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Abstract. We present a simple and effective scheme for forming iterative methods of
various convergence orders. In this scheme, methods of various convergence orders, such as
four, six, eight and ten, are formed through a modest modification of the classical Newton
method. Since the scheme considered is a simple modification of the Newton method, it
can be easily implemented in existing software packages, which is also suggested by the
presented pseudocodes. Finally some problems are solved, to very high precision, through
the proposed scheme. Numerical work suggests that the presented scheme requires less
number of function evaluations for convergence and it may be suitable in high precision
computing.
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1. Introduction

The most common and probably the most used method for finding a simple root

γ, i.e. f(γ) = 0, of a nonlinear scalar equation

(1.1) f(x) = 0,

is the Newton method. The classical Newton method is given as

(1.2) xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, 3, . . .
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It is well documented and well known that the Newton method converges quadrat-

ically (see [1], [3], [4], [6]–[9], [11]–[13], [17]–[24], [26], [27], [29]–[31] and references

therein). There exist many modifications of the Newton method to improve the

convergence order [1], [3], [4], [6]–[9], [11]–[24], [26], [27], [29]–[31]. Higher order

modifications of the Newton method which are free of the second or higher deriva-

tives have been actively researched. For example, third order convergent methods

free of the second or higher derivatives are presented in [8], [9], [19], [23], fourth

order convergent methods are developed in [1], [4], [6], [7], [17], [18], [20], [21], [27],

[29], sixth order methods are developed in [5], [25], [28] and eighth order methods

are presented in [10] and references therein.

There exist various modifications of the Newton method. The main drawback, of

these powerful methods, from the implementation point of view is their independent

nature. For example, if one has a software package which solves nonlinear equations

by the well-known fourth order Jarrat method [13], then one may find it difficult to

modify this package to implement sixth order methods [5], [25], [28] or the eighth

order methods [10].

In this work, we develop a scheme that improves the order of convergence of the

Newton method (1.2) from 2 to 2 × m. Here m = 1, 2, 3, . . . The choice m = 1 will

result in the classical Newton method. Thus through our scheme, one may develop

4th order, 6th order, 8th order, . . . convergent iterative methods. One of the beautiful

facts of our scheme is that one needs modest modifications in the most used classical

Newton iterative method (1.2) for achieving higher convergence rates. It may be

very effective when one wants to modify an existing software package for achieving

higher convergence order. Let us now develop our scheme.

2. The technique and convergence order of its various methods

Before presenting our technique, first we will develop iterative methods of various

convergence orders. Consider the 4th order convergent iterative method

yn = xn −
f(xn)

f ′(xn)
,(2.1)

xn+1 = xn −
f(xn)

f ′(xn)

[

1 +
f(yn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)]

.(2.2)

The error equation for the above method is given as

(2.3) en+1 = −
1

12

c2(12c3c1 − 60c2
2)

c3
1

e4
n + O(e5

n).
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Here, ck = fk(γ)/k!, en = xn − γ, and γ is a simple root of f(x). A proof of

convergence of the above fourth order method is presented next.

P r o o f. Using the Taylor series of f(x) around the solution γ and taking into

account that f(γ) = 0, we get

(2.4) f(xn) =

∞
∑

k=1

ckek
n.

Furthermore, from the equation (2.4) we have

(2.5) f ′(xn) =

∞
∑

k=1

kckek−1
n ,

and through a simple calculation we arrive at

(2.6)
f(xn)

f ′(xn)
= en −

c2

c1

e2
n − 2

c3c1 − c2
2

c2
1

e3
n −

3c4c
2
1 − 7c2c3c1 + 4c3

2

c3
1

e4
n + O(e5

n).

Substituting (2.6) in (2.1) yields

(2.7) yn − γ =
c2

c1

e2
n + 2

c3c1 − c2
2

c2
1

e3
n +

3c4c
2
1 − 7c2c3c1 + 4c3

2

c3
1

e4
n + O(e5

n).

Expanding f(yn) around the solution γ and using (2.7), we obtain

(2.8) f(yn) = c2e
2
n −

1

6

−12c3c1 + 12c2
2

c1

e3
n

+
1

24

72c4c
2
1 − 168c2c3c1 + 120c3

2

c2
1

e4
n + O(e5

n).

From equations (2.4) and (2.8) we get

(2.9)
f(yn)

f(xn)
=

c2

c1

en +
2c3c1 − 3c2

2

c2
1

e2
n −

−3c4c
2
1 + 10c2c3c1 − 8c3

2

c3
1

e3
n + O(e4

n).

Now from equations (2.6), (2.9), and (2.2) we find that

(2.10) en+1 = −
c2(−5c2

2 + c3c1)

c3
1

e4
n + O(e5

n).

This proves that the method (2.2) converges quartically. �
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Let us now consider the three step and sixth order convergent iterative method

(2.11)



































yn = xn −
f(xn)

f ′(xn)
,

zn = xn −
f(xn)

f ′(xn)

[

1 +
f(yn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)]

,

xn+1 = xn −
f(xn)

f ′(xn)

[

1 +
f(yn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)

+
f(zn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)]

.

The error equation for the above sixth order method is given as

en+1 =
c2(−11c3c1c

2
2 + 30c4

2 + c2
3c

2
1)

c5
1

e6
n + O(e7

n).

The convergence order of the above method can be easily established through the

Maple software package. We notice that the method (2.11) requires evaluations of

only three functions and one derivative during each iterative step. Let us now further

consider the eighth order convergent iterative method

(2.12)











































































yn = xn −
f(xn)

f ′(xn)
,

zn = xn −
f(xn)

f ′(xn)

[

1 +
f(yn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)]

,

pn = xn −
f(xn)

f ′(xn)

[

1 +
f(yn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)

+
f(zn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)]

,

xn+1 = xn −
f(xn)

f ′(xn)

[

1 +
f(yn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)

+
f(zn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)

+
f(pn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)]

.

The asymptotic error equation for the above eight order method is given as

en+1 =
c2(180c6

2 − 96c3c1c
4
2 + 17c2

3c
2
1c

2
2 − c3

3c
3
1)

c7
1

e8
n + O(e9

n).

We notice that the eighth order method (2.12) requires evaluations of only four

functions and one derivative during each iterative step. Based upon the similarity
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in methods (2.2), (2.11), and (2.12), let us consider the method

(2.13)



















































































































yn = xn −
f(xn)

f ′(xn)
,

zn = xn −
f(xn)

f ′(xn)

[

1 +
f(yn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)]

,

pn = xn −
f(xn)

f ′(xn)

[

1 +
f(yn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)

+
f(zn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)]

,

qn = xn −
f(xn)

f ′(xn)

[

1 +
f(yn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)

+
f(zn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)

+
f(pn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)]

,

xn+1 = xn −
f(xn)

f ′(xn)

[

1 +
f(yn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)

+
f(zn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)

+
f(pn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)

+
f(qn)

f(xn)

(

1 + 2
f(yn)

f(xn)

)]

.

Through the Maple we verified that the above method is 10th order convergent, and

the error equation for it is given as

en+1 =
c2

c9
1

(1080c8
2 − 756c3c1c

6
2 + 198c2

3c
2
1c

4
2 − 23c3

3c
3
1c

2
2 + c4

3c
4
1)e

10
n + O(e11

n ).

We notice that the above tenth order method (2.13) requires evaluations of only

five functions and one derivative per iterative step. Based upon the methods (2.2),

(2.11), (2.12), and (2.13), we conjecture the existence of the following scheme for

generating the iterative method of order 2 × m:

y1 = xn −
f(xn)

f ′(xn)
,

y2 = x −
f(xn)

f ′(xn)

[

1 +
f(y1)

f(xn)

(

1 + 2
f(y1)

f(xn)

)]

,

y3 = xn −
f(xn)

f ′(xn)

[

1 +
f(y1)

f(xn)

(

1 + 2
f(y1)

f(xn)

)

+
f(y2)

f(xn)

(

1 + 2
f(y1)

f(xn)

)]

,























































































y4 = xn −
f(xn)

f ′(xn)

[

1 +
f(y1)

f(xn)

(

1 + 2
f(y1)

f(xn)

)

+
f(y2)

f(xn)

(

1 + 2
f(y1)

f(xn)

)

(2.14)

+
f(y3)

f(x)

(

1 + 2
f(y1)

f(xn)

)]

,

...
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























































ym−1 = xn −
f(xn)

f ′(xn)

[

1 +
f(y1)

f(xn)

(

1 + 2
f(y1)

f(xn)

)

+ . . . +
f(ym−2)

f(xn)

(

1 + 2
f(y1)

f(xn)

)]

,

xn+1 = xn −
f(xn)

f ′(xn)

[

1 +
f(y1)

f(xn)

(

1 + 2
f(y1)

f(xn)

)

+ . . . +
f(ym−1)

f(xn)

(

1 + 2
f(y1)

f(xn)

)]

.

It may be noticed that a 2 × m order method, formed by the above scheme, will

require m functions f(xn) and one derivative f ′(xn) evaluation during each iterative

step. We have verified the above scheme through the Maple software package till

m = 10. We see that for m = 1, the scheme produces the classical Newton method.

Furthermore, we may notice that the above scheme is formed through a simple mod-

ification of the Newton method, and can be easily implemented in existing software

packages for achieving higher convergence orders. Algorithm 1 presents a pseudocode

for the Newton iterative method, while Algorithm 2 presents a pseudocode for the

developed scheme.

Algorithm 1 Newton iterative method

while |f(xn)| < ε or |xn+1 − xn| < ε do

xn+1 = xn − f(xn)/f ′(xn)

end while

Algorithm 2 New scheme with convergence order 2 × m

while |f(xn)| < ε or |xn+1 − xn| < ε do

xn+1 = xn − f(xn)/f ′(xn)

for i = 1 to i < m step 1 do

xn+1 = xn+1 − f(xn+1)/f ′(xn)(1 + 2f(xn+1)/f(xn))

end for

end while

Comparing Algorithms 1 and 2, we notice that the developed scheme can be easily

incorporated into existing software packages through a simple loop.
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3. Numerical work

The order of convergence ξ of an iterative method is defined as [2]

lim
n→∞

|en+1|

|en|ξ
= c 6= 0.

Here, en is the error after n iterations of a method. Through a simple calculation,

we may show that the approximate value of the computational order of convergence

(COC) ̺ is given as [2]

̺ ≈
ln|(xn+1 − γ)/(xn − γ)|

ln|(xn − γ)/(xn−1 − γ)|
.

All the computations reported here are done in the programming language C++. For

numerical precision, we are using ARPREC [32]. The ARPREC package supports

arbitrarily high level of numerical precision [32]. In the program, the precision in

decimal digits is set at 2005 with the command “mp::mp init(2005)” [32]. For conver-

gence, it is required that the distance of two consecutive approximations |xn+1 − xn|

be less than ε. And, the absolute value of the function |f(xn)|, also referred to as

residual, be less than ε. Apart from the convergence criteria, our algorithm also uses

maximum allowed iterations as stopping criterion. Thus our algorithm stops if (i)

|xn+1 − xn| < ε, (ii) |f(xn)| < ε, (iii) itr > maxitr. Here, ε = 1 × 10−300, itr is the

iteration counter for the algorithm and maxitr = 100. Algorithms 1 and 2 are tested

for the following functions [10]:

f1(x) = x5 + x4 + 4x2 − 15, γ ≈ 1.347,

f2(x) = sin(x) − x/3, γ ≈ 2.278,

f3(x) = 10xe−x2

− 1, γ ≈ 1.679,

f4(x) = cos(x) − x, γ ≈ 0.739,

f5(x) = e−x2
+x+2 − 1, γ ≈ −1.000,

f6(x) = e−x + cos(x), γ ≈ 1.746,

f7(x) = ln(x2 + x + 2) − x + 1, γ ≈ 4.152,

f8(x) = sin−1(x2 − 1) − x/2 + 1, γ ≈ 0.5948.

Here, γ is the approximate solution. We run Algorithm 2 for four values of m : m =

1, 2, 3, 4. Here, m = 1 corresponds to the classical Newton method. We choose the

same initial guess as found in the article [10]. Thus, the reader may find it easier

to compare performance of various methods presented in this work and reported in
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the article [10]. Table 1 reports the outcome of our numerical work. Table 1 reports

(iterations required, number of function evaluations needed, COC during second last

iteration) for the Newton method (m = 1), fourth order iterative method (m = 2),

sixth order iterative method (m = 3) and eighth order iterative method (m = 4).

Computational order of convergence reported in Table 1 was observed during the

second last iteration.

f(x) x0 NM(m = 1) m = 2 m = 3 m = 4

f1(x) 1.6 (9, 18, 2) (4, 12, 4) (2,8, 5.66) (2, 10, 7.6)

f2(x) 2.0 (23, 46, 2) (10, 30, 4) (7,21, 5.9) (6, 30, 7.9)

f3(x) 1.8 (10, 20, 2) (4,12, 3.99) (3,12, 6.21) (3, 15, 8.22)

f4(x) 1.0 (9, 18, 2) (4, 12, 3.99) (3, 12, 5.90) (2,10, 8.10)

f5(x) −0.5 (11, 22, 2) (5,15, 3.99) (4, 16, 5.99) (3,15, 6.75)

f6(x) 2.0 (9, 18, 2) (4, 12, 3.99) (3, 12, 5.99) (2,10, 8.10)

f7(x) 3.2 (10, 20, 2) (4,12, 3.99) (3,12, 6.19) (3, 15, 8.19)

f8(x) 1.0 (10, 20, 2) (4,12, 4.01) (3,12, 6.35) (3, 15, 8.36)

Table 1. (iterations, number of function evaluations, COC) for the Newton method
(m = 1), fourth order method (m = 2), sixth order method (m = 3) and
eight order iterative method (m = 4).

The following two important observations were made during numerical experimen-

tations:

(1) In Table 1, the methods which require the least number of functional evaluations

for convergence are marked in bold. We may see in Table 1 that for the five

functions, out of eight functions, the choice m = 3 is optimal, while for the

functions f4(x), f5(x), and f6(x) the choice m = 4 is optimal. We may also

observe that the choice m = 1 (the Newton method) is not an optimal choice

for any function.

(2) From Table 1, we notice that for the functions f3(x), f7(x), and f8(x) the sixth

order (m = 3) and eighth (m = 4) order methods require the same number of

iterative steps. Table 2 reports residual |f(xn)| during the last iterative step for

all methods.

f(x) m = 1 m = 2 m = 3 m = 4

f3(x) 10−918 10−637 10−715 10−1067

f7(x) 10−435 10−872 10−671 10−1522

f8(x) 10−347 10−744 10−800 10−1302

Table 2. Residual (|f(xn)|).
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An iterative method of order r adds r correct significant digits to the approxi-

mation during each iteration. Therefore, higher order methods are very efficient in

reducing the residual. In Table 2, we observe that the higher order methods are

efficient in reducing the residual. And, these methods are preferred during high

precision computation cf. [32].

4. Conclusions

In this work, we have developed a scheme for formulating higher order iterative

methods. The scheme is based on a modest modification of the classical Newton

method. The scheme can be easily incorporated in existing software packages for

achieving higher order convergence rates as suggested by the presented pseudocodes.

The developed scheme is also tested for finding zero of some functions. The presented

numerical work shows that the most frequently used classical Newton method is not

an optimal choice (at least not for the problems solved).

A c k n ow l e d gm e n t. We are grateful to the referees for constructive remarks

and suggestions which have enhanced our work.
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