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Abstract

I. Kluvanek suggested to built the Lebesgue integral on a compact
interval in the real line by the help of the length of intervals only. In the
paper a modification of the Kluvanek construction is presented applicable
to abstract spaces, too.
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1 Introduction
Let A be the family of all subintervals of a given interval [a,b]. If A € A, then

u(A) is the lenght of A, i.e. u([c,d]) = u(le,d)) = p((e,d]) = p((e,d)) = d — c.
In the following definition the Kluvanek construction is presented.

Definition 1 f € K <—

Ja; € R, JA; € A, Z || (A;) < o0

i=1

D lailxa, (z) < oo = f(z) =Y aixa,(2).
i=1
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The only problem is in the proof of the independence of the integral of a

function f
b o
[ f@yde =Y a4
a i=1

on the presentation of f in the form
oo
flx) =) aixa,(@).
i=1

Mainly, Kluvanek’s proof depends on some properties of the real line.
Therefore we suggest a modification of the construction considering first

non-negative functions only. In the first part of our paper the equality of two

definitions is shown. In the second part it is shown the independence of the sum

Z aip(A;)

(a; > 0) on the representation of f in the form

Fla) =3 o (@),

2 Integrable functions
Definition 2 f € Pt «—
day; > 0, HAZ < A, ZOQM(AJ < 0
i=1

and

fl@) =" aixa,(@).
i=1
Definition 3
fEP < 3g9,h€PT, g(x) < o0, h(z) < 0o = f(x) = g(x) — h(x).
Theorem 1 £ = P.

Proof 1. K CP. Let f €K, ie.

Jo; JA; € A, Z loi | (A;) < o0
i=1

D lailxa, (z) < oo = f(z) = aixa,(x)
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Then
Z af p(Ai) < Z || (A
Zafﬂ(Ai) < Z |ovi| (A
=1 =1
Za Xa,(z) < Z\MXA
Za Xa,(z) < ZWJXA
Put

g(x) = ZOZ?XA&, (iC), h(x) = ZO‘ZXA&, (1’)

Then g,h € PT, g(z) < oo, h(x) < co, and

Z%XA Za xa, ( Za x4,(x) = g(z) — h(z).

Therefore f € P.
2. P C K. Let f € P. Then there exist g, h € PT such that

9(w) < 00, h(w) < 00 = f(x) = g(x) — h(x).

Evidently g,h € K. Also —h € K by [1, 26.12.2]. Since |g(z)|+ | — h(x)| < oo,
then by [1, 26.12.4] f(z) = g(x) + (—h(x)) is a member from K. O

3 Integral

We want to define the integral of a function f € P*

i=1

by the equality
b %)
[ @yde =Y am(a)
a i=1

Of course, it is first necessary to prove the independence of the sum on the
representation of f in the form

f:ZaiXAi7 a; >0, A; € A

i=1

It is realized in Theorem 4 what is the main result of the paper.
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Definition 4 Let [a,b] be an interval, A be the family af all subintervals of
[a,b], u: A — [0,00) be a measure. A function f: [a,b] — R belongs to Py,
if there exist n € N, a1,...,0, >0, Aq,..., A, € A such that

n
f = Z Qi XA;-
=1

Theorem 2 To any f € Py,

n
f = Z QX A;
=1

there exist m € N, B1,...,fm >0, Bi,...,Byn € A, BiNBj =0 (i # j) such
that . N .
f=> Bixs,, and Y aip(A)=>_ B;u(B))
Jj=1 i=1 j=1

Proof By induction. The idea:

Q1IXA; T QaXa, = a1Xa\4, T (1 + @2)Xa,na, + Q2X a5\ 4,5
arp(Ar) + agp(Az) = arp(Ar \ Az) + (1 + ag)pu(Ar N Ag) + azp(Az \ Ar),

Let the assertion hold for some n € N. Then

n+1 m
§ Q; XA; = § Qi XA; +04n+1XAn+1 E BjXBj +an+1XAn+1
i=1 i=1 j=1

Put B =J!", B;. Then

n+1 m m
Z Q;XA; = Zﬂijj\An+1 + Z Bj + ant1) XAn41nB; T Ont1XA, 1\B-
i= j=1 j=1

Similarly

n+1

Zam(A

Z (Bj \ Any1) + Y (Bj + ant1)i(Ans1 N By) + aniap(Anga \ B).
: _7:1

Theorem 3 Let f € Py, f =) i, aixa, = Z;”:l Bixs,- Then

Za“u Zﬁjﬂ
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Proof By Theorem 2 there exist nonegative 7y, d; and pairwise disjoint Cy, or
Dy resp. such that

Zazu anu Ck), ZﬁjM(Bj) = Z5ZN(D1)~
j=1 =1

Since
MkXCrnD; = OIXCunDys
we have
Nep(Cr N Dy) = 6u(Crx N Dy).
Therefore

Zazu anu (Ck) Z%Zu (Ck N Dy)
k=1 =1

—Z&ZM (CxN Dy) ZﬁjM(Bg)
=1 j=1

Theorem 4 Let f € PT,

o0 (o]
f= ZaiXAi = ZﬁjXBj‘
i=1 j=1

Then

Zazﬂ ZB]/J

Proof For f € Py, f =31 | a;xa, put

= Z o pi(Ai)
i=1
It is possible by Theorem 3.

Assertion 1 If f,, € Py, fr \, 0, then Jo(fr) N\ 0.
Put @ = max f1, Y = {z € [a,b]; f1(x) > 0}. Let € > 0 be arbitrary. Put

= {x € [avb]§fn($) > 6}'

Then A,, \, 0, hence u(A,) \, 0.
Let f, = Zle a;xc,, C; disjoint. Then

Zalu Za,,uC’ﬂA —l—ZaluCﬂA n.

=1 =1
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If x € C; N Al then f,(z) < a; < e. Therefore

k k
Jo(fn) <Y ap(Cin An) + €y u(CiN A,

i=1 i=1

k k
<ap(A, N Ci) +ep (U > < ap(An) + ep([a, b).

i=1
Therefore
0< lim Jo(fn) < a lim pu(An) + eul[a, b]) = ep([a, b]).
n o0 n—oo
Since the previous inequality holds for every ¢ > 0, we have

n—oo

Assertion 2 If f,, /' f, fn € Po, f € Po, then Jo(fn) 7 Jo(f)-
Put g, = f — fn. Then g, \, 0, hence

Jo(f) = Jo(fn) = Jo(gn) (0.

Proof of Theorem Let f € Pt

n m
[= Z aixa; = lim z; aixa, = Z Bixp; = lim_ z; BixB,
4 i= i j=

oo oo
= fn = \/ 9m
n=1 m=1
where
n m
fn :ZaiXAm gm:Zﬁ]XB7
i=1 j=1
Then
In NGm 7 f N Gm = Gm,
hence

‘ N 1 S 1
Zazu(&) Jim Jo(f) 2 i Jo(fu A gim) = Jo(gm) Zﬁgu
for any m € N, and therefore

Zalu >i

Analogously the oposite inequality can be proved. O
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4 Conclusion

We have presented an elementary way how to construct the Lebesgue integral.
We suggest to consider any non-empty set X instead of [a, b], any ring A instead
of the family of subintervals of [a, b], and any non-negative o-additive mapping
w: A — [0,00) instead of the lenght p(A) of the interval A. It could have
many aplications mainly in education and consequently in many areas, e.g. in
statistics, but also in areas using functional spaces. We have used some ideas
concerned in [1-5] and [7]. Recall that another applications of some Kluvdnek
ideas have been used in [6].
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