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Abstract. In this paper, we present a simultaneous subgradient algorithm for solving
the multiple-sets split feasibility problem. The algorithm employs two extrapolated factors
in each iteration, which not only improves feasibility by eliminating the need to compute
the Lipschitz constant, but also enhances flexibility due to applying variable step size.
The convergence of the algorithm is proved under suitable conditions. Numerical results
illustrate that the new algorithm has better convergence than the existing one.
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1. Introduction

The multiple-sets split feasibility problem (MSSFP), first introduced by Censor

et al. in [4], is to find a point in the intersection of a family of closed convex sets in

one space such that its image under a linear transformation be in the intersection of

another family of closed convex sets in the image space. In other words, the problem
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Higher Education of China under Grant 20123120110004, Doctoral Starting Projection of
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is to find a point x such that

(1.1) x ∈ C =
t

⋂

i=1

Ci, Ax ∈ Q =
r

⋂

j=1

Qj ,

where t and r are positive integers, Ci, i = 1, . . . , t, and Qj , j = 1, . . . , r, are closed

convex subsets of spaces RN and R
M , and A is a linear bounded operator from R

N

to RM . The MSSFP has broad applications such as image reconstruction [5], signal

processing [3] and so on. When t = 1, r = 1, the problem is called the two-sets split

feasibility problem (abbreviated as SFP). For solving the SFP or the MSSFP, many

methods have been developed, for example, the CQ algorithm [2], the relaxed CQ al-

gorithm [16] and the KM-CQ-like algorithm [11] for the SFP, the strong convergence

methods in infinite dimensional Hilbert space [12], [15], the perturbed projections and

simultaneous subgradient algorithm [6], the string-averaging algorithmic scheme [7]

and the simultaneous algorithm [8] for the MSSFP. Now, we recall the outline of the

primary algorithm proposed by Censor et al. [5] for solving the MSSFP. Define the

proximity function p(x) which measures the distance of a point to all sets

(1.2) p(x) :=
1

2

t
∑

i=1

αi‖PCi
(x) − x‖2 +

1

2

r
∑

j=1

βj‖PQj
(Ax) − Ax‖2,

where αi > 0, βj > 0 for all i and j,
t

∑

i=1

αi +
r

∑

j=1

βj = 1, and PS(x) denotes the

projection of x onto the convex set S, that is,

(1.3) PS(x) = arg min
y∈S

‖x − y‖.

With help of the proximity function (1.2), the MSSFP is converted to the constrained

optimization problem

(1.4) min{p(x) | x ∈ Ω},

where Ω ⊂ R
N is an auxiliary simple set. Censor et al. in [5] developed the following

iterative formula by using the projection gradient method for solving the MSSFP:

(1.5) xk+1 = PΩ(xk − s∇p(xk)),

where

∇p(x) =

t
∑

i=1

αi(x
k − PCi

(xk)) +

r
∑

j=1

βjA
T(Axk − PQj

(Axk)),
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0 < s < 2/L, L is the Lipschitz constant of ∇p(x) with L =
t

∑

i=1

αi + ̺(ATA)
r

∑

j=1

βj ,

̺(ATA) is the spectral radius of ATA,
t

∑

i=1

αi +
r

∑

j=1

βj = 1 with αi > 0, βj > 0.

However, the above projection method (1.5) lacks feasibility and flexibility. On

one hand, the choice of the step size s in (1.5) depends greatly on the Lipschitz

constant of ∇p(x), while the Lipschitz constant may be difficult to estimate in many

cases. On the other hand, if we know the Lipschitz constant, a method with fixed

step size may be very slow. Extrapolation, as an accelerated technique, has been

widely used to solve the convex feasibility problem [10], [12], [14], [13], [9]. It has

been shown by Pierra in [14], [13] that the step-size contained extrapolated factor is

variable and that the extrapolation parameter can be much larger than 1; this just

gives an explanation for the acceleration. Patrick et al. in [9] proposed a parallel sub-

gradient projection algorithm by introducing extrapolated over-relaxations to solve

a convex set theoretic image recovery problem (a convex feasibility problem), which

also showed fast convergence. Motivated by the extrapolated method for solving

the convex feasibility problems, in this paper we propose a simultaneous subgradient

projection algorithm to solve the MSSFP by using two extrapolated factors in one

iterative step. (The “extrapolated factor” can guarantee the next iteration xk+1 is

an intersection of a certain half line with a certain support hyperplane in the process

of constructing a sequence {xk}∞k=0 in R
n with an algorithm which contains only

extrapolated factors without other relaxed parameter, see [13, Lemma 1.2] for more

details). Hence, to a certain extent, our algorithm improves the convergence and

flexibility, and numerical results manifest the benefit of employing the extrapolated

technique.

The paper is organized as follows. Section 2 reviews some preliminaries. In Sec-

tion 3, the new simultaneous subgradient projection algorithm is proposed and its

convergence is also shown. Section 4 gives some numerical experiments. Some con-

clusions are drawn in Section 5.

2. Preliminaries

It is well known that the projection operator PS onto the convex S, for any x ∈ R
N ,

is characterized by the following two inequalities:

(1) 〈x − PS(x), z − PS(x)〉 6 0, z ∈ S;

(2) ‖PS(x) − z‖2 6 ‖x − z‖2 − ‖PS(x) − x‖2, z ∈ S.

Now we recall some concepts, lemmas and basic results.
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Definition 2.1. Let f : R
N → R be convex. The subdifferential of f at x is

defined as

(2.1) ∂f(x) = {ξ ∈ R
N | f(y) > f(x) + 〈ξ, y − x〉, ∀y ∈ R

N}.

An element of ∂f(x) is said to be a subgradient.

Lemma 2.1 ([1]). Let fi : R
N → R be convex, xn ∈ R

N . Suppose Ci = {x ∈

R
N | fi(x) 6 0} is nonempty. For any ξi,n ∈ ∂fi(x

n), define the halfspace Si by

(2.2) Si := {x ∈ R
N | fi(x

n) + 〈ξi,n, x − xi,n〉 6 0}.

Then

(a) Ci ⊂ Si;

(b) if ξi,n 6= 0, then Si is a halfspace; otherwise, Si = R
N ;

(c) PSi
(xn) = xn − (f+

i (xn)/‖ξi,n‖2)ξi,n where f+
i (xn) = max{fi(x

n), 0};

(d) d(xn, Si) = f+
i (xn)/‖ξi,n‖.

The importance of the halfspace defined in Lemma 2.1 is explained by the follow-

ing. If we want to find a point in Ci, then if fi(x
n) 6 0, then xn is such a point.

Otherwise fi(x
n) > 0, and it is usually “hard” to solve fi(x) = 0. Hence, we consider

a first-order approximation of fi, i.e.,

fi(x) ≈ f̃i(x) := fi(x
n) + 〈ξi,n, x − xn〉 for some ξi,n ∈ ∂fi(x

n),

solve f̃i(x) = 0, and we get a solution as follows:

PSi
(xn) = xn −

fi(x
n)

‖ξi,n‖2
ξi,n.

In [6], Censor proposed the following simultaneous subgradient projection algo-

rithm for MSSFP.

Algorithm 2.1. Initialization: Let x0 be arbitrary.

Iterative step: Suppose xk is the current iterative point and let

xk+1 = xk +
s

L

( t
∑

i=1

αi(PCi,k
(xk) − xk) +

r
∑

j=1

βjA
T(PQj,k

(Axk) − Axk)

)

.

Here s ∈ (0, 2), L =
t

∑

i=1

αi + ̺(ATA)
r
∑

j=1

βj , where ̺(ATA) is the spectral radius

of ATA, αi > 0, βj > 0 with
t

∑

i=1

αi +
r

∑

j=1

βj = 1 and

(2.3) Ci,k = {x ∈ R
N | ci(x

k) + 〈γi,k, x − xk〉 6 0},
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where ci : R
N → R are convex for i = 1, . . . , t, γi,k is a subgradient of ci at the point

xk, i.e., γi,k ∈ ∂ci(x
k).

(2.4) Qj,k = {h ∈ R
M | qj(Axk) + 〈ηj,k, h − Axk〉 6 0},

where qj : R
M → R are convex for j = 1, . . . , r, ηj,k ∈ ∂qj(Axk).

By the definition of the subgradient, it is clear that the halfspace Ci,k contains

Ci and the halfspace Qj,k contains Qj . Due to the specific form of Ci,k and Qj,k,

from Lemma 2.1 we know that the orthogonal projections onto Ci,k and Qj,k may

be computed directly.

3. Extrapolated subgradient projection algorithm

and its convergence

The following is our extrapolated subgradient projection algorithm.

Algorithm 3.1. For an arbitrary initial point x0, xk is the current point. Select

a parameter s such that 0 < s < 2 min{̺(ATA)/(1 + ̺(ATA)), 1/(1 + ̺(ATA))};

the next iterative point is generated by

(3.1) xk+1 = xk + sλk

t
∑

i=1

αi(PCi,k
(xk) − xk)

+ s
1

̺(ATA)
mk

r
∑

j=1

βjA
T(PQj,k

(Axk) − Axk),

where

λk =











∑t

i=1
αi‖PCi,k

(xk) − xk‖2

∥

∥

∑t

i=1
αi(PCi,k

(xk) − xk)
∥

∥

2
, if xk /∈ C,

1, otherwise;

(3.2)

mk =











∑r

j=1
βj‖(PQj,k

(Axk) − Axk)‖2

∥

∥

∑r

j=1
βj(PQj,k

(Axk) − Axk)
∥

∥

2
, if Axk /∈ Q,

1, otherwise;

(3.3)

and αi > 0, βj > 0 with
t

∑

i=1

αi +
r

∑

j=1

βj = 1, Ci,k, i = 1, . . . , t, and Qj,k, j = 1, . . . , r,

are defined by (2.3) and (2.4).

We now discuss the convergence analysis of Algorithm 3.1.
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Theorem 3.1. Assume the set of the solutions of the multiple-sets split feasibility

problem is nonempty and the subgradients of ci, i = 1, . . . , r, and qj , j = 1, . . . , t,

are uniformly bounded. Then the sequence {xk}∞k=0
generated by Algorithm 3.1

converges to a solution of the multiple-sets split feasibility problem.

P r o o f. Let z be a solution of MSSFP. Since Ci ⊂ Ci,k, we have z = PCi
(z) =

PCi,k
(z). First, we show that ‖xk+1 − z‖ 6 ‖xk − z‖ for all k. From (3.1) we have

‖xk+1 − z‖2 =

∥

∥

∥

∥

xk + sλk

( t
∑

i=1

αi(PCi,k
(xk) − xk)

)

+
s

̺(ATA)
mk

( r
∑

j=1

βjA
T(PQj,k

(Axk) − Axk)

)

− z

∥

∥

∥

∥

2

6 ‖xk − z‖2 + s2λ2
k

∥

∥

∥

∥

t
∑

i=1

αi(PCi,k
(xk) − xk)

∥

∥

∥

∥

2

+
s2

̺(ATA)
m2

k

∥

∥

∥

∥

r
∑

j=1

βj(PQj,k
(Axk) − Axk)

∥

∥

∥

∥

2

+ 2sλk

〈

xk − z,

t
∑

i=1

αi(PCi,k
(xk) − xk)

〉

+
2s

̺(ATA)
mk

〈

xk − z,

r
∑

j=1

βjA
T(PQj,k

(Axk) − Axk)

〉

+
2s2

̺(ATA)

〈

λk

( t
∑

i=1

αi(PCi,k
(xk) − xk)

)

,

mk

( r
∑

j=1

βjA
T(PQj,k

(Axk) − Axk)

)〉

.

Obviously,

2s2

̺(ATA)

〈

λk

( t
∑

i=1

αi(PCi,k
(xk) − xk)

)

, mk

( r
∑

j=1

βjA
T(PQj,k

(Axk) − Axk)

)〉

6
s2

̺(ATA)
λ2

k

∥

∥

∥

∥

t
∑

i=1

αi(PCi,k
(xk) − xk)

∥

∥

∥

∥

2

+ s2m2
k

∥

∥

∥

∥

r
∑

j=1

βj(PQj,k
(Axk) − Axk)

∥

∥

∥

∥

2

.
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Hence,

(3.4) ‖xk+1 − z‖2
6 ‖xk − z‖2 +

(

1 +
1

̺(ATA)

)

s2λ2
k

∥

∥

∥

∥

t
∑

i=1

αi(PCi,k
(xk) − xk)

∥

∥

∥

∥

2

+
(

1 +
1

̺(ATA)

)

s2m2
k̺(ATA)

∥

∥

∥

∥

r
∑

j=1

βj(PQj,k
(Axk) − Axk)

∥

∥

∥

∥

2

+ 2sλk

〈

xk − z,

t
∑

i=1

αi(PCi,k
(xk) − xk)

〉

+
2s

̺(ATA)
mk

〈

xk − z,

r
∑

j=1

βjA
T(PQj,k

(Axk) − Axk)

〉

.

By the property of the projection (1), we get

t
∑

i=1

αi〈PCi,k
(xk) − z, PCi,k

(xk) − xk〉 6 0.

Then

(3.5)

〈

xk − z,
t

∑

i=1

αi(PCi,k
(xk) − xk)

〉

6 −
t

∑

i=1

αi‖PCi,k
(xk) − xk‖2.

Noticing that Az ∈ Q ⊂ Qj,k, j = 1, . . . , r, similarly to the above argument we

obtain

(3.6)

〈

xk − z,

r
∑

j=1

βjA
T(PQj,k

(Axk) − Axk)

〉

6 −

r
∑

j=1

βj‖PQj,k
(Axk) − Axk‖2.

By (3.5) and (3.6), (3.4) reads

(3.7) ‖xk+1 − z‖2
6 ‖xk − z‖2 +

(

1 +
1

̺(ATA)

)

s2λ2
k

∥

∥

∥

∥

t
∑

i=1

αi(PCi,k
(xk) − xk)

∥

∥

∥

∥

2

+
(

1 +
1

̺(ATA)

)

s2m2
k

∥

∥

∥

∥

r
∑

j=1

βj(PQj,k
(Axk) − Axk)

∥

∥

∥

∥

2

− 2sλk

t
∑

i=1

αi‖PCi,k
(xk) − xk‖2 −

2s

̺(ATA)
mk

r
∑

j=1

βj‖PQj,k
(Axk) − Axk‖2.

When xk /∈ C, Axk /∈ Q, we know that

λk =

∑t

i=1
αi‖PCi,k

(xk) − xk‖2

∥

∥

∑t

i=1
αi(PCi,k

(xk) − xk)
∥

∥

2
, mk =

∑r

j=1
βj‖(PQj,k

(Axk) − Axk)‖2

∥

∥

∑r

j=1
βj(PQj,k

(Axk) − Axk)
∥

∥

2
.

43



Substituting these values into the above inequality (3.7), we conclude that

(3.8) ‖xk+1 − z‖2
6 ‖xk − z‖2

− s
(

2 −
(

1 +
1

̺(ATA)

)

s
)

(
∑t

i=1
αi‖PCi,k

(xk) − xk‖2
)2

∥

∥

∑t

i=1
αi(PCi,k

(xk) − xk)
∥

∥

2

− s
( 2

̺(ATA)
−

(

1 +
1

̺(ATA)

)

s
)

(
∑r

j=1
βj‖(PQj,k

(Axk) − Axk)‖2
)2

∥

∥

∑r

j=1
βj(PQj,k

(Axk) − Axk)
∥

∥

2
.

When xk ∈ C, Axk /∈ Q, λk = 1,

mk =

∑r

j=1
βj‖(PQj,k

(Axk) − Axk)‖2

∥

∥

∑r

j=1
βj(PQj,k

(Axk) − Axk)
∥

∥

2
,

from (3.7) we get

(3.9) ‖xk+1 − z‖2
6 ‖xk − z‖2

− s
( 2

̺(ATA)
−

(

1 +
1

̺(ATA)

)

s
)

(
∑r

j=1
βj‖(PQj,k

(Axk) − Axk)‖2
)2

∥

∥

∑r

j=1
βj(PQj,k

(Axk) − Axk)
∥

∥

2
.

Similarly, when xk /∈ C, Axk ∈ Q, we have

(3.10) ‖xk+1 − z‖2
6 ‖xk − z‖2

− s
(

2 −
(

1 +
1

̺(ATA)

)

s
)

(
∑t

i=1
αi‖PCi,k

(xk) − xk‖2
)2

∥

∥

∑t

i=1
αi(PCi,k

(xk) − xk)
∥

∥

2
.

From 0 < s < 2 min{̺(ATA)/(1 + ̺(ATA)), 1/(1 + ̺(ATA))} and (3.8)–(3.10), we

get

‖xk+1 − z‖ < ‖xk − z‖, z ∈ C, Az ∈ Q.

Evidently, both {xk} and {‖xk − z‖} are bounded.

In what follows, we will prove that lim
k→∞

xk = x∗ with x∗ ∈ C and Ax∗ ∈ Q. Since

the sequence {‖xk − z‖} is monotonically decreasing and bounded, we may assume

that it has a limit, i.e.

(3.11) lim
k→∞

‖xk − z‖ = d,

which combined with (3.8)–(3.10) implies

(3.12) lim
k→∞

(
∑t

i=1
αi‖PCi,k

(xk) − xk‖2
)2

∥

∥

∑t

i=1
αi(PCi,k

(xk) − xk)
∥

∥

2
= 0
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and

(3.13) lim
k→∞

(
∑r

j=1
βj‖(PQj,k

(Axk) − Axk)‖2
)2

∥

∥

∑r

j=1
βj(PQj,k

(Axk) − Axk)
∥

∥

2
= 0.

By the property of projection (2), we get ‖PCi
(xk)−xk‖ 6 ‖xk−z‖ and ‖PQj

(Axk)−

Axk‖ 6 ‖Axk − Az‖. Hence, we may assume that there exist two constants W , T

such that
∥

∥

∥

∥

t
∑

i=1

αi(PCi
(xk) − xk)

∥

∥

∥

∥

2

6 W

and
∥

∥

∥

∥

r
∑

j=1

βjA
T(PQj

(Axk) − Axk)

∥

∥

∥

∥

2

6 T.

Thus, we obtain

(
∑t

i=1
αi‖PCi,k

(xk) − xk‖2
)2

∥

∥

∑t

i=1
αi(PCi,k

(xk) − xk)
∥

∥

2
>

(
∑t

i=1
αi‖PCi,k

(xk) − xk‖2
)2

W
> 0

and

(
∑r

j=1
βj‖(PQj,k

(Axk) − Axk)‖2
)2

∥

∥

∑r

j=1
βj(PQj,k

(Axk) − Axk)
∥

∥

2
>

(
∑r

j=1
βj‖(PQj,k

(Axk) − Axk)‖2
)2

T
> 0.

Taking their limits as k → ∞, due to (3.12) and (3.13) we conclude

lim
k→∞

t
∑

i=1

αi‖PCi,k
(xk) − xk‖2 = 0

and

lim
k→∞

r
∑

j=1

βj‖PQj,k
(Axk) − Axk‖2 = 0,

which implies

(3.14) lim
k→∞

‖PCi,k
(xk) − xk‖ = 0, i = 1, . . . , t

and

(3.15) lim
k→∞

‖PQj,k
(Axk) − Axk‖ = 0, j = 1, . . . , r.
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Altogether, Lemma 2.1, (3.14) and (3.15) result in

lim
k→∞

c+
i (xk)

‖γi,k‖
= 0 for all i = 1, . . . , t

and

lim
k→∞

q+
j (Axk)

‖ηj,k‖
= 0 for all j = 1, . . . , r,

where γi,k ∈ ∂ci(x
k) and ηj,k ∈ ∂qj(Axk).

By the assumption of uniform boundedness of the subgradients, it is easy to get

(3.16) lim
k→∞

c+
i (xk) = 0 for all i = 1, . . . , t

and

(3.17) lim
k→∞

q+
j (Axk) = 0 for all j = 1, . . . , r.

Since the sequence {xk} is bounded, we may assume that x∗ is an accumulation point

of {xk}, Ax∗ is an accumulation point of {Axk}. Let {xkl} be a subsequence of {xk}

and lim
l→∞

xkl = x∗, and let {Axkl} be the corresponding subsequence of {Axk} and

lim
l→∞

Axkl = Ax∗. From (3.16) and (3.17) it is easy to see that

lim
kl→∞

c+
i (xkl) = 0 for all i = 1, . . . , t

and

lim
kl→∞

q+
j (Axkl) = 0 for all j = 1, . . . , r.

By continuity of ci, i = 1, . . . , t, we have c+
i (x∗) = 0, i = 1, . . . , t, thus x∗ ∈ C. By

continuity of qj , j = 1, . . . , r, we have q+
j (Ax∗) = 0, j = 1, . . . , r, then Ax∗ ∈ Q.

Replacing z by x∗ in (3.11) leads to

lim
k→∞

‖xk − x∗‖ = d,

furthermore,

lim
k→∞

‖Axk − Ax∗‖ = Ad.

Now

lim
l→∞

‖xkl − x∗‖ = lim
l→∞

‖Axkl − Ax∗‖ = 0.

Therefore, lim
k→∞

‖xk − x∗‖ = lim
k→∞

‖Axk −Ax∗‖ = 0. This completes the proof of the

theorem.
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4. Numerical experiments

The following Tables 1–2 list the numerical results of Example 4.1, Figures 1–2

show the numerical results of Example 4.2. We denote the number of iterations

and the CPU time in seconds by “Iter.”, “Sec.”, respectively, and denote e0 =

(0, 0, . . . , 0) ∈ R
N and e1 = (1, 1, . . . , 1) ∈ R

N . For convenience, we choose s =

α min{̺(ATA)/(1 + ̺(ATA)), 1/(1 + ̺(ATA))} in Algorithm 3.1, and replace s by

α in Algorithm 2.1; obviously, α ∈ (0, 2), and we take the weights to be 1/(r + t) for

both Algorithm 3.1 and Algorithm 2.1. The stopping criterion is p(x) < ε = 10−4,

where p(x) is defined to be (1.2).

E x am p l e 4.1. We consider the following multiples-sets split feasibility problem,

where

A =









2 −1 3 2 3

1 2 5 2 1

2 0 2 1 −2

2 −1 0 −3 5









and
C1 = {x ∈ R

5 ; x2
1 + x2

2 6 0.25};

C2 = {x ∈ R
5 ; x2

2 + x2
3 6 0.25};

C3 = {x ∈ R
5 ; x2

3 + x2
4 6 0.25};

C4 = {x ∈ R
5 ; x2

4 + x2
5 6 0.25};

C5 = {x ∈ R
5 ; x2

1 + x2
5 6 0.25},

and Q = {x ∈ R
4 ; x 6 d} with d = (1, 1, 1, 1).

Consider the following three cases:

Case I: x0 = (1,−1, 1,−1, 1);

Case II: x0 = (1, 1, 1, 1, 1);

Case III: x0 = (5, 0, 5, 0, 5).

The number of iterative steps needed, the CPU time in seconds, the corresponding

solution x∗ and the value of p(x∗) for Example 4.1 for Cases I–III by Algorithm 2.1

and Algorithm 3.1 are shown in Tables 1–3, respectively.

From Tables 1–3, we find that for some of the above cases Algorithm 3.1 reaches the

solution set in finitely many steps, while Algorithm 2.1 reaches the point needed with

the desired error. Hence, Algorithm 3.1 has better convergence than Algorithm 2.1.

E x am p l e 4.2. We consider a multiple-set split feasibility problem where A =

(aij)N×N ∈ R
N×N , and aij ∈ (0, 1) are generated randomly:

Ci = {x ∈ R
N ; ‖x − ie1‖

2
6 (10 + 2i)2}, i = 1, 2, . . . , t;

Qj = {x ∈ R
N ; (25 − j)e1 6 x 6 (25 + j)e1}, j = 1, 2, . . . , r,
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Algorithm Algo. 2.1 Algo. 3.1 Algo. 2.1 Algo. 3.1 Algo. 2.1 Algo. 3.1
α 1.0 1.0 0.6 0.6 1.6 1.6

Iter. 1399 47 2354 93 862 21
Sec. 0.864 0.083 1.371 0.101 0.799 0.052
x∗ (0.0973, (0.0844, (0.0968, (0.0882, (0.0981, (0.0892,

−0.4201, −0.4026, −0.4192, −0.4168, −0.4214, 0,−0.3318,
0.2962, 0.2991, 0.2968, 0.2921, 0.2952, 0.2603,
−0.4521, −0.4446, −0.4519, −0.4488, −0.4523, −0.4513,
−0.2355) −0.2354) −0.2350) −0.2381) −0.2364) −0.2493)

p(x∗) 9.9912·10−5 6.7174·10−5 9.9905·10−5 7.3366·10−5 9.9858·10−5 3.6655·10−5

Table 1. The numerical results of Example 4.1 for Case I.

Algorithm Algo. 2.1 Algo. 3.1 Algo. 2.1 Algo. 3.1 Algo. 2.1 Algo. 3.1
α 1.0 1.0 0.6 0.6 1.6 1.6

Iter. 769 18 1283 43 480 11
Sec. 0.762 0.045 0.824 0.071 0.331 0.031
x∗ (0.3265, (0.3163, (0.3270, (0.3269, (0.3257, (0.3010,

0.4241, 0.3975, 0.4239, 0.4225, 0.4245, 0.3901,
−0.3108, −0.3057, −0.3108, −0.3150, −0.3107, −0.3040,
0.3721 0.3791 0.3715 0.3786 0.3731 0.3720
0.3294) 0.3156) 0.3204) 0.3193) 0.3203) 0.3188)

p(x∗) 9.9968·10−5 3.3485·10−5 9.9848·10−5 9.9546·10−5 9.9988·10−5 0

Table 2. The numerical results of Example 4.1 for Case II.

Algorithm Algo. 2.1 Algo. 3.1 Algo. 2.1 Algo. 3.1 Algo. 2.1 Algo. 3.1
α 1.0 1.0 0.6 0.6 1.6 1.6

Iter. 724 15 1204 37 454 9
Sec. 0.732 0.039 0.811 0.071 0.310 0.025
x∗ (0.4768, (0.4437, (0.4770, (0.4543, (0.4765, (0.4040,

0.2394, 0.2452, 0.2401, 0.2444, 0.2383, 0.2001
−0.2368, −0.3001, −0.2329, −0.3043, −0.2428, −0.2300,
−0.4246 −0.4257 −0.4215 −0.4311 −0.4287 −0.4011
−0.2266) −0.2263) −0.2248) −0.2303) −0.2290) −0.2019)

p(x∗) 9.9563·10−5 2.5864·10−5 9.9819·10−5 5.8547·10−5 9.9264·10−5 0

Table 3. The numerical results of Example 4.1 for Case III.

where ie1 ∈ R
N is the center of the ball Ci, 10 + 2i is the radius of the ball Ci. We

test the algorithms with different t and r in different dimensional Euclidean space.

We take e0 as the initial point in this example.

The number of iterative steps needed and the CPU time in seconds for Example 4.2

with N = 20, t = 5, r = 5 for different α by Algorithm 2.1 and Algorithm 3.1 are

shown in Figure 1 (a) and Figure 1 (b), respectively. The number of iterative steps

needed and the CPU time in seconds for Example 4.2 with N = 40, t = 10, r = 15
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Figure 1. The numerical results of Example 4.2 (N = 20, t = 5, r = 5) by Algorithm 2.1
and Algorithm 3.1.
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Figure 2. The numerical results of Example 4.2 (N = 40, t = 10, r = 15) by Algorithm 2.1
and Algorithm 3.1.

for different α by Algorithm 2.1 and Algorithm 3.1 are shown in Figure 2 (a) and

Figure 2 (b), respectively.

From Figures 1–2, we see that the computational burden of Algorithm 3.1 is lighter

than that of Algorithm 2.1, especially in higher dimensional space. This shows

that using the extrapolated technique to solve the MSSFP in higher dimensions is

promissing.
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5. Concluding remarks

This paper presents a new simultaneous subgradient projection algorithm for the

MSSFP. The advantage of Algorithm 3.1 over Algorithm 2.1 resides in its ability to

use larger relaxations which means that Algorithm 3.1 converges in fewer iterations

and that the computational cost of each iteration is lower due to not compute Lip-

schitz constant. On the other hand, Algorithm 3.1 is more flexible than Algorithm 2.1

in that it possesses a variable step size at each iteration.

A c k n ow l e d gm e n t. The authors are grateful to the anonymous referee for

his/her valuable suggestions and comments.
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