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Some evolution equations under

the List’s flow and their applications

BINGQING MA

Abstract. In this paper, we consider some evolution equations of generalized Ricci
curvature and generalized scalar curvature under the List’s flow. As applications,
we obtain L2-estimates for generalized scalar curvature and the first variational
formulae for non-negative eigenvalues with respect to the Laplacian.
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1. Introduction

Let (M™,g(t)), (t € [0,T)) be a solution to the following List’s flow which was
introduced by B. List [5]:

) {%92R1c+2ad50®d90;

Pt = A%

where a > 0 is a constant and ¢ is a smooth function on M™. A denotes the
Laplace-Beltrami operator given by g(t). Throughout this paper, we always as-
sume that M™ is compact without boundary. The motivation to study the system
(1.1) stems from its connection to general relativity. In [7], Lott and Sesum obtain
some long time behavior of the List’s flow when a = 2. Li [4] studied the eigenval-
ues and entropies under the harmonic-Ricci flow, he derived some monotonicity
formulas for eigenvalues of Laplacian. Wang [10] proved some differential Harnack
inequalities about the coupled Ricci flow which is closely related to List’s flow.
In [2], Fang also obtained some differential Harnack inequalities associated with
the List’s flow which generalize the results of Cao and Hamilton in [1]. For the
study of List’s flow and some developments, see [6], [5], [8], [3] and the references
therein.

Let h;j = Ri; —a @;; be a symmetric two-tensor which we call the generalized
Ricci curvature. Then (1.1) becomes

o _
(1.2) 5:9i5 = —2hij,
o1 = Ap.
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In this paper, we consider the following evolution equation:

0 s
(1.3) 5:9ij = —2hyj,
Pt = A(p,

where hi; = hij — (ar 4 b)gij. Here a,b are two constants,

_ Jultrgh)dv,
fM dVg

is the average of the trace of two-tensor h;; and trgh = g“h;j = R—a|V|? which

is called the generalized scalar curvature. Note that if a = % and b = 0, then the
1

volume of M™ is a constant for all z. In this case, the equation (1.3) with a = -
and b = 0 is called the normalized List’s flow.

The rest of this paper is organized as follows: In Section 2, we first derive some
evolution equations of generalized Ricci curvature and generalized scalar curvature
under the List’s flow. As applications, we obtain L?-estimates for generalized
scalar curvature and the first variational formulae for non-negative eigenvalues

with respect to the Laplacian.

2. Some evolution equations
We first recall the following lemma (see Lemma 1.4 in [5]):

Lemma 2.1 ([5]). Let g(t) be a solution to the evolution equation

. 9i5 = Vij

ot

on M™. Then the following evolution equations hold:
(1) 2g¢¥ = —vi, where v/ = gtk giluy;
(2) 2Ri; = —3Av;; — 2(trgv)ij + 20" (vik,jt + vja), where trgv = glvg;;
(3) SR =—Altrgv) + g7 g (vir1j — Riwvjn);
(4) ZdV, = L(trgv) dVj,

where ,i denotes the covariant derivative in the direction of i.
Using Lemma 2.1 above, we can prove the following results:

Lemma 2.2. Let g(t) be a solution to the evolution equation (1.3) on M™. Then
the following evolution equations hold:

(1) (5 = Ahij = —g" Richji — g" Rjxha — 2Riijuh™ + 20(Ap)pi;;

(2) (& — A)(trgh) = 2|hij|* + 20(Ap)? — 2(ar + b)trgh.

Proor: Using Lemma 2.1, we have

0

(2.1) 5

1 1 1
Rij = —5Avy; — S (trg); + 59“(?%1«,]‘1 + Ujkit)-
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Taking Vij = 72}31‘]‘ = 72[}1” — (ar + b)g”], we have

1
—§Avij = Ahj; = ARy — a A(pip;)
= AR;; — a(Api)p; — api(Ap;) — 2000k

Here and hereafter we use moving frames in all calculations. The second term of
the right hand side in (2.1) gives

1
7§(trg’0)ij = [R — a|V<p|2 — TL((IT + b)]” = R’ij — 20490;“-50;6]- — 20zg0k<pkﬂ.

Note that

1
JVikgk = ~hikjk
= —Rikjk + a(pivr),jk
= —(Rik,kj + RinRiijx + RaRikjr)
+ alpijrer + (Ap)pis + Qikpik + Pipiik]
1
= —5 R — RuBuigr — Rie Rk
+ i ek + ereiRiije + (A@)pi; + vk + ikl

Hence, we obtain from (2.1) that

0

(2.2) ERM = AR;; — 2R Rji — 2R Riiji + 20001 Risji

+ 2a(Ap)pij — 2000k Pk -

By a direct calculation, we have

0
a(%ﬁi@j) = (pt)ipj + pilpr);
= (Ap)ip; + pi(Ap);
= A(pi)p; — Rivorp; + @iA(p;) — Rikprp;
= A(pip;) — 20k — Rikore; — Rirprpi.
Therefore,
0 0 0

5l = gpftis — ag (viv;)
= AR;; — 2R Rji — 2R Rusjr + 20001 Riijik
+ 2a(Ap)pij — 200pipr; — aA(Pip;) + 200ikPjk
+ aRipprp; + Rk prpi
= Ahij — Rixhji — Rjrhix — 2Riijihie + 20(Ap) @i
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On the other hand, using Lemma 2.1, it holds that

g (trgh) =

0 0 )
" SR — o (V)

= fiR —4a|V2p|? — dap;pji

— AR+ 202¢5¢jii + (Ap)? + [V20” — Rijpipj]

+ 2Rikhir — 2(ar + b)R

— a[A(IVel?) = 2|V — 20| Vo|* — 2(ar +b)| V||
= A(trgh) + 2|hi;|* + 2a(Ap)? — 2(ar + b)trgh,

where we used

1
Pk ki = §AR — al20;05i + (Ap)? + [V2¢|* — Rijpip;),

9 oy _ (9 iy O
6t(|V50| )—(atg )piv; + g 6t(<ﬁz%)

= A(|[Vel?) = 2|V?¢|? = 2a|Vo[* — 2(ar + b)| V|,

We complete the proof of Lemma 2.2. O

3. L% estimates and some applications

For any a, b, we will prove that the nonnegativity of trgh(t) is preserved by
the evolution equation (1.3).

Theorem 3.1. Let g(t) be a solution to the evolution equation (1.3) on a compact
manifold M". If trgh > 0 holds at t = 0, then also for all t > 0 as long as the
solution exists.

PRrROOF: Let
8= 2 J3lar(s)+b] dS(trgh).
Then
(2~ 8)8 = eI ar 1) (txgh) + o (trh) — Altrgh)]

= ARl ([ + 20(Ap)?
>0,
where the second equality used Lemma 2.2. From the maximum principle of

parabolic equations, we obtain that trgh(t) remains nonnegative if trgh(0) is non-
negative under the initial metric g(0). O

Next, we begin with an elementary lemma.
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Lemma 3.1. Let g(t) be a solution to the evolution equation (1.3) on a compact
manifold M™. Then for any f € C*(Ry x M™), it holds that

d 0
— v, = — —A)fdV,
—/ (trgh)deg—i-n(ar—i—b)/ fdv,
M M
and
i 2 _ 222 _ . 2
& [ virav, =<2 [ vrRav,— [ mivsEay,
B2 -2 (Vevpiay,
M

0 2
—2 [ (AN~ AV + (=2 +b) [ VsV,

PrOOF: By (4) of Lemma 2.1, we have

o ~
adVg = —(trgh) dVy, = [—trgh + n(ar + b)] dVj.

Therefore,

d 0
E/Mfdvﬂ’ - /M{a“ [trgh 4 nlar + 07} 4Y
B
- Mgdeg—/M(trgh)deg—i—n(a?“‘i‘b) Mdeg

0
= [ G- avav,— [ (s v, +nar <) [ fav,

which completes the proof of (3.1).

According to the Bochner formula, we have
(3.3) AIVF2 =2|V2f2 + 2R f,f; + 2(VAF, Vf).

By virtue of (1) of Lemma 2.1, we get

9 B £ £, 2
IV = 2RI fif + 2V (52 ). V),
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so that
0
(& - A)|VFP
B4) = AV P+ 2V~ AV V) + 2R~ R
= 2[V*fP + Q(V(% — A, V) =2a(Ve, Vf)? —2(ar + b)|Vf|?
and

G [ VIRV, = [ (VI + g+ ntar + D)V Y,
/ (2 Z A) VIR + [=trgh + nar + )|V 12}V,
_ 2012 _ . 2 _ 2
. / VIRV, = [ (ViR v, ~20 [ (9o V02V,
/(Af)(——A)de +(n—2)(ar+b/ IV fI?dV,.
M

We complete the proof of Lemma 3.1. (|

Theorem 3.2. Let g(t) be a solution to the evolution equation (1.3) on a compact
manifold M™. Then for any f € C*(Ry x M™),

d

dt

[ wrPav, <~ [ )92 v, + -2+ [ [9F2a,
(3.5) M M

n 0 2
+5 [ G - S,
PRrROOF: Using the Cauchy inequality, we have
VAR Sag
n
so that by (3.2)
d 2 2 2 2
- IVfFdVy < —— (Af) dVy — (trgh)[Vf|* dVy
dt Ju n M
/ (AF) (o~ )TV, + (n 2)(ar+b)/ V2 av,
M
<= [ (VIR AV, + (0 =2(ar +b) [ [9rRaV,
M M
n 0 2
+5 [ G - 2Ry,

which completes the proof of Theorem 3.2. ([l
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Together with the evolution for trgh in Lemma 2.2, one can establish the fol-
lowing

Theorem 3.3. Let g(t) be a solution to the evolution equation (1.3) on a compact
manifold M™. Then

d
G | wambEav, < - [ neeml?ay,
M M

(3.6) +(n—2)(ar+b)/ IV (txgh)? 4V,
M
+ %/ [2]hi;]% + 20(Ap)? — 2(ar + b)trgh)? dV,.
M

Next, we give the evolution equation of eigenvalues with respect to the Lapla-
cian.

Theorem 3.4. Let g(t) be a solution to the evolution equation (1.2) on a compact
manifold M™.

(1) If A(t) denotes the non-negative eigenvalue of the Laplacian on M™, then

d -
—)\:2/ s dvgf/ (trgh)|Vf|2dVg+>\/ (trgh) f2 dV,.
dt M M M

In particular, if trgh > 0 holds at t = 0, then

d

—A< 2/ h fif; dV, +)\/ (trgh) f2 dV,.
dt M M

(2) If A(t) denotes the non-negative eigenvalue of A — Ltrgh on M™, then

d
=2 Wngavs [ PP+ aae? v,
M M

In particular, if h;(t) > 0, then the eigenvalue of the operator —A+Strgh
are nondecreasing.
(3) If A(t) denotes the non-negative eigenvalue of A+ trgh on M™, then

d n—1 9 O 9 9
N < — .
th < /M[ o (trgh)” + 2)\(trgh)]f dVy + 2\

Remark 3.1. In particular, taking @ = 2, then (2) in Theorem 3.4 becomes
Theorem 1.10 in [4].

Remark 3.2. We remark that the second and third inequalities of p. 160 in [9]
is slight incorrect. The right version of the third inequality of p. 160 in [9] should

47
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be
d
a9 |V2f|2dVg+(2<pfl)/ RIVF2dv,
M
/ (205 — —sﬂARﬂo R) fdV,
M
750/ R(R—4<pR—§A+2>\)f2dVg
M

2
+A/ R(R — 4¢R — gA+2>\)f?dVg.
M

As a result, for n = 3, the estimate E)\ < §9A2 of Theorem 6.4 in [9] cannot be
obtained.

PROOF: Let us consider an eigenfunction f associated with the eigenvalue A, that
is,

LAV =M, /M frav, =1

where V' is a potential function to be chosen later. Then, we obtain from (3.2)
that

d
G [y, = 2 [ (virpav, - [ (anivspay,
M M M
—2a/ (V,Vf)2dV,
M
f2

2 g2
2/M(V+)\) f dVg+/M(V+)\) dv,

+ (n—2)(ar + b)/ IV f|? dVy.
M
By virtue of the divergence theorem,

/|Vf|2dV /f A)fdV, = /M(V+A)f2dvg,

so that

d 2 s 2 0 af?

. E/MWH dng/Mf at(VJrA)dVgJr/M(V+)\) p dvy

+/[ trgh + n(ar +b)](V + ) f2dV,.
M
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Thus, (3.8) combines with (3.7) to give

d
EA=—2 |V2f|2dVg—/ (trgh)|Vf|2dVg—2a/M<V<p,Vf>2dV
. N2 f%d 2—d
(3.9) +2/M(V+ V2 f2dV, — /f Vq

+ / [(trgh) — 2(ar + b)](V + \) f2 dV,.
M

Choose V' = ctrgh, where c is a constant to be determined. Then

ov 8

G rh
ot ‘ot

so that

f2—dV— /fQQtrgthg.
M M- Ot

Using integration by parts again and by use of Lemma 2.2, we have

1
/ (trgh)|V f|? dV, = / (trgh)(ctrgh + ) f2 dVy + 5 / f2A(trgh) dV,
M M M
1
:/ (trgh)(ctrgh + ) f2 dvg+—/ f22trgthg
M 2" Ot

= [ Pllb + aBe) - (ar + D] v,
M

In other words,

an—V av, = — / fQ%trgthg

M

= 72(:/ trgh)|V f]? dV, + 20/ (trgh)(ctrgh + \) f2 dV,
M
—2c

M
(
M
/ f2[|hij|2 + a(Agp)Q — (ar + b)trgh] dVj,.
M

49
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It follows that
=2 e, - | I(trghnwﬁdvg 2 [ (ve.viray,
/(V+)\) f*av, — / f2—dv
+ / [(trgh) — 2(ar + b)](V + \) f2 dV,
M
- _ 2r12 _ - 2 _ 2
=2 [ VRV, — (14 2) [ VRV, =20 [ (9. v0R Y,
+ / [(1 4 4¢)(trgh) + 2) — 2(ar + )| (ctrgh + \) f2 dV,
M
=2 [ Pl + a(d0) - (ar+ Dtngh) dV;,
M

Integrating (3.3) yields

2 [ VPV, -2 [ (Vo v
M M

_ / (2R f,f; + 2(VAF, V) dV,
(3.10) M

—2a/ (V,Vf)2ay,

M

:2/ hijfifjdX/'g—Q/ (ctrgh + \)?f2dV,.
M M

Therefore, we obtain

iA:2/ hijfifjdng(1+20)/ (trgh)|V f|? AV,
dt M M

(3.11) + / [(1 4+ 2¢)(trgh) — 2(ar + b)](ctrgh + ) f2 dV,
M
— 20/ F2[1hij|? + a(Ap)? — (ar + b)trgh] dV,.
M

Now we are in the position to complete the proof of Theorem 3.4. Notice that
under the evolution equation (1.2), we have a = b = 0.
If we choose ¢ = 0, then (3.11) reduces to

d

—)\:2/ 9 ff,; dvgf/ (trgh)|Vf|2dVg+>\/ (trgh) f2 AV,
dt M M M

and (1) of Theorem 3.4 follows.
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If we choose ¢ = —1, then (3.11) reduces to
d g
1) ga=2 [ Wngd [ Pl ade?)dy,
M M

Hence, we obtain (2) of Theorem 3.4.
If we choose ¢ = %, then (3.11) reduces to

dy_y / WS f v, — 2 / (trh)|V 2V,
dt M 2 M
1
(3.13) 5 [ b e P av
2 Jm 4

1
—5 [ Pl + adeP)dv,.
M
It follows from (3.10) that
. 1
2/ h¥ fifjdVy < 2/ (Ztrgh+>\)2f2 dv,.
M M

Thus, we deduce from (3.13) the following

d 1

—A < 2/ (= trgh + \)? f2dV,
(3.14) 5 . .

3 [ )G+ N =5 [ Phg v,
2Jum 4 2Jum
Applying the Cauchy inequality
1
|hij|* > E(Ughy

into (3.14) gives

d n—1 9 O 9 9
—\< — (tr, — . 2)0°.
th_/M[ (trgh)? + S\ (trgh)] 7 4V, + 20

We complete the proof of Theorem 3.4. O
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