iss and noting that
oo
3 ¢'/2(m) < oo, we have

m=1

(3.15)

o0
Fa <O M) [

a/p
C’Zln/

n

i+k

> v

i=—00 j=i+1

llog n]
z2a (neXp{6 Z 301/2(2j)}E|5/1|2I[|§/1| < xl/q]> dzx
a/p

J=1

(n) / nz~ 2BV, RI[V:| < 27 da

_|_
Q
Mx

n—1 a/p
<0y nl(n)/ c 2BV PV < V9] dz
n=1 nt/p
oo oo (m+1)‘1/7’
= C’Z nl(n) Z 2B I < 2V dx
n=1 m=nJm/?
oo oo
<O nlln) 3 w2 BV PIIV; < (m 4+ 1))
n=1 m=n
:szQ/P 2/p— 1E|Y1|2I[|Y1 m+1 Zn q/p
m=1
(oo}
C Y. m~2PE\YLPI[|Y1| > mb/P), if g <p,
m=1
(o]
<{C 5 mir2rtlog(1 4 m)EVL IV | > m1/7), it = p,
m=1
(o]
C S my/P=2/p=LEY 21| Y| > m! /P, if ¢ > p,
m=1
CE|Y1|P < o0, if g <p,
< ¢ CE|Y1|Plog(l + Y1) < o0, if g =p,
CE|Y1|? < o0, if ¢ > p.
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From (3.13)—(3.15) one gets

(3.

So

16) Jy < o0,

, (2.3) holds due to (3.11), (3.12), and (3.16). O

Proof of Theorem 2.3. We omit the proof of the theorem, since it is similar to

that of Theorem 2.2. O
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