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On some issues concerning polynomial cycles

Tadeusz Pezda

Abstract. We consider two issues concerning polynomial cycles. Namely,
for a discrete valuation domain R of positive characteristic (for N ≥ 1) or
for any Dedekind domain R of positive characteristic (but only for N ≥ 2),
we give a closed formula for a set CYCL(R,N) of all possible cycle-lengths
for polynomial mappings in RN . Then we give a new property of sets
CYCL(R, 1), which refutes a kind of conjecture posed by W. Narkiewicz.

1 Introduction

For a commutative ring R with unity and Φ = (Φ1, . . . ,ΦN ), where Φi ∈ R[X1, . . . ,
XN ], we define a cycle for Φ as a k-tuple x̄0, x̄1, . . . , x̄k−1 of different elements of RN

such that

Φ(x̄0) = x̄1, Φ(x̄1) = x̄2 , . . . , Φ(x̄k−1) = x̄0 .

The number k is called the length of this cycle.

Let CYCL(R,N) be the set of all possible cycle-lengths for polynomial mappings
in N variables with coefficients from R (we clearly assume that the elements of the
considered cycles lie in RN ). For a material on various aspects of polynomial
mappings and arithmetic of dynamical systems, see [1] and [4].

In Section 2 we examine CYCL(R,N) for a discrete valuation domain R with
maximal ideal P . We assume that the residue field R/P has pf elements (if R/P
is infinite, then CYCL(R,N) = N). It is known (see Fact 1 in Section 2) that
any element k ∈ CYCL(R,N) is of the form k = a · pα, where all possible a
were completely determined by the author. Thus, in order to know CYCL(R,N)
it suffices for a given ‘possible’ a (as explained before) to find all α such that
a ·pα ∈ CYCL(R,N). It is known that for a finite ramification index e the numbers
α are bounded from above by some explicit function depending on e, p, f,N . In
Theorem 1 we give a bound from below (for a given ‘possible’ a) for the biggest α
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such that a · pα ∈ CYCL(R,N). Namely, we receive

α ≥
⌊

logp

(
logp e

2fN

)⌋
.

We see that for fixed f, p,N the right-hand side of the last inequality grows to ∞
(when e → ∞). Note that for a discrete valuation domain R the set CYCL(R,N)
does not depend solely on p, e, f,N . Sometimes some subtler properties of R should
be taken into account.

As a consequence of Theorem 1, in Theorem 2 we determine the sets CYCL(S,N)
for some Dedekind domains S of positive characteristic and some N .

In Section 3 we consider properties of A := CYCL(R, 1) for a domain R. Any
such A satisfies the following three ‘obvious’ properties:

(i) 1, 2 ∈ A;
(ii) A is closed under taking divisors;
(iii) for any prime p from p ∈ A it follows that [1, p] ⊆ A.

Since there were no other obvious properties ofA, in mid-nineties W. Narkiewicz
conjectured that for A ⊆ N satisfying (i), (ii), (iii) there exists a domain R such
that A = CYCL(R, 1). In Section 3 we give a negative answer to this question.

I think that it would be interesting to give a sensible conjecture concerning sets
CYCL(R,N) for N ≥ 2. In particular it is not clear whether the above property
(iii) holds in this case.

2 Finding CYCL(R,N) for some rings of positive characteristic
Let R be a discrete valuation domain of any characteristic, and P is the unique
maximal ideal of R. We assume that the field R/P is finite and has pf elements
(for prime p). Let π be a generator of the principal ideal P , and let v be the norm
of R, normalized so that v(π) = 1/p. We denote by w the corresponding exponent,
defined by

w(x) = − log v(x)

log p
for x 6= 0 , and w(0) =∞ .

We put e := w(p). Thus e is the ramification index of R. We extend w to RN

by putting w(x1, . . . , xN ) = min{w(x1), . . . , w(xN )}.
A polynomial cycle x̄0, x̄1, . . . , x̄k−1 is called a (polynomial) ?-cycle if

w(x̄i − x̄j) ≥ 1 for all i, j .

Let CYCL ? (R,N) be the set of all possible lengths of ?-cycles for polynomial
mappings in N variables with coefficients from R.

In the fact below we collect some properties of CYCL(R,N) already proved by
the author (see [2], [3]).

Fact 1. Let R, p, f, . . . be as above. Then
(i) a number k lies in CYCL(R,N) if and only if k = ab, where a ≤ pfN and b

is the length of a suitable ?-cycle in RN .
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(ii) If R̂ is the completion of R with respect to the norm v, then

CYCL(R,N) = CYCL(R̂,N) and CYCL ? (R,N) = CYCL ? (R̂,N)

(note that for R̂ the numbers p, e, f are the same as for R).
(iii) Let m be a positive integer not divisible by p. Then there is a ?-cycle of

length m in RN if and only if there are r > 0 and positive integers a1, . . . , ar
with a1 + · · ·+ ar ≤ N such that m divides [pfa1 − 1, . . . , pfar − 1].

(iv) Let S be a Dedekind domain, and let P(S) denote the family of all nonzero
prime ideals of S. If N ≥ 2, then

CYCL(S,N) =
⋂

p∈P(S)

CYCL(Sp, N) =
⋂

p∈P(S)

CYCL(Ŝp, N),

where Ŝp is the completion of Sp with respect to the obvious valuation.

In particular, to find CYCL(R,N) it suffices to know pf and, for each m dividing
[pfa1 − 1, . . . , pfar − 1] (for some a1, . . . , ar satisfying a1 + · · ·+ ar ≤ N), to know
for which n ≥ 0 the number m · pn lies in CYCL ? (R,N).

In this section we will prove that for any ‘possible’ m, as explained in Fact 1(iii),
and for any n if the ramification index is sufficiently large, thenm·pn ∈ CYCL?(R,N).
This, in turn, gives a closed formula for CYCL(S,N) for a Dedekind domain S of
positive characteristic and N ≥ 2. The fact that for any prime p and any n ≥ 0 in
Fp[[X]] there are cycles of length pn was established in the thesis of Zieve [5], who
quoted an example due to Poonen.

Theorem 1. Let R be as in this section. Let m be a divisor of [pfa1−1, . . . , pfar−1]
for some a1, . . . , ar satisfying a1 + · · · + ar ≤ N . If e ≥ p2fNp

n

, then m · pn ∈
CYCL ? (R,N).

Proof. Owing to Fact 1, we may assume that n ≥ 1 and R is complete. It suffices
to take m = [pfa1 −1, . . . , pfar −1]. Suppose that for e ≥ p2fNpn we have a ?-cycle
of length (pfa1 − 1) · pn for a map Φ1 : Ra1 → Ra1 . For i ≥ 2, by Fact 1(iii), in Rai

there is a ?-cycle of length pfai − 1 for some mapping Φi of Rai . We see that
Φ = (Φ1, . . . ,Φr) : Ra1+···+ar −→ Ra1+···+ar constructed in the natural way has a
?-cycle of length [(pfa1 − 1) · pn, pfa2 − 1, . . . , pfar − 1] = m · pn.

So, it suffices to prove for any M ≤ N that (pfM − 1) · pn ∈ CYCL ? (R,M).

Put q = pfM , and let ξ be a primitive root of unity of order q−1. By the usual
Hensel’s lemma (here we use the completeness of R) we have that the minimal
over R polynomial of ξ is of degree M . Thus RM ∼ R[ξ] as modules over R. Using
this canonical isomorphism, we obtain that to any polynomial F (X) ∈ R[ξ][X]
there corresponds a polynomial mapping Φ: RM → RM with coefficients from R.
One can see that R[ξ] is a complete discrete valuation domain with maximal ideal
πR[ξ], and the corresponding residue field has pfM elements. We thus have a notion
of ?-cycles in R[ξ], and to a ?-cycle in R[ξ] there corresponds a ?-cycle in RM .

Thus it suffices to find a ?-cycle in R[ξ] of length (q − 1)pn.

Take F (X) = π + ξX + γXq +Xd, where d = q2 and q = pfM . We remember
that

(
0
0

)
= 1.
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Lemma 1. For any T ≥ 0 the T -th iteration of F satisfies

FT (0) ≡
T∑
t=1

T−t∑
r=0

ξr
(
T − t
r

)
πd

T−t−r

+ γ

T−1∑
t=1

T−t−1∑
r=0

ξr
(
T − t
r

)
πd

T−t−r−1q

≡
T−1∑
t=0

ξ−tπd
t

AT (t) + γ

T−2∑
t=0

ξ−(t+1)πd
tqAT (t+ 1) mod (pπ, γq+1) ,

where AT (t) =
∑T−1
k=0

(
k
t

)
ξk. Moreover,

AT (t) +AT (t+ 1) = ξ−1
(
AT (t+ 1) + ξT

(
T

t+ 1

))
.

Proof. We use direct induction. One only has to remember that ξq = ξd = ξ and
(x+ y)p ≡ xp + yp mod (p). �

Lemma 2. (i) If q > 2 and T = (q − 1)pr, then for j = 0, 1, . . . , pr − 1 we have
w(AT (j)) ≥ e, and AT (pr) is invertible.

(ii) If q = 2, then AT (t) =
(
T
t+1

)
.

Proof. (i) Since ξ 6= 1, we have

AT (0) = 1 + ξ + · · ·+ ξT−1 = 0 .

Using w(ξ − 1) = 0, simple properties of binomial coefficients and

AT (t) +AT (t+ 1) = ξ−1
(
AT (t+ 1) + ξT

(
T

t+ 1

))
we obtain the assertion.

(ii) In this case we have ξ = 1, and therefore the assertion follows from Lemma 1.
�

Assume that q > 2. Put γ = πd
pn−1(d−q)z. In view of (q + 1)dp

n−1(d− q) > dp
n

and e ≥ p2fNpn ≥ dpn we obtain by Lemma 1 that

FT (0) ≡
T−1∑
t=0

ξ−tπd
t

AT (t) + πd
pn−1(d−q)z

T−2∑
t=0

ξ−(t+1)πd
tqAT (t+ 1)

mod (πd
pn+1R[ξ, z]) .

In particular, taking T = (q − 1)pn we get, using Lemma 2,

F (q−1)pn(0) = πd
pn

ξ−p
n

A(q−1)pn(pn)
(
1 + z + πh(z)

)
,

for some polynomial h ∈ R[ξ][X]. Thus F (q−1)pn(0) = 0 if and only if

1 + z + πh(z) = 0 .
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The existence of (a unique) z ∈ R[ξ] satisfying F (q−1)pn(0) = 0 follows from the
Hensel’s lemma. Fix such z.

Now it is sufficient to show that the smallest j > 0 satisfying F j(0) = 0 is
j = (q − 1)pn.

If F j(0) ≡ 0 mod (π2), then, by Lemma 1, Aj(0) ≡ 0 mod (π) and ξj ≡ 1
mod (π), q − 1 | j follow. From the simple properties of cycles it follows that it

suffices to show that F (q−1)pn−1

(0) 6= 0. But, Lemma 1 gives

F (q−1)pn−1

(0) ≡ ξ−p
n−1

A(q−1)pn−1(pn−1)πd
pn−1

mod (πd
pn−1

+1) ,

and, by Lemma 2, we are done.

Assume that q = 2. Put γ = πd
pn−2(d−q)z. In view of (q + 1)dp

n−2(d− q) > dp
n−1

and e ≥ p2fNpn ≥ dpn we obtain by Lemma 1 that

FT (0) =

T−1∑
t=0

πd
t

AT (t) + πd
pn−2(d−q)z

T−2∑
t=0

πd
tqAT (t+ 1) mod (πd

pn−1+1R[z]) .

In particular, taking T = pn we get, using Lemma 2,

F p
n

(0) = πd
pn−1

Apn(pn − 1)
(
1 + z + πh(z)

)
,

for some polynomial h ∈ R[X]. Thus F p
n

(0) = 0 if and only if 1 + z + πh(z) = 0.
The existence of z ∈ R satisfying F p

n

(0) = 0 follows from the Hensel’s lemma. Fix
such z.

Now it suffices to show that the smallest j > 0 satisfying F j(0) = 0 is j = pn.
From the simple properties of cycles it follows that it suffices to show that

F p
n−1

(0) 6= 0. But, Lemma 1 gives

F p
n−1

(0) ≡ Apn−1(pn−1 − 1)πd
pn−1−1

mod (πd
pn−1−1+1) ,

and, by Lemma 2, we are done.
This finishes the proof of the theorem. �

Theorem 2. (i) Let S be a Dedekind domain of characteristic p > 0. Let F(S) be
the set of all natural f such that there is a nonzero prime ideal p of S of norm pf .
Let A(f,N) consists of all numbers of the form a · b · pn, where a ≤ pfN , n ≥ 0
and b | [pfa1 − 1, . . . , pfar − 1] for some a1, . . . , ar satisfying a1 + · · ·+ ar ≤ N .

If N ≥ 2, then

CYCL(S,N) =
⋂

f∈F(S)

A(f,N) .

(ii) Let S be a discrete valuation domain of characteristic p > 0 such that the
residue field has pf elements. Then

CYCL(S, 1) = {a · b · pn : a ≤ pf , b | pf − 1, n ≥ 0}.

Proof. Since e =∞, the assertion follows from Theorem 1 and Fact 1. �
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Remark 1. (i) If in Theorem 2(i) F(S) is empty, then CYCL(S,N) = N. The
similar happens to CYCL(S, 1) in Theorem 2(ii) if f =∞.

(ii) Note that A(f,N) ⊆ A(fk,N) for any natural k. Hence, if all elements
from F(S) are multiplicities of one element from F(S), then the formula in Theo-
rem 2(i) may be significantly simplified.

Corollary 1. We have

CYCL(Fp[X], 2) = {abpn : a ≤ p2, b | p2 − 1, n ≥ 0}

and

CYCL(Fp[X], 3) = {abpn : a ≤ p3, n ≥ 0 and b | p2 − 1 or p3 − 1} .

On the other hand

CYCL(Fp[X], 1) = CYCL(Fp[X,Y ], 1) = CYCL(Fp, 1) = {1, 2, . . . , p} .

Proof. Taking into account Remark 1(ii) by Theorem 2 we obtain the first part.
The second part follows from CYCL(A[X], 1) = CYCL(A, 1) for any domain A. �

3 A property of CYCL(R, 1)
For a domain R with unity, the set A = CYCL(R) := CYCL(R, 1) satisfies

(i) 1, 2 ∈ A;

(ii) A is closed under taking divisors;

(iii) for a prime p, p ∈ A implies that {1, 2, . . . , p} ⊆ A (the last property follows
from the Lagrange interpolation formula).

W. Narkiewicz asked in mid-nineties, whether for a subset A of naturals, satis-
fying the above properties (i), (ii), (iii), there is a domain R with CYCL(R) = A.

In this section we emphasize another property of CYCL(R), and thus give a
negative answer to the mentioned question.

Theorem 3. For a domain R with unity, let A = CYCL(R). Then for a prime
number p we have that p2 ∈ A implies {2r : r = 1, 2, . . . , p} ⊆ A.

Proof. Let a tuple a0, a1, . . . , ap2−1 be a cycle for f(X) ∈ R[X]. Then 0 = b0,
1 = b1, b2, . . . , bp2−1, with bi = (ai − a0)/(a1 − a0) ∈ R, is a cycle for

g(X) = (a1 − a0)−1
(
f
(
(a1 − a0)X + a0

)
− a0

)
∈ R[X] .

So assume that a0 = 0, a1 = 1.
One proves that if (j − i, p) = 1, then aj − ai is invertible. Put d = ap.

If (j − i, p2) = p, then aj − ai ∼ d. Fix 2 ≤ r ≤ p. We are going to show
that a0, a1, . . . , ar−1, ap, ap+1, . . . , ap+r−1 is a cycle (of length 2r) for a suitable
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polynomial f(X) from R[X]. Namely let us take as f(X) the unique polynomial
of degree ≤ 2r − 1 with coefficients from the field of fractions of R satisfying

f(a0) = a1 , f(a1) = a2 , . . . , f(ar−1) = ap ,

f(ap) = ap+1 , . . . , f(ap+r−1) = a0.
(1)

Put f(X) = c0 + c1X + · · · + c2r−1X
2r−1. Then (1) is equivalent to a system of

linear equations with c0, . . . , c2r−1 to be found. From linear algebra we then get a
formula for ci.

Namely, putting b0 = a0, . . . , br−1 = ar−1, br = ap, br+1 = ap+1, . . . ,
b2r−1 = ap+r−1, we have ci = ∆i/∆, where ∆ =

∏
0≤i<j≤2r−1(bj − bi) and ∆i is

the determinant of the matrix
1 b0 . . . bi−10 b1 bi+1

0 . . . b2r−10

1 b1 . . . bi−11 b2 bi+1
1 . . . b2r−11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 br−1 . . . bi−1r−1 br bi+1
r−1 . . . b2r−1r−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 b2r−1 . . . bi−12r−1 b0 bi+1
2r−1 . . . b2r−12r−1

 .

We easily see that d divides all the terms in the differences of r+ 1-th and first
rows, r + 2-th and second rows,. . . , 2r-th and r-th rows. Thus dr | ∆i. From the
properties of the differences aj − ai we get ∆ ∼ dr. Thus ci = ∆i/∆ ∈ R. �
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