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Abstract. In this paper, we study the time asymptotic behavior of the solution to an
abstract Cauchy problem on Banach spaces without restriction on the initial data. The
abstract results are then applied to the study of the time asymptotic behavior of solutions
of an one-dimensional transport equation with boundary conditions in L1-space arising in
growing cell populations and originally introduced by M.Rotenberg, J. Theoret. Biol. 103
(1983), 181–199.
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1. Introduction

Let T be the generator of a strongly continuous semigroup (U(t))t>0 on a Banach

space X . Let w(U) denote the type of the semigroup (U(t))t>0 defined by:

w(U) = inf{w > 0 such that ∃Mw satisfying ‖U(t)‖ 6 Mwewt ∀t > 0}.

Let L(X) denote the set of all bounded linear operators in X . If K ∈ L(X), by the

classical perturbation theory (see, for instance, [13, Proposition 1.4]), A := T + K

generates a strongly continuous semigroup (V (t))t>0 given by the Dyson-Phillips

expansion:

(1.1) V (t) =
∑

j>0

Uj(t),

where

(1.2) U0(t) = U(t) and Uj(t) =

∫ t

0

U(s)KUj−1(t− s) ds ∀j > 1.
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The series (1.1) converges in L(X) uniformly in bounded time. The remainder term

of order n is given by

Rn(t) =
∑

j>n

Uj(t) =

∫

s1+...+sn6t, si>0

U(s1)K . . . U(sn)KV

(
t−

n∑

i=1

si

)
ds1 . . . dsn.

So, the Cauchy problem

(1.3)
dψ

dt
= Aψ(t) := (T +K)ψ(t), ψ(0) = ψ0, ψ0 ∈ D(T ),

has a unique classical solution given by ψ(t) = V (t)ψ0. In general, this result follows

from the Hille-Yosida theorem. Unfortunately, the Hille-Yosida theorem is not con-

structive, so the knowledge of the spectrum of A or (V (t))t>0 plays a central role in

getting more information on the solution of problem (1.3), in particular, its behavior

for large times.

In [12], M. Mokhtar-Kharroubi has shown that under the following conditions:

(A1)





There exists an integer m and w > w(U) such that

(i) [(λ− T )−1K]m is compact for all λ with Reλ > w(U),

(ii) lim
|Im λ|→∞

‖[(λ− T )−1K]m‖ = 0 uniformly on {λ ∈ C ; Reλ > w},

one gets the two following results:

(R1): σ(A) ∩ {λ ∈ C ; Reλ > w(U)} consists at most of discrete eigenvalues with

finite algebraic multiplicities and σ(A) ∩ {λ ∈ C ; Reλ > w > w(U)} = {λi, i =

1, . . . , n} is finite.

(R2): For any initial data ψ0 ∈ D(A2), the solution of the Cauchy problem (1.3)

satisfies

(1.4)

∥∥∥∥ψ(t) −
n∑

i=1

eλitetDiPiψ0

∥∥∥∥ = o(eβ∗t) for all β∗ ∈ ]β1, β2[,

where β1 = sup{Reλ, λ ∈ σ(A) and Reλ < w}, β2 = min{Reλi ; 1 6 i 6 n}, Pi and

Di denote, respectively, the spectral projection and the nilpotent operator associated

with the eigenvalue λi, i = 1, 2, . . . , n.

His analysis was clarified and refined later by B.Abdelmoumen, A. Jeribi, and

M.Mnif [1] who showed that the result (R2) is obtained even if ψ0 ∈ D(A). In fact,
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they have replaced the assumption (A1) by a stronger assumption:

(A2)





(i) There exists m ∈ N such that [(λ− T )−1K]m is compact

for all λ with Reλ > w(U).

(ii) There exists a real r0 > 0, and for w > w(U), there exists C(w)

such that |Imλ|r0‖[(λ− T )−1K]m‖ is bounded on {λ ∈ C;

Reλ > w, |Imλ| > C(w)}.

(iii) There exists c ∈ R such that ‖(λ−A)−1‖ is bounded

on {λ ∈ C ; Reλ > c}.

They have proved that under conditions (A2)(i)–(ii) the result (R1) holds true. More-

over, they have proved that if the assumption (A2) is fulfilled, then the requirement

ψ0 ∈ D(A2) can be eliminated and the result (R2) holds true for any initial data ψ0

in D(A).

The purpose of the first part of this paper is to give a description of the large time

behavior of solutions to the abstract Cauchy problem (1.3) on Banach spaces without

restriction on the initial data. More precisely, we will prove that if we change the

assumption (A2) to the assumption:

(H1)





(i) There exists m ∈ N such that [(λ − T )−1K]m is compact

for all λ with Reλ > w(U).

(ii) There exists a real r0 > 0, and for w > w(U), there exists C(w)

such that |Imλ|r0‖(λ− T )−1Bm
λ K(λ−A)−1‖ is bounded on

{λ ∈ C ; Reλ > w, |Imλ| > C(w)}, where Bλ := K(λ− T )−1,

then we get the same results as those obtained in [1]. In fact, by using the assumption

(H1), which is weaker than (A2) and (A1), we get the result (R1) of M.Mokhtar-

Kharroubi [12] and we show that the condition ψ0 ∈ D(A2) may be weakened, that

is, (1.4) holds true for all ψ0 belonging to D(A). Moreover, we give a description

of the large time behavior of solutions to the associated Cauchy problem (1.3) (see

Theorem 2.1).

In the second part of this paper, we apply the abstract result to the study of the

time asymptotic behavior of solutions of the following initial boundary value problem

originally introduced by M.Rotenberg [14]:

(1.5)





∂ψ

∂t
(µ, v, t) = − v

∂ψ

∂µ
(µ, v, t) −

[ ∫ b

a

r(µ, v, v′) dv′
]
ψ(µ, v, t)

+

∫ b

a

r(µ, v, v′)ψ(µ, v′, t) dv′

= TKψ(µ, v, t) +Bψ(µ, v, t) := AKψ(µ, v, t),

ψ(µ, v, 0) = ψ0(u, v).
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Our paper is organized as follows. In Section 2, we give a description of the large

time behavior of solutions to the associated Cauchy problem (1.3). In Section 3, we

apply our results directly to discuss the time asymptotic behavior of the solution

of a time-dependent linear transport equation with boundary conditions arising in

growing cell populations.

2. Time asymptotic description of the solution to the

abstract Cauchy problem (1.3)

In this section, we present Theorem 2.1 which gives, on the Banach space X , a

description of the large time behavior of solutions to the associated Cauchy problem

(1.3). For w > w(U), consider Rw := {λ ∈ C ; Reλ > w}. We begin by the following

proposition:

Proposition 2.1. Let Q be a complex polynomial satisfying Q(0) = 0 and

Q(1) 6= 0. Assume that (λ−T )−1Q(Bλ) is compact in Rw, where Bλ := K(λ−T )−1.

Then, σ(A) ∩ {λ ∈ C ; Reλ > w(U)} consists at most of a countable set of isolated

points λk. Each λk is an eigenvalue of finite multiplicity and is a pole for the resolvent

(λ−A)−1.

P r o o f. The proof of this proposition is inspired and adapted from [16, Theo-

rem II]. For some n ∈ N
∗, we suppose that the polynomial Q is written as:

Q(X) = a1X + a2X
2 + a3X

3 + ...+ anX
n,

where a1, a2, . . . , an ∈ C. The function λ → Q(Bλ) is regular analytic in the half-

plane Reλ > w(U) and its values Q(Bλ) are by assumption compact operators.

Therefore, for any σ > Reλ we have

‖Q(Bλ)‖ 6
a1‖K‖

σ − w(U)
+

a2‖K‖2

(σ − w(U))2
+ . . .+

an‖K‖n

(σ − w(U))n
.

So, Q(Bλ) → 0 if Reλ → ∞. Therefore, µ =
n∑

i=1

ai 6= 0 is not an eigenvalue for

Q(Bλ). Hence Smul’yan’s theorem in [15] applies. Then, except for a discrete set of

values λk ∈ Rw the operator µI −Q(Bλ) has a bounded everywhere defined inverse,

while (µI −Q(Bλ))−1 has a pole at each of the points λk.

On the other hand, we have

µI −Q(Bλ) = a1(I −Bλ) + a2(I −B2
λ) + . . .+ an(I −Bn

λ ).
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Then,

(µI −Q(Bλ))−1 = [a1(I −Bλ) + a2(I −B2
λ) + . . .+ an(I −Bn

λ )]−1

= [(I −Bλ)(a1I + a2(I +Bλ) + . . .+ an(I +Bλ + . . .+Bn−1
λ ))]−1.

So,

[a1I + a2(I +Bλ) + . . .+ an(I +Bλ + . . .+Bn−1
λ )](µI −Q(Bλ))−1 = (I −Bλ)−1.

Let λ be such that (I −Bλ)−1 exists. Put

Rλ = (λ− T )−1(I −Bλ)−1.

Write Aλ = λ−A = λ− T −K. We have

AλRλ = (λ−A)(λ − T −K)−1 = I.

In the same way, we have RλAλ = I. Hence A−1
λ exists for such λ as a bounded every-

where defined operator and is equal to Rλ. Consequently, the resolvent (λ−A)−1 =

Rλ is an analytic function of λ in the half-plane Reλ > w(U) with the exception of

a discrete set of values λk where Rλ has a pole.

Any pole λk of Rλ is an eigenvalue of A. A corresponding eigenfunction ϕ satisfies

the equationBλk
ϕ = ϕ. The equation (µI−Q(Bλk

))ϕ = 0 implies (Q(Bλk
)/µ)ϕ = ϕ.

The operator Q(Bλk
) being compact, the space of solutions of this equation is finite

dimensional. This implies that the space of eigenfunctions of A corresponding to the

eigenvalue λk is finite dimensional, too. �

We deduce from Proposition 2.1 that the eigenvalues λ1, λ2, . . . , λn, λn+1, . . . of

A lying in the half plane Reλ > w(U) can be ordered in such a way that the real

part decreases [10, page 109], i.e., Reλ1 > Reλ2 > . . . > Reλn+1 > . . . > w(U) and

{λ ∈ C ; Reλ > w(U)} \ {λn, n = 1, 2, . . .} ⊂ ̺(A), where ̺(A) is the resolvent set

of A.

The main result of this section is the following theorem:

Theorem 2.1. Assume the hypothesis (H1) is true and the conditions of Propo-

sition 2.1 are satisfied. Then, for any ε > 0, there exists M > 0 such that

‖V (t)(I − P )‖ 6 Me(Re λn+1+ε)t ∀t > 0,

where P = P1+. . .+Pn is the spectral projection of the compact set {λ1, λ2, . . . , λn}.
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P r o o f. Let ε > 0 and set βn,ε = Reλn+1+ε. For every λ with Reλ > βn,ε−ε/2,

define f(λ) := (λ−T )−1Bm
λ K(λ−A)−1(I−P )ψ, where Bλ = K(λ−T )−1. It follows

from the hypothesis (H1) that there exists η > 0 such that

(2.1) ‖f(λ)‖ 6
η

|Imλ|r0

uniformly on {λ ∈ C ; Reλ > βn,ε − ε/2}.

According to [7, Theorem 6.6.1], the function

(2.2) g(t) =
1

2iπ

∫ γ+i∞

γ−i∞

eλtf(λ) dλ, γ > max(0, βn,ε), t > 0,

is continuous and

(2.3)

∫ ∞

0

e−λtg(t) dt = f(λ).

On the other hand, set

W (t) = V (t)(I − P ) −
m∑

k=0

Uk(t).

It is easy to see that t 7→ W (t) is strongly continuous for t > 0. For every ψ ∈ X ,

we have

(2.4) W (t)(I − P )ψ = V (t)(I − P )ψ −
m∑

k=0

Uk(t)(I − P )ψ.

From [7], [13], for any λ such that Reλ > ω(U), one can write

(2.5)

∫ ∞

0

e−λtUk(t)ψ dt = (λ − T )−1Bk
λψ, ψ ∈ X, k ∈ N

and

(2.6) ‖Uk(t)‖ 6 e(ω(U)+ε)tM̃k+1‖K‖k t
k

k!
, k ∈ N,

where M̃ > 1 such that ‖U(t)‖ 6 M̃e(ω(U)+ε)t for all t > 0. Hence, the use of

Eqs. (2.4) and (2.5) leads to

∫ ∞

0

e−λtW (t)(I − P )ψ dt = (λ−A)−1(I − P )ψ −
m∑

k=0

(λ− T )−1Bk
λ(I − P )ψ.
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The fact that

(λ−A)−1 =
∞∑

k=0

(λ− T )−1Bk
λ

yields

∫ ∞

0

e−λtW (t)(I − P )ψ dt =

+∞∑

k=m+1

(λ− T )−1Bk
λ(I − P )ψ

= (λ− T )−1Bm
λ K(λ−A)−1(I − P )ψ.

Hence,

(2.7) f(λ) =

∫ ∞

0

e−λtW (t)(I − P )ψ dt.

By virtue of the uniqueness of the Laplace integral, Eqs. (2.3) and (2.7) imply

W (t)(I − P )ψ = g(t).

Since λ → f(λ) is analytic in the region {λ ∈ C ; Reλ > βn,ε − ε/2}, the integral

path on the right-hand side of Eq. (2.3) can be shifted to Reλ = βn,ε, i.e.,

g(t) =
1

2iπ
lim

y→∞

[ ∫ βn,ε+iy

βn,ε−iy

etλf(λ) dλ+

∫ γ

βn,ε

et(x+iy)f(x+ iy) dx

+

∫ βn,ε

γ

et(x−iy)f(x− iy) dx

]
.

From Eq. (2.1) and using the Lebesgue dominated convergence theorem, the second

term and the third term of the above equation tend to zero, so

(2.8) g(t) =
1

2iπ

∫ βn,ε+i∞

βn,ε−i∞

etλf(λ) dλ.

We have

‖g(t)‖ 6
1

2π

etβn,ε

∫ ∞

−∞

‖f(βn,ε + iy)‖ dy.

We deduce from Eqs. (2.1) and (2.8) that

(2.9) ‖g(t)‖ 6 Ceβn,εt,

where C = (1/2π)η/|Imλn+1|
r0 .
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Finally, from Eqs. (2.4), (2.6) and (2.9), we get

‖V (t)(I − P )‖ 6 ‖W (t)(I − P )‖ +

m∑

k=0

‖Uk(t)(I − P )‖

6 Cetβn,ε +

m∑

k=0

e(ω(U)+ε)tM̃k+1‖K‖k t
k

k!

6 Meβn,εt,

where

M = sup
t>0

(
C + e(ω(U)−Re λn+1)t

m∑

k=0

M̃k+1‖K‖k t
k

k!

)
.

This completes the proof. �

3. Application to transport equation

The goal of this section is to apply our result (Theorem 2.1) to the following initial

boundary value problem originally introduced by M.Rotenberg [14]:

(3.1)





∂ψ

∂t
(µ, v, t) = − v

∂ψ

∂µ
(µ, v, t) −

[ ∫ b

a

r(µ, v, v′) dv′
]
ψ(µ, v, t)

+

∫ b

a

r(µ, v, v′)ψ(µ, v′, t) dv′

= TKψ(µ, v, t) +Bψ(µ, v, t) := AKψ(µ, v, t),

ψ(µ, v, 0) = ψ0(u, v),

with the following boundary operator:

vψ(0, v, t) = p

∫ b

a

κ(v, v′)v′ψ(1, v′, t) dv′,

where µ ∈ [0, 1], v, v′ ∈ [a, b] with 0 < a < b <∞, p > 0 denotes the medium number

of daughter cells which are descended from mother cells and κ(·, ·) is the kernel of

correlation which satisfies the normalization condition:

∫ b

a

κ(v, v′) dv = 1.

Eq. (3.1) describes the growth and the density of the cell population as a function

of the degree of maturity µ, the maturation velocity v and time t. The degree of

maturity µ is defined so that µ = 0 at birth and µ = 1 at death.
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The function r(·, ·, ·) denotes the transition rate at which cells change their ve-

locities from v to v′. We denote by σ(·, ·) the total transition cross section in

L∞([0, 1] × [a, b]), defined by

σ(µ, v) =

∫ b

a

r(µ, v, v′) dv′.

We begin by introducing the different notations and preliminaries which we shall

need in the sequel. Let us first precise the functional setting of the problem:

Let

X := L1([0, 1]× [a, b]; dµ dv).

We denote by X0 and X1 the following boundary spaces:

X0 := L1({0} × [a, b]; v dv),

X1 := L1({1} × [a, b]; v dv),

endowed with their natural norms.

Let W be the space defined by

W =
{
ψ ∈ X ; v

∂ψ

∂µ
∈ X

}
.

It is well known (see [6]) that any ψ in W has traces on the spatial boundary {0}

and {1} which belong to the spaces X0 and X1, respectively.

Let K be the following boundary operator:




K : X1 → X0,

ψ 7→
p

v

∫ b

a

κ(v, v′)ψ(1, v′)v′ dv′.

Consider the transport operator AK := TK + B, where TK is the free streaming

operator defined by:





TK : D(TK) ⊆ X → X,

ψ 7→ TKψ(u, v) = −v
∂ψ

∂µ
(u, v) − σ(u, v)ψ(u, v),

D(TK) = {ψ ∈ W ; ψ0 = Kψ1},

where ψ0 := ψ(0, v), ψ1 := ψ(1, v), v ∈ [a, b], and the collision operator B (the

integral part of AK) is a bounded partially integral operator on X defined by:

(3.2)





B : X → X,

ψ 7→

∫ b

a

r(µ, v, v′)ψ(µ, v′, t) dv′.

For more information on this model, see, for example, [3] and [14].
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Now, we shall give the expression of the resolvent (λ− TK)−1. To do so, we need

to determine the solution of the operator equation (λ − TK)ψ = g, where λ ∈ C, ψ

must belong to D(TK) and g is a given function in X .

Let σ = ess inf σ(·, ·). For Reλ > −σ, a simple calculation leads to

ψ(u, v) = ψ(0, v) exp

(
−1

v

∫ µ

0

(λ+ σ(µ′, v)) dµ′

)

+
1

v

∫ µ

0

exp

(
−1

v

∫ µ

µ′

(λ + σ(τ, v)) dτ

)
g(µ′, v) dµ′,

and therefore,

ψ1 = ψ(0, v) exp

(
−1

v

∫ 1

0

(λ+ σ(µ′, v)) dµ′

)

+
1

v

∫ 1

0

exp

(
−1

v

∫ 1

µ′

(λ+ σ(τ, v)) dτ

)
g(µ′, v) dµ′.

Observe that the operator B acts only on the maturation velocity v′, so µ may be

viewed merely as a parameter in [0, 1]. Hence, we may consider B as a function

B : [0, 1] → L(L1([a, b], dv)),

µ→ B(µ).

For our subsequent analysis, we introduce the following operators:





Pλ : X0 → X1,

u 7→ (Pλu)(0, v) := u(0, v) exp

(
−1

v

∫ 1

0

(λ+ σ(µ′, v)) dµ′

)
,

and




Qλ : X0 → X,

u 7→ (Qλu)(0, v) := u(0, v) exp

(
−1

v

∫ µ

0

(λ+ σ(µ′, v)) dµ′

)
.

The operators Pλ and Qλ are bounded and satisfy the following estimates:

(3.3) ‖Pλ‖ 6 e(−1/b)(Re λ+σ)

and

(3.4) ‖Qλ‖ 6
1

Reλ+ σ
.
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Let Πλ and Rλ denote the following operators:





Πλ : X → X1,

g 7→ (Πλg)(µ, v) :=
1

v

∫ 1

0

exp

(
−1

v

∫ 1

µ′

(λ+ σ(τ, v)) dτ

)
g(µ′, v) dµ′,

and





Rλ : X → X,

g 7→ (Rλg)(µ, v) :=
1

v

∫ µ

0

exp

(
−1

v

∫ µ

µ′

(λ+ σ(τ, v)) dτ

)
g(µ′, v) dµ′.

By using [9], a straightforward calculation using Hölder’s inequality shows that Πλ

and Rλ are bounded and satisfy:

(3.5) ‖Πλ‖ 6 1

and

(3.6) ‖Rλ‖ 6
1

Reλ+ σ
.

In the sequel, we shall use the following definition:

Definition 3.1. The collision operator B defined in (3.2) is said to be regular

operator if {r(µ, ·, v′), (µ, v′) ∈ [0, 1] × [a, b]} is a relatively weak compact subset of

L1([a, b], dv).

Theorem 3.1. We assume that the collision operator B is non-negative, regular

and the boundary operator K is positive. Let λ := sup{Reλ ; λ ∈ σ(TK)} be the

leading eigenvalue of the operator TK . Then, for any λ ∈ C such that Reλ > λ, the

operator (λ− TK)−1B is weakly compact on X .

P r o o f. Let λ0 denote the real number defined by:

λ0 :=

{
−σ if ‖K‖ 6 1,

−σ + b log(‖K‖) if ‖K‖ > 1.

Let λ ∈ C be such that Reλ > λ0, by virtue of the proof of Theorem 3.1 in [9], we

can write

(λ− TK)−1B = QλK(I − PλK)−1ΠλB +RλB.
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So, by using relations (3.4), (3.5), and (3.6), we have

‖(λ− TK)−1B‖ 6 ‖Qλ‖ ‖K‖
‖Πλ‖

1− ‖PλK‖
‖B‖ + ‖Rλ‖ ‖B‖

6
1

Reλ+ σ

(
‖K‖

1 − ‖Pλ‖‖K‖
+ 1

)
‖B‖.

Let ε > 0. For Reλ > λ0 + ε we have in view of (3.3)

‖(λ− TK)−1B‖ 6
1

ε

(
‖K‖

1 − e−ε/b‖K‖
+ 1

)
‖B‖.

So, (λ− TK)−1B depends continuously on B, uniformly on {λ ∈ C ; Reλ > λ0 + ε}.

According to [11, Theorem 2.4] and [2, Proposition 2.1 (i)], it suffices to prove the

result when B is dominated by a rank-one operator in L(L1([a, b], dv)). Moreover,

by [2, Remark 2.2] and [2, Proposition 2.1 (ii)], we may assume that B itself is a

rank-one collision operator in L(L1([a, b], dv)). This asserts that B has kernel

κ(u, v) = κ1(u)κ2(v); κ1(·) ∈ L1([a, b]), κ2(·) ∈ L∞([a, b]).

To conclude, it suffices to show that QλK(I − PλK)−1ΠλB and RλB are weakly

compact on X . We claim that ΠλB and RλB are weakly compact on X . Consider

ψ ∈ X

(ΠλBψ)(v) =
1

v

∫ 1

0

exp

(
−1

v

∫ 1

µ′

(λ+ σ(τ, v)) dτ

)
Bψ(µ′, v) dµ′

=
1

v

∫ 1

0

∫ 1

−1

exp

(
−1

v

∫ 1

µ′

(λ + σ(τ, v)) dτ

)
κ1(u)κ2(v)ψ(µ′, v) dµ′ dv

= JλUλψ,

where Uλ and Jλ denote the following bounded operators:





Uλ : X → L1([0, 1], dµ′),

ψ 7→

∫ 1

−1

κ2(v)ψ(µ′, v) dv,

and





Jλ : L1([0, 1], dµ′) → X0,

ϕ 7→
1

v

∫ 1

0

exp

(
−1

v

∫ 1

µ′

(λ + σ(τ, v)) dτ

)
κ1(u)ϕ(µ′) dµ′.
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It is now sufficient to show that Jλ is weakly compact. To do so, let O be a bounded

set of L1([0, 1], dµ′) and let ϕ ∈ O. We have
∫

E

|Jλϕ(v)| |v| dv 6 ‖ϕ‖

∫

E

|κ1(u)| du,

for all measurable subsets E of [0, 1]. Next, applying [5, Corollary 11, page 294], we

infer that the set Jλ(O) is weakly compact, since lim
|E|→0

∫
E
|κ1(u)| du = 0, where |E|

is the measure of E. This completes the proof. �

It is well known that the streaming operator TK generates a strongly continuous

positive semigroup (Ũ(t))t>0 onX (see, for example, [6]). Since the collision operator

B is bounded and positive, the transport operator AK generates also a strongly

continuous positive semigroup (Ṽ (t))t>0 onX given by the Dyson-Phillips expansion.

Theorem 3.2. We assume that the collision operator B is non-negative, regular

and the boundary operator K is positive. Then, the following assertions hold:

(i) σ(AK) ∩ {λ ∈ C ; Reλ > Reλ} consists at most of a countable set of isolated

points λk. Each λk is an eigenvalue of finite multiplicity and is a pole for the

resolvent (λ−AK)−1.

(ii) For w > 0, let σ(AK) ∩ {Reλ > Reλ + w} = {λ1, λ2, . . . , λn}, let β1 =

sup{Reλ, λ ∈ σ(AK) and Reλ < Reλ+ w} and β2 = min{Reλj ; 1 6 j 6 n}.

Clearly β1 < β2. Let β
∗ be such that β1 < β∗ < β2 and ψ0 ∈ D(AK). Then,

the solution ψ(t) of the Cauchy problem (3.1) is given by:

ψ(t) = R(t) +

n∑

j=1

eλjtetDjPjψ0,

where

R(t) = lim
γ→+∞

1

2iπ

∫ β∗+iγ

β∗−iγ

eλt(λ−AK)−1ψ0 dλ

and where Pj and Dj are, respectively, the spectral projection and the nilpotent

operator associated with the eigenvalue λj .

P r o o f. (i) By Theorem 3.1, (λ − TK)−1B is weakly compact. Since the

space X := L1([0, 1] × [a, b] ; dµ dv) has the Dunford-Pettis property (see [4]), the

use of [8, Lemma 2.1] affirms that [(λ − TK)−1B]2 is compact. Hence, if we con-

sider Q(X) = aX2 a complex polynomial with a 6= 0, then, for any w > −Reλ,

(λ − TK)−1Q(Bλ) is compact in {λ ∈ C ; Reλ > w}. By virtue of Proposition 2.1,

σ(AK) ∩ {λ ∈ C ; Reλ > Reλ} consists of, at most, isolated eigenvalues with finite

algebraic multiplicities.

(ii) The result follows immediately from Proposition 2.1. �
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Theorem 3.3. Assume that the hypotheses of Theorem 3.2 hold true. Then for

any ε > 0, there exists a positive constant M such that

‖Ṽ (t)(I − P )‖ 6 Me(Re λn+1+ε)t ∀t > 0.

P r o o f. Let w > Reλ. It follows from [2, Theorem 2.2 (ii)] that there exists

C(w) such that |Imλ| ‖(λ − TK)−1B‖ is bounded on ∆w := {λ ∈ C ; Reλ > w,

|Imλ| > C(w)}. On the other hand, by virtue of the assumptions on K and B,

it follows from [12, Lemma 1.1] that ‖(λ − AK)−1‖ is uniformly bounded on {λ ∈

C ; Reλ > Reλ+ w, |Imλ| > C(w)}. Then, by the relation

|Imλ| ‖(λ− TK)−1BλB(λ−AK)−1‖ 6 |Imλ| ‖(λ− TK)−1B‖2‖(λ−AK)−1‖,

we deduce that |Imλ| ‖(λ− TK)−1BλB(λ − AK)−1‖ is bounded on ∆w. The result

follows immediately from Theorems 2.1 and 3.2 (i). �
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