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K Y B E R N E T I K A — V O L U M E 4 9 ( 2 0 1 3 ) , N U M B E R 5 , P A G E S 6 6 3 – 6 9 1

SAMPLE D-COPULA OF ORDER M

J́M. G́-B Mı́M. H́-C

In this paper we analyze the construction of d-copulas including the ideas of Cuculescu and Theodor-
escu [5], Fredricks et al. [15], Mikusiński and Taylor [25] and Trutschnig and Fernández-Sánchez [33].
Some of these methods use iterative procedures to construct copulas with fractal supports.

The main part of this paper is given in Section 3, where we introduce the sample d-copula of order m
with m ≥ 2, the central idea is to use the above methodologies to construct a new copula based on a sample.
The greatest advantage of the sample d-copula is the fact that it is already an approximating d-copula and
that it is easily obtained. We will see that these new copulas provide a nice way to study multivariate
data with an approximating copula which is simpler than the empirical multivariate copula, and that the
empirical copula is the restriction to a grid of a sample d-copula of order n. These sample d-copulas can
be used to make statistical inference about the distribution of the data, as shown in Section 3.

Keywords: d-copulas, fractal copulas, sample d-copulas of order m

Classification: 60A10, 60E05, 62E10

1. INTRODUCTION

The construction of multivariate families of copulas for d > 2 is of great interest, because they
are used in modeling multivariate data in several fields such as Economics, Biology, Hydrology,
etc. The problem is that there are only a few known families that are used in practice.
In Cuculescu and Theodorescu [5], they introduce a new family of copulas which they call self-
similar copulas, in dimension two, using an iterated procedure. These ideas were substantially
improved in Fredricks et al. [15] in dimension d = 2, and quite recently in Trutschnig and
Fernández-Sánchez [33] these results are generalized to d ≥ 3.

In this paper we will follow the original ideas given in Cuculescu and Theodorescu [5], giving
generalizations to larger dimensions d ≥ 3. The main advantage of constructing the d-copulas
with their ideas is the fact that in every step we already obtain a d-copula, which allows to
approximate any given d-copula. These d-copulas correspond to the checkerboard d-copulas
defined in Mikusiński and Taylor [25].

Recall that a d-copula is a function C : [0, 1]d → [0, 1] for some integer d ≥ 2 which satisfies:

i) C(u1, . . . , ud) = 0 if there exists at least one i ∈ {1, . . . , d} such that ui = 0.

ii) C(1, . . . , 1, ui, 1, . . . , 1) = ui for every i ∈ {1, . . . , d} and for every ui ∈ [0, 1].
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iii) C is a d-increasing function, that is, for any d-box R = Πd
i=1[ui, vi] such that R ⊂ [0, 1]d

we have that
VC(R) :=

∑
{c∈[0,1]d | c∈Vert(R)}

sgn(c)C(c) ≥ 0, (1)

where

sgn(c) =
{

1, if ci = ui for an even number of i′s
−1, if ci = ui for an odd number of i′s.

Therefore, C is a d-copula if and only if C is the restriction to [0, 1]d of a distribution function
of a d-dimensional random vector U = 〈U1, . . . ,Ud〉 with standard uniform U(0, 1) marginal
distribution functions.

In particular, if d = 2 it is common to say that C is a copula instead of a 2-copula. We will
state a very well known result when d = 2, see for example Nelsen [26]. If we define

W(u, v) = max{u + v − 1, 0} and M(u, v) = min{u, v} for every 〈u, v〉 ∈ [0, 1]2.

Then W and M are copulas called the Fréchet–Hoeffding lower and upper bounds respectively,
that satisfy:

W(u, v) ≤ C(u, v) ≤ M(u, v) for every 〈u, v〉 ∈ [0, 1]2.

For d > 2 we also know that if we define on [0, 1]d, Wd(u1, . . . , ud) = max{u1 + · · ·+ ud − d+
1, 0} and Md(u1, . . . , ud) = min{u1, u2, . . . , ud}. Then for every d-copula C,

Wd(u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ Md(u1, . . . , ud) for every 〈u1, . . . , ud〉 ∈ [0, 1]d.

But in this case, Wd is not a d-copula, even though Md is always a d-copula. However, the
inequality above is sharp for every 〈u1, . . . , ud〉 ∈ [0, 1]d = Id, in the sense that there exists
always a d-copula C such that the left equality holds.

An important result relating a continuous d-distribution function H and its marginals is:

Sklar’s Theorem. Let H be a continuous d-distribution function with margins F1, F2, . . . , Fd.
Then there exists a unique d-copula C such that for every x = 〈x1, x2, . . . , xd〉 ∈ RI

d

H(x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . Fd(xd)).

See for example [26, 32], or [11].

In the second section we start by stating the main results in Fredericks et al. [15] and we relate
their concept of transformation matrices to doubly stochastic matrices. Then we generalize the
results given in Cuculescu and Theodorescu [5], to any dimension d > 2. We also mention that
the family of fractal d-copulas is dense in the family of all d-copulas for any d ≥ 2. Finally we
analyze the multivariate extension of Fredricks et al. [15] given in Trutschnig and Fernández-
Sánchez [33].

In the third section we will use the results in Fredricks et al. [15] and Trutschnig and
Fernández-Sánchez [33] to introduce the sample d-copula of order m for m ≥ 2 based on a
sample of size n ≥ m, which is very easy to calculate. We find some of its basic properties
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and possible applications in Statistics. We will see that the sample d-copula of order m is a
strongly consistent estimator of the d-copula which generated the data. We will also propose
some possible statistical applications of the sample d-copula.

The third section also studies some of the basic probability properties of the sample d-copula
of order m including its close relation to the multivariate distribution with parameters n the
sample size, and v positive parameters whose sum is one and m ≤ v < md. We will also include
new applications of the sample d-copula in Statistics.

In the last section we include some important remarks.

2. D-COPULAS WITH FRACTAL SUPPORTS

In Fredricks et al. [15] using techniques of iterated function systems (IFS) the authors construct
for dimension d = 2 a large class of copulas. They first consider a transformation matrix, that
is a real nonnegative matrix Tn×m = (ti j)〈i, j〉∈In×Im ,where In = {1, . . . , n}, such that max{n,m} ≥ 2,∑

i, j ti j = 1,
∑

i∈In
ti j > 0 for every j ∈ Im and

∑
j∈Im

ti j > 0 for every i ∈ In. Define two
partitions of [0, 1], {p0, p1, . . . , pn} and {q0, q1, . . . , qm}, by letting p0 = 0 = q0, and for i ∈ In let
pi =

∑i
i′=1

∑
j∈Im

ti′ j, and for j ∈ Im let q j =
∑ j

j′=1
∑

i∈In
ti j′ . Define

Ri j = (pi−1, pi] × (q j−1, q j] for every 〈i, j〉 ∈ In × Im,

where if i = 1 or j = 1 we take closed intervals instead of right open intervals. Of course,
{Ri j}〈i, j〉∈In×Im is a partition of I2. Let C be a copula and define a transformation T (C) using the
partition of I2 and the transformation matrix T , where for each 〈i, j〉 ∈ In × Im, T (C) spreads
mass ti j on Ri j rescaling the whole mass of C, that is, if 〈u, v〉 ∈ Ri j let

T (C)(u, v) =
∑

i′<i, j′< j

ti′ j′ +
u − pi−1

pi − pi−1

∑
j′< j

ti j′ +
v − q j−1

q j − q j−1

∑
i′<i

ti′ j + ti jC
(

u − pi−1

pi − pi−1
,

v − q j−1

q j − q j−1

)
, (2)

where empty sums are defined to be zero. Then T (C) is always a copula. If we define iteratively

T 2(C) = T (T (C)) and T n+1(C) = T (T n(C)) for every n > 2.

In fact, T n(C) = (⊗nT )(C), where ⊗n is the tensor product of T with itself n times. It is easy to see
by induction that if T is a transformation matrix of order n×m then ⊗kT is also a transformation
matrix of order nk × mk for every k ≥ 2. Then we have that for any transformation matrix T
there exists a unique copula copula CT , such that T (CT ) = CT . Moreover, CT = limn→∞ T n(C)
for any copula C. Since CT does not depend on the copula C, we may restrict to the limit of the
sequence {T n(Π)}n≥1. In fact, they call C invariant if C = CT for some transformation matrix T .

They also observe that if π1 = {p0, p1, . . . , pn} and π2 = {q0, q1, . . . , qm} are any partitions of
[0, 1], and we define ti j = (pi − pi−1)(q j − q j−1) for every 〈i, j〉 ∈ In × Im, then T = (ti j)〈i, j〉∈In×Im is
a transformation matrix which generates the partitions π1 and π2 and has CT = Π

2 the product
copula.

Recall that for every k ≥ 2 a square real matrix P = (pi j)k
i, j=1 is a doubly stochastic matrix

if and only if pi j ≥ 0 and
∑k

j=1 pi j =
∑k

i=1 pi j = 1 for every i, j ∈ {1, 2, . . . , k}.
Define

T= {Tn×m | Tn×m is a transformation matrix, with n,m ≥ 2 and ti j ∈ � for every 〈i, j〉 ∈ In×Im}.

Then we have the following result



666 J. M. GONZÁLEZ-BARRIOS AND M.M. HERNÁNDEZ-CEDILLO

Lemma 2.1. Let Tn×m ∈ T then there exist k ≥ 2 and Pk×k = (pi j)k
i, j=1 a double stochastic

matrix, such that if we define S k×k = (pi j/k)k
i, j=1 then T (Π2) = S (Π2).

The p r o o f follows directly by considering k the least common multiple of the denominators
of (ti j)〈i, j〉∈In×Im .

The last lemma can be used in every single step of the construction of CT . However, it is
clear that the support of the limit copula CT may be different from CS . In fact, in Section 3 we
will use only square matrices T with rational entries, and the first step in the construction of CT .
So, we can think of T as a doubly stochastic matrix times a positive integer. For some results on
doubly stochastic matrices see for example Sherman [30] or Marcus [23].

Example 2.2. As an easy example of Lemma 2.1 consider the transformation matrix

T =
(

0 1/3
2/3 0

)
.

Then if we define

S =

 0 0 1/3
1/6 1/6 0
1/6 1/6 0

 .
We have that P = 3 · S is a doubly stochastic matrix and T (Π2) = S (Π2).

Now we generalize the results given in Cuculescu and Theodorescu [5].
Recall that a d-dimensional square matrix P, for d ≥ 2, is an array of real numbers of the

form P = (pi1i2···id )k
i1,...id=1 for some k ≥ 2. We will say that P is d-dimensionally stochastic if

and only if 0 ≤ pi1i2···id ≤ 1 for every i1, i2, . . . , id ∈ {1, . . . , k}, and for every 1 ≤ j1 < j2 < · · · <
jd−1 ≤ d we have that

k∑
i j1=1

k∑
i j2=1

· · ·

k∑
i jd−1=1

pi1i2···id = 1, (3)

where the remaining index is fixed and taken in {1, . . . , k}. In this case it is clear that

k∑
i1=1

k∑
i2=1

· · ·

k∑
id=1

pi1i2···id = k.

Of course a 2-dimensionally stochastic matrix is a doubly stochastic matrix. Let C1
i1,i2,...,id

=

pi1i2···id/k for every i1, . . . , id ∈ {1, . . . k}, and for every A ∈ B([0, 1]d) and for every n ≥ 1 define

µn(A) = kdn
kn∑

i1,...,id=1

Cn
i1,...,id λ

d
(([

i1 − 1
kn ,

i1
kn

]
× · · · ×

[
id − 1

kn ,
id
kn

])
∩ A

)
, (4)

where for every i1, . . . id ∈ {1, . . . , kn}, for every i′1, . . . i
′
d ∈ {1, . . . , k} and for every n ≥ 1,

Cn+1
k(i1−1)+i′1,...,k(id−1)+i′d

=
pi′1···i

′
d

kd−1 ·C
n
i1,...,id . (5)

Here B([0, 1]d) is the Borel σ-algebra and λd is the Lebesgue measure. Then we have a mul-
tivariate extension of Cuculescu and Theodorescu [5], its proof follows as in Trutschnig and
Fernández-Sánchez [33].
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Proposition 2.3. Let d ≥ 2, let P be a d-dimensional square matrix of order k ≥ 2, which is d-
dimensionally stochastic. Let n ≥ 1 and define µn as in equation (4), then ([0, 1]d,B([0, 1]d), µn)
is a probability space. Besides, if we define

Cn(u1, . . . , ud) = µn([0, u1] × · · · × [0, ud]) for every u1, . . . ud ∈ [0, 1]. (6)

Then Cn is a d-copula for every n ≥ 1. If we define µP = limn→∞ µn, then µP exists with
respect to weak convergence and it is a probability measure on ([0, 1]d,B([0, 1]d)). Evenmore,
µP induces a d-copula CP by defining

CP(u1, . . . , ud) = µP([0, u1] × · · · × [0, ud]) for every u1, . . . ud ∈ [0, 1]. (7)

If P includes zeros then µP is a singular measure.

In the case d = 2 with 0 < a < 1

P =
(

a/2 (1 − a)/2
(1 − a)/2 a/2

)
.

Then 2P is doubly stochastic and CP is a singular copula if a , 1/2 as observed in Cuculescu
and Theodorescu [5], see also [12].

Now we will see that for d ≥ 2 the set of d-copulas given in (7) is dense in the family of
all copulas with respect to the supremum distance, when we consider the set of d-dimensionally
stochastic matrices.

Theorem 2.4. Let C be a d-copula for some d ≥ 2, then for every ε > 0 there exists P a d-
dimensionally stochastic matrix such that if we construct the copula CP defined in equation (7)

dsup(C,CP) = sup
u1,...,ud∈[0,1]

|C(u1, . . . , ud) −CP(u1, . . . , ud)| < ε. (8)

The p r o o f of this theorem follows from Mikusiński and Taylor [25], since in each step
of the construction of CP we obtain a checkerboard approximation. Evenmore, they prove that
the convergence of the checkerboard approximations to the d-copula C holds in a stronger mode
denoted by ∂-convergence which implies uniform convergence.

In Cuculescu and Theodorescu [5], for dimensions greater than or equal to three they only
say “For q ≥ 2 copulas analogous to µP may also be defined (particularly one concentrated on
Menger’s sponge). . . ”. Here q is the dimension. This statement is not correct as can be seen
in Hernández-Cedillo [17]. In [33] the authors provide an example of a 3-copula which has a
Menger’s sponge like set support.

Finally, we give the generalization of transformation matrices in dimension d found in
Trutschnig and Fernández-Sánchez [33]. Let In = {1, 2, . . . , n} for n ≥ 1. For d ≥ 2, let
m1, . . . ,md ∈ NI and define Id = Πd

i=1Imi . Let τ be a probability measure on (Id, 2I
d
), then

we call τ a generalized transformation matrix if for every j ∈ {1, . . . , d} and for every
k ∈ {1, . . . ,m j} ∑

i∈Id ,i j=k

τ(i) > 0, (9)
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where i = 〈i1, . . . , i j−1, i j = k, i j+1, . . . , id〉 ∈ Id.
Observe that equation (9) is a natural extension of the conditions of transformation matrices

in Fredricks et al. [15], and that τ can be written as a d-dimensional matrix T , by writing

τ(i) = ti1,i2,...,id if i = 〈i1, i2, . . . , id〉 ∈ Id. (10)

In the remaining of this section we will only use the case m1 = m2 = · · · = md = m ≥ 2.
In this case, if all τ(i) are rationals, we observe that equation (9) is equivalent to saying that τ
induces the existence of an m0 ≥ m and a d-dimensional square matrix T0 such that m0 · T0 is
a d-dimensionally stochastic matrix, as defined after Example 2.2. This is a consequence of an
obvious multivariate extension of Lemma 2.1 for any τ probability measure with rational values
on (Id, 2I

d
) in equation (10).

All the results at the beginning of this section about the construction of copulas in Fredericks
et al. [15], can be easily generalized to dimensions d ≥ 3.

Let m ≥ 2 and for every i = 〈i1, i2, . . . , id〉 ∈ Im := Πd
j=1Im define

Ri =

(
i1 − 1

m
,

i1
m

]
×

(
i2 − 1

m
,

i2
m

]
× · · · ×

(
id − 1

m
,

id
m

]
, (11)

where if for some j ∈ {1, . . . , d}, i j = 1, then we take closed intervals instead of left open
intervals. Then {Ri}i∈Im is a partition of [0, 1]d that we will call the uniform partition of [0, 1]d.

Let C be a d-copula and define for every i = 〈i1, i2, . . . , id〉 ∈ Im

ti1,i2,...,id = VC(Ri) and TC =
(
ti1,i2,...,id

)m
i1,...,id=1 . (12)

Then TC is a square d-dimensional matrix with nonnegative entries, which generates the checker-
board approximation given in [25] and it is a generalized transformation matrix, because by
equation (10), if we take any j ∈ {1, . . . , d} and any k ∈ {1, . . . ,m} then by the definition of
d-copula ∑

i∈Im,i j=k

τ(i) =

m∑
i1=1

· · ·

m∑
i j−1=1

m∑
i j+1=1

· · ·

m∑
id=1

VC(R〈i1,...,i j−1,k,i j+1,...,id〉)

= VC

(
[0, 1] × · · · × [0, 1] ×

[
k − 1

m
,

k
m

]
× [0, 1] · · · × [0, 1]

)
= C(1, . . . , 1, k/m, 1, . . . , 1) −C(1, . . . , 1, (k − 1)/m, 1, . . . , 1)

=
1
m
> 0. (13)

Observe that in equation (13) for every d-copula C, for every j ∈ {1, . . . , d} and for every
k ∈ {1, . . . ,m},

∑
i∈Im,i j=k τ(i) = 1/m only depends on m.

Also observe that m · TC is a d-dimensionally stochastic square matrix.

Now, if we have T =
(
ti1,...,id

)m
i1,...,id=1 a generalized transformation square d-dimensional ma-

trix, define p1,0 = p2,0 = · · · = pd,0 = 0, and for every j ∈ {1, . . . , d} and for every k ∈ {1, . . . ,m}
define

p j,k =

k∑
i j=1

m∑
i1=1

· · ·

m∑
i j−1=1

m∑
i j+1=1

· · ·

m∑
id=1

ti1,...,id . (14)
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Then 0 = p j,0 < p j,1 < · · · < p j,m−1 < p j,m = 1 is the partition with m+ 1 points of [0, 1] induced
by T , which corresponds to the j th coordinate.

If we take a d-copula C and we define T (C)(u1, . . . , ud) for 〈u1, . . . , ud〉 ∈ [0, 1]d using a
similar formula as the one used in dimension 2 in equation (2), then T (C) is always a d-copula,
see also Trutschnig and Fernández-Sánchez [33]. In particular if C = Πd the product d-copula
T (Π)(u1, . . . , ud) has a simpler expression. For example if d = 3 and 〈u1, u2, u3〉 ∈ R〈i1,i2,i3〉 = Ri
= (p1,i1−1, p1,i1 ] × (p2,i2−1, p2,i2 ] × (p3,i3−1, p3,i3 ] for some i ∈ Im then

T (Π)(u1, u2, u3) =
∑

i<i1, j<i2,k<i3

ti, j,k +
(

u1 − p1,i1−1

p1,i1 − p1,i1−1

) ∑
j<i2,k<i3

ti1, j,k +
(

u2 − p2,i2−1

p2,i2 − p2,i2−1

) ∑
i<i1,k<i3

ti,i2,k

+

(
u3 − p3,i3−1

p3,i3 − p3,i3−1

) ∑
i<i1, j<i2

ti, j,i3 +
(

u1 − p1,i1−1

p1,i1 − p1,i1−1

) (
u2 − p2,i2−1

p2,i2 − p2,i2−1

)∑
k<i3

ti1,i2,k

+

(
u1 − p1,i1−1

p1,i1 − p1,i1−1

) (
u3 − p3,i3−1

p3,i3 − p3,i3−1

)∑
j<i2

ti1, j,i3

+

(
u2 − p2,i2−1

p2,i2 − p2,i2−1

) (
u3 − p3,i3−1

p3,i3 − p3,i3−1

)∑
i<i1

ti,i2,i3

+ti1,i2,i3

(
u1 − p1,i1−1

p1,i1 − p1,i1−1

) (
u2 − p2,i2−1

p2,i2 − p2,i2−1

) (
u3 − p3,i3−1

p3,i3 − p3,i3−1

)
. (15)

Observe that from equation (15) it is clear that T (Π3) is a 3-copula which assigns uniform
mass ti1,i2,i3 to each box R〈i1,i2,i3〉 for every 〈i1, i2, i3〉 ∈ {1, . . . ,m}. Therefore, the generalized
transformation matrix T can be thought as the weighted density of the 3-copula T (Π3), given
by ti/λd(Ri) for every i ∈ Im, induced by the partitions and the 3-boxes that they generate. Of
course the d-dimensional case includes 2d terms that can be easily generalized.

Even if equation (15) seems quite complicated, it is easy to program in a computer when
we have the 3-dimensional generalized transformation square matrix T of order m. We have
written a short program in language R which computes T (Π)(u1, u2, u3) for any given vector
〈u1, u2, u3〉 ∈ [0, 1]3.

3. SAMPLE D-COPULA OF ORDER M

Now we use the ideas of Section 2 to define the sample d-copula of order m in two settings.

3.1. Sample d-Copula of Order m for a d-Copula C

Let m ≥ 2 and assume that we take an independent sample of size n, where n ≥ m, from a
d-copula C, let us denote the sample by

Un = {x1, · · · , xn}, (16)

where xk = 〈xk,1 . . . xk,d〉 ∈ [0, 1]d for every k ∈ {1, . . . , n}.
Define for every i = 〈i1, . . . , id〉 ∈ Im using equation (11)

sn
i1,...,id =

|Ri ∩ Un|

n
, (17)
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where | · | denotes the cardinality of a set. Define

S n
m =

(
sn

i1,...,id

)m

i1,...,id=1
. (18)

Then it is clear that S n
m is a square d-dimensional matrix such that

m∑
i1,...,id=1

sn
i1,...,id = 1. (19)

Define
S+ = {S n

m | S
n
m is a generalized transformation matrix}. (20)

If we assume that S n
m ∈ S

+ then define for every j ∈ {1, . . . , d} the partitions of [0, 1], πn
j :=

{pn
j,0, . . . , p

n
j,m} given in equation (14), and define the sample d-copula of order m, denoted by

Cn
m by

Cn
m(u1, . . . , ud) =

{
S n

m(Π)(u1, . . . , ud) if S n
m ∈ S

+,

Πd(u1, . . . , ud) if S n
m < S

+,
(21)

for every 〈u1, . . . , ud〉 ∈ [0, 1]d.
If we are given a sample from a d-copula C of size n ≥ m, but we do not have any information

about C except the sample, then the terms sn
i1,...,id

from the d-dimensional matrix S n
m, give us the

relative frequencies of the sample vectors that belong to Ri for every i ∈ Im, see equation (11),
which gives us a partition of [0, 1]d. So, it seems natural to spread these frequencies uniformly
on the transformed version of Ri under the partitions π j, that is why we select Πd the product
d-copula to define the sample d-copula in equation (21). This idea is very common in Statistics,
for example, the empirical distribution function assigns uniform mass 1/n to each observed point
or vector. On the other hand if S n

m is not a generalized transformation matrix, as defined above,
we define the sample d-copula as Πd, the reason for this selection is the fact that for dimension
d = 2 and m = 2, if S n

2 is not a transformation matrix, then there exists at least one column or
one row such that the sum of its entries is zero, and as observed in Fredricks et al. [15], if T is
a column or row vector then T (Π2) = Π2, in the remaining case, that is when only one entry in
T is non zero, then we could define T = (1), and in this case T (Π2) = Π2, even when T is not a
transformation matrix. For larger dimension d ≥ 3, we refer the reader to the gluing method in
Siburg and Stoimenov [31].

If S n
m is not a generalized transformation matrix then we recommend first to try with smaller

values of m, and in the case that the value of m that makes S n
m a generalized transformation

matrix (if it exists) is too small for the required statistical methodology, then see Remark 3.10.

Example 3.1. We generated four samples from the copula Π2 given by 〈0.13587, 0.78362〉,
〈0.29310, 0.21312〉, 〈0.66104, 0.73981〉 and 〈0.88332, 0.43167〉, and we took m = 2, then we
obtained that s4

1,1 = s4
1,2 = s4

2,1 = s4
2,2 = 1/4. So, S 4

2 is clearly a transformation matrix which
generates the uniform partition given in equation (11), and C4

2 is simply Π2, that is, we recover
the original 2-copula. We will return to this example in Subsection 3.2.

Now we analyze some of the main properties of S n
m.
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Proposition 3.2. Let m ≥ 2, let C be a d-copula and let Un = {x1, · · · , xn} be an indepen-
dent sample of size n ≥ m from C, define qi = VC(Ri) for every i ∈ Im. Then the square
d-dimensional matrix n · S n

m has associated a multinomial distribution with parameters n and
{qi}i∈IC

m
, where IC

m = {i ∈ I | qi > 0}. Besides, we have that 0 ≤ qi ≤ 1/m and
∑

i∈Im,i j=k qi = 1/m
for every j ∈ {1, . . . , d} and for every k ∈ {1, . . . ,m}.

P r o o f . Since {Ri}i∈Im in equation (11) is a partition of [0, 1]d, then for every k ∈ {1, 2, . . . , n}
there exists a unique i ∈ Im such that xk ∈ Ri. Observe that from equation (19)

∑
i∈Im

n · sn
i = n.

Now, define qi = ti1,...,id , as in equation (12), for every i = 〈i1, . . . , id〉 ∈ Im. If qi = 0 then
P(xk ∈ Ri) = 0 for every k ∈ {1, . . . , n}. So, if we let IC

m = {i ∈ Im | qi > 0}, then using the
independence of the sample

P
(
S n

m =
(
sn

i1,...,id

)m

i1,...,id=1

)
=

 n!
Πi∈IC

m
(n · sn

i )!

Πi∈IC
m

q
n·sn

i

i . (22)

Therefore, S n
m has the desired distribution.

The restrictions on the values of the pi follow from equation (13). �

Depending on C we can have some simplifications in Proposition 3.2, for example:

Corollary 3.3. If C = Πd in Proposition 3.2, then

P
(
S n

m =
(
sn

i1,...,id

)m

i1,...,id=1

)
=

 n!
Πi∈Im (n · sn

i )!

 ( 1
md

)n

, (23)

and if C = Md, where Md(u1, . . . , ud) = min{u1, . . . , ud}, then

P
(
S n

m =
(
sn

i1,...,id

)m

i1,...,id=1

)
=

 n!
Πi∈IMd

m
(n · sn

i )!

 ( 1
m

)n

. (24)

P r o o f . If C = Πd just observe that qi = 1/md > 0 for every i ∈ Im, and if C = Md then
qi = 1/m if and only if Ri = ((k − 1)/m, k/m]d for some k ∈ {1, . . . ,m}. So, in this case,
IM
m = {i ∈ Im | i = 〈k, . . . , k〉 for some k ∈ {1, . . . ,m}}. �

Now, we state a result about the values of n and m.

Lemma 3.4. Let m ≥ 2 and let C = Πd the product d-copula, and assume that the sample size
of the sample Un satisfies that n = m. Then

P(S m
m ∈ S

+) =
(m!)d

(md)m . (25)

P r o o f . First, let d = 2 and m = n, in this case, Im = {1, . . . ,m}2 and if we define S m
m =

(sm
i1,i2

)m
i1,i2=1 as in equation (18), then sm

i1,i2
= |R〈i1,i2〉 ∩Um|/m. So, there are at most m vectors, say

i1, . . . , im ∈ Im such that |Ril ∩ Um|/m = 1/m > 0 for every l ∈ {1, . . . ,m}. From Fredricks et al.
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[15], we know that S m
m ∈ S

+ if each column and each row of S m
m have a positive element. But,

since there are at most m entries in S m
m which are different from zero, then there must be exactly

one entry different from zero in each row and in each column. Since S m
m is a square matrix of

order m × m, we can do this in m! forms. So using Corollary 3.3 equation (23)

P(S m
m ∈ S

+) = m! ·
(

m!
1! · · · 1!

) (
1

m2

)m

=
(m!)2

m2m .

For d > 2 we proceed in a similar way. We know that S m
m is a d-dimensional square matrix of

order m, so, S m
m ∈ S

+ if and only if there is exactly one entry of S m
m different from zero in each

coordinate. In this case, proceeding as in the case d = 2, in the first coordinate we can select the
non zero entry in md−1 forms, for the second coordinate we have (m − 1)d−1 forms, etc. Then
using Corollary 3.3, equation (23) again

P(S m
m ∈ S

+) = Πm
l=1(l)d−1 ·

(
m!

1! · · · 1!

) (
1

md

)m

=
(m!)d

(md)m ,

which finishes the proof. �

Remark 3.5. From the proof of Lemma 3.4, it is clear that if the sample size n is less than m,
that is, n < m, then S+ = ∅, that is why we asked for the condition n ≥ m in the definition of a
sample d-copula of order m.

Now we give some asymptotic results about Cn
m.

Theorem 3.6. Let m ≥ 2 , n ≥ m and let Un be an independent sample of size n from a d-copula
C for some fixed d ≥ 2. Define Cn

m as in equation (21). Let S n
m the d-dimensional square matrix

induced by the sample Un given in equations (17) and (18). Then for every i = 〈i1, . . . , id〉 ∈ Im

with m fixed,
lim
n→∞

sn
i1,...,id = VC(Ri) almost surely. (26)

The elements in the partitions {pn
j,0, p

n
j,1, . . . , p

n
j,m} given in equation (14) satisfy that for every

j ∈ {1, . . . , d} and for every k ∈ {0, 1, . . . ,m},

lim
n→∞

pn
j,k =

k
m

almost surely. (27)

Therefore, if we define the grid Km = {0, 1/m, 2/m, . . . , (m − 1)/m, 1}d, the sample d-copula Cn
m

is such that

lim
n→∞

Cn
m(u1, . . . , ud) = C(u1, . . . , ud) for every 〈u1, . . . , ud〉 ∈ Km almost surely. (28)

Finally, if we also let m→ ∞ with values of m ≈ n1/2d we have that

Cn
m converges uniformly and almost surely to C. (29)
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P r o o f . Let m ≥ 2 and d ≥ 2 be fixed integers, let C be a d-copula and let Un be a random
sample from C of size n ≥ m. Let sn

i1,...,id
be defined as in equation (17), and observe that sn

i1,...,id
can be written as

sn
i1,...,id =

n∑
j=1

1R〈i1 ,...,id 〉 (xj)

n
for every i = 〈i1, . . . , id〉 ∈ Im, (30)

where 1A is the indicator function of A. Using the strong law of large numbers (SLLN), we have
that for every i = 〈i1, . . . , id〉 ∈ Im

lim
n→∞

sn
i1,...,id = P(x ∈ R〈i1,...,id〉) = VC(Ri) almost surely, (31)

which proves (26). Now using equations (13), (14) and (26), we have that for every j ∈ {1, . . . , d}
and for every k ∈ {1, . . . ,m},

lim
n→∞

pn
j,k =

k∑
i j=1

m∑
i1=1

· · ·

m∑
1 j−1=1

m∑
i j+1=1

· · ·

m∑
id=1

lim
n→∞

sn
i1,...,id

=

k∑
i j=1

m∑
i1=1

· · ·

m∑
1 j−1=1

m∑
i j+1=1

· · ·

m∑
id=1

VC(R〈i1,...,id〉)

=

k∑
i j=1

1
m
=

k
m

almost surely. (32)

So, (27) holds. Now, using equations (21), (2) , (15) and their generalizations, it is clear that
(28) holds.

Finally, equation (29) follows from the upper bounds given by the Polya urn scheme, see
Table 5 below, and the multivariate normal approximation of the multinomial distribution. �

Observe that from equation (28), if we let Cm = limn→∞Cn
m, then Cm coincides with µ1 in

equation (4), for k = m and P = (pi1,...,id )m
i1,...,id=1‘, where pi1,...,id = m · VC(R〈i1,...,id〉) for every

〈i1, . . . , id〉 ∈ Im.
In the definition of Cn

m the sample d-copula of order m given in equation (21), it is very
important to check when the d-dimensional square matrix S n

m belongs to S+, in terms of the
sample size n and the generating copula C. In order to evaluate P(S n

m ∈ S
+), we will use

C = Πd and a simulation procedure to approximate its value. We already have an exact value of
P(S m

m ∈ S
+), given in Lemma 3.4, when n = m, which is the limit case. We give a preliminary

study of P(S n
m ∈ S

+) for d = 2 and with m = 2, 3, 4 and for d = 3, 4 with m = 2, 3 for n ≥ m,
in the case C = Π, using 100,000 simulations. Observe that the case C = Πd is the uniform
case, hence the most “spread” case among the d-copulas. See Tables 1 and 2, where the values
of P(S n

m ∈ S
+) for several values of n ≥ m are approximated via simulations. Observe that

even for small values of n the probability of obtaining a generalized transformation matrix is
close to one. Also observe that probabilities, in the limit case n = m, given in Lemma 3.4 are
approximated very accurately.

In order to compare behaviors, we obtained 100,000 simulations in dimensions d = 2 and
d = 3 and different sample sizes n from several families, such as M2,M3,W2, Frank, Clayton,



674 J. M. GONZÁLEZ-BARRIOS AND M.M. HERNÁNDEZ-CEDILLO

value of n d=2 and m=2 d=2 and m=3 d=2 and m=4
2 0.24980 - -
3 0.56013 0.04890 -
4 0.76562 0.19765 0.00867
5 0.88051 0.37881 0.05392
10 0.99588 0.89792 0.61116
15 0.99984 0.98655 0.89724
20 1 0.99849 0.97408
25 1 0.99979 0.99378
30 1 0.99998 0.99870
35 1 1 0.99950
40 1 1 0.99990
45 1 1 0.99995
50 1 1 1

Tab. 1. Approximations of P(S n
m ∈ S

+) for d = 2 and m = 2, 3, 4.

value of n d=3 and m=2 d=3 and m=3 d=4 and m=2 d=4 and m=3
2 0.12505 - 0.06192 -
3 0.42239 0.01112 0.31648 0.00249
5 0.82229 0.23426 0.76920 0.14455
10 0.99381 0.85042 0.99238 0.80913
15 0.99980 0.97938 0.99980 0.97177
20 0.99998 0.99759 0.99998 0.99625
25 1 0.99971 1 0.99959
30 1 0.99995 1 0.99997
35 1 1 1 0.99999
40 1 1 1 1

Tab. 2. Approximations of P(S n
m ∈ S

+) for d = 3, 4 and m = 2, 3.

Normal with different parameters to compare the behavior of P(S n
m ∈ S

+) to the samples coming
from the product copula of dimension d = 2 and d = 3. Some of these results can be seen in
Table 3 and Table 4. From Tables 1 and 3 we observe that for very small values of n the product
copula gives smaller probabilities of P(S n

m ∈ S
+) than the other distributions, we also have that

M2 produces the largest probabilities compare to the other distributions. However, for values
of n between 30 and 50 the probabilities are quite similar for all the distributions. Similar
observations can be obtained from Tables 2 and 4.

We simulated several extra examples with copulas with Spearman’s rho varying from −1 to
0, and we obtained very similar results. For example for d = 2, W2 gives very similar results as
M2, as expected.

For a further exploration of these results we recommend to see the algorithms to generate
samples of d-copulas in Mai and Scherer [22].

Another way of finding an upper bound for P(S n
m ∈ S

+) is to use the Polya approach. Con-
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value of n Clayton θ = 2 Frank θ = 5 Normal ρ = 0.5 M2

4 0.01393 0.01272 0.01037 0.09364
5 0.06941 0.06674 0.05859 0.23416
10 0.62622 0.62193 0.61671 0.78161
15 0.90017 0.89780 0.89658 0.94685
20 0.97561 0.97532 0.97600 0.98712
25 0.99433 0.99395 0.99428 0.99694
30 0.99866 0.99860 0.99863 0.99934
35 0.99948 0.99967 0.99967 0.99988
40 0.99991 0.99992 0.99993 0.99997
45 0.99999 0.99999 0.99995 0.99998
50 0.99999 0.99999 0.99999 0.99998

Tab. 3. Approximations of P(S n
m ∈ S

+) for d = 2 and m = 4 under different
distributions.

value of n Clayton θ = 2 Frank θ = 5 Normal ρ = 0.5 M3

3 0.02657 0.02285 0.01597 0.21962
5 0.29490 0.28744 0.25843 0.61540
10 0.86428 0.86021 0.85690 0.94941
15 0.98036 0.98036 0.97966 0.99249
20 0.99725 0.99750 0.99737 0.99903
25 0.99971 0.99966 0.99962 0.99989
30 0.99999 0.99995 0.99999 0.99999
35 1 0.99999 1 1
40 0.99999 1 1 1

Tab. 4. Approximations of P(S n
m ∈ S

+) for d = 3 and m = 3 under different
distributions.

sider k boxes and n ≥ k balls, for each ball we select uniformly one of the boxes and the ball is
placed inside that box, we repeat independently the procedure for the n balls. We want to find
the probability that at the end of this procedure there are no empty boxes, let us call this event
En

k . This probability is known as the Maxwell-Boltzmann occupancy problem formula given by

P
(
En

k

)
=

k∑
j=0

(−1) j
(

k
j

) (
1 −

j
k

)n

, (33)

see for example Mahmoud [21] page 37. Observe that if we have a sample of size n from the
copula product Πd and we take 2 ≤ m ≤ n, then the md boxes used in the construction of the
empirical copula of size m have the same probability 1/md. If we assume that n ≥ md and
k = md, in the occupancy problem above it is clear that the matrix S n

m ∈ S
+ if every box has at

least one ball (observation). Then P(En
k ) ≤ P(S n

m ∈ S
+). So, if we find a value of n, depending on

k, such that P(En
k ) ≈ 1, then we have that S n

m is generalized transformation matrix with very high
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probability. We proposed to use n(k) the minimum value of n such that P(En(k)
k ) ≥ 0.99999995,

if we use the language R and we obtain a probability satisfying this condition it is reported as 1.
We obtained the values of n(k) for 1 ≤ k ≤ 150, see some values on Table 5, and we fit

linear and non linear models to check its behavior. We found that a linear model is a good
approximation and that for large values of k the estimated line remains above the real values of
n(k). Observe that from Tables 1 and 2 the value of n such that P(S n

m ∈ S
+) is close to one is

actually smaller than the values of n(k) where k = md in the Polya urn scheme even for small
values of k.

value of k 4 8 9 16 25 27 32 49 64 81 100
value of n(k) 64 142 162 304 491 533 639 1005 1332 1708 2131

Tab. 5. Values of n(k) such that of P(En(k)
k ) ≈ 1 for k of the form md.

In the remaining part of this section we will study some important statistical applications.

Assume that d = 2 and recall that the main concordance measures are Kendall’s tau and
Spearman’s rho. If C is a copula we know that

τC = 4
∫ 1

0

∫ 1

0
C(u, v) dC(u, v) − 1 and ρC = 12

∫ 1

0

∫ 1

0
uv dC(u, v) − 3, (34)

see for example [26], equations 5.1.7 and 5.1.15b. Let 2 ≤ m ≤ n and let Un = {x1, . . . , xn}

be a sample of size n of a copula C, or a modified sample of a joint continuous distribution
H(x, y). Define sn

i1,...,id
, S n

m,S
+ and Cn

m as in equations (17), (18), (20) and (21), and assume
that S n

m = (sn
i j)

m
i, j=1 is a transformation square matrix of order m. Using the same notation as in

Fredericks et al. [15] it is easy to see that for every i, j ∈ {0, 1, . . . ,m}∫ ∫
Ri j

Cn
m(u, v) dCn

m(u, v) =

∫ q j

q j−1

∫ pi

pi−1

Cn
m(u, v)

si j

(p1 − pi−1)(q j − q j−1)
dudv

=
∑
i′<i

∑
j′< j

si′ j′ si j +
∑
j′< j

si j′ si j

2
+

∑
i′<i

si j′ si j

2
+

s2
i j

4
, (35)

and ∫ ∫
Ri j

uv dCn
m(u, v) =

∫ q j

q j−1

∫ pi

pi−1

uv
si j

(p1 − pi−1)(q j − q j−1)
dudv

=
si j

4
(pi−1 + pi)(q j−1 + q j). (36)

Using (35) and (36) we can prove the following:

Lemma 3.7. Let d = 2 and let Un = {x1, . . . , xn} be a sample of size n of a copula C, or a
modified sample of a joint continuous distribution H(x, y). Define sn

i1,...,id
, S n

m,S
+ and Cn

m as in
equations (17), (18), (20) and (21), and assume that S n

m = (sn
i j)

m
i, j=1 is a transformation square

matrix of order m. Then

τCn
m =

m−1∑
i=1

m−1∑
j=1

m∑
i′=i+1

m∑
j′= j+1

sn
i js

n
i′ j′ −

m∑
i=1

m∑
j=2

m∑
i′=i+1

j−1∑
j′=1

sn
i js

n
i′ j′ , (37)
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and

ρCn
m = 3

 m∑
i=1

m∑
j=1

sn
i j(pi−1 + pi)(q j−1 + q j) − 1

 . (38)

Besides,

τCn
m ∈

[
−

(
1 −

1
m

)
,

(
1 −

1
m

)]
and ρCn

m ∈

[
−

(
1 −

1
m2

)
,

(
1 −

1
m2

)]
. (39)

Observe that if n is a multiple of m and sn
ii = 1/m for every i ∈ {1, . . . ,m}, with sn

i j = 0
if i , j, then the upper bounds in (39) are attained. For example if m = 2, and we consider
a copula C such that VC(R〈1,1〉) = 1/2 = VC(R〈2,2〉). Here we consider two extreme cases let
C1(u, v) = M2(u, v) = min{u, v} for every 〈u, v〉 ∈ I2 and C2(u, v) = max{0, u + v − 1/2} if
〈u, v〉 ∈ R〈1,1〉, C2(u, v) = 1/2 +max{0, u + v − 3/2} if 〈u, v〉 ∈ R〈2,2〉 and C2(u, v) = 0 otherwise,
that is, C2 is a shuffle of M2. In this case using (34) it is easy to see that τC2 = 0 and ρC2 = 1/2,
and obviously τM2 = ρM2 = 1. In general, for any m > 2 if we let C1 = M2 and if we define
C2 to be a shuffle of M that behaves like W2 on each R〈i,i〉 for every i ∈ {1, . . . ,m} then we have
that τC2 = 1 − 2/m and ρC2 = 1 − 2/m2, but τM2 = ρM2 = 1. Therefore, the upper bounds in
(39) are the average of the minimum and maximum values of τC and ρC when we only know
that VC(R〈i,i〉) = 1/m for every i ∈ {1, . . . ,m}. Of course for the lower bounds we have a similar
result. In order to see how the above methodology of estimation of measures of concordance
works, we simulated 10000 samples from the normal copula in dimension d = 2 of sizes n = 100
and n = 200 for different values of ρ between −1 and 1. In Table 6 we report the results of the
estimations of ρ, when n = 200 with ρ = 0 and ρ = 0.5, and for m = 5, 7, 12, 15. Of course
when ρ = 0 we are sampling from the product copula Π2.

In Table 6 we can observe that when ρ = 0 the expected value of ρ is close to 0 even for small
m, and for the case ρ = 0.5 the expected values approach 0.5 from the left when m increases
and the variances are stable in both cases. We also observed that the variances decrease when
the simple size increases form n = 100 to n = 200. For positive values of ρ the behavior of the
expected values and variances is similar to the case ρ = 0.5.

ρ = 0 ρ = 0.5
m E(ρ̂) Var(ρ̂) E(ρ̂) Var(ρ̂)
5 0.000203 0.004563 0.43255 0.003174
7 -0.000567 0.004817 0.45464 0.003079
12 -0.001174 0.004945 0.47136 0.003124
15 0.000470 0.004974 0.47417 0.003079

Tab. 6: Estimations of ρ for n = 200 and real values ρ = 0 and ρ = 0.5.

m E(ρ̂) Var(ρ̂) min(ρ̂) max(ρ̂) upper bound of ρ̂
2 0.74626 0.00002713 0.69532 0.75 0.75
5 0.95760 0.00000292 0.94329 0.95997 0.96
9 0.98614 0.00000058 0.98008 0.98760 0.98765
12 0.99189 0.00000026 0.98574 0.99192 0.99305
15 0.99460 0.00000013 0.99212 0.99542 0.99555

Tab. 7: Estimations of ρ for n = 200 when ρ = 1.
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In Table 7 we first observe that if ρ = 1 we are sampling from the copula M2 then the
expected values approach 1 quickly when m increases. Evenmore, if we observe the values of
the minima and maxima they approach the upper bound of ρCn

m in equation (39), which reflects
in smaller variances. Besides, the worst case in the 10000 simulations when n = 200 and m = 15
is 0.99212 which is very close to one. For negative values of ρ we obtained similar results.

As a second statistical application we proposed a method for the estimation of a parameter
when we are sampling from a parametric family {Cθ|θ ∈ Θ} with Θ ⊂ RI .

For some parametric families {Cθ|θ ∈ Θ} in dimension d, it is possible to make good esti-
mation of the parameter θ using the sample d copula of order m, even in the case when m = 2.
For example, in the case of some multivariate parametric Archimedean copulas, we observe that
VCθ ([0, 1/2]d) is a continuous strictly monotone function f of the parameter θ ∈ Θ ⊂ RI for any
d ≥ 2. This is the case for example in the families Clayton with θ ∈ (0,∞), Frank with (0,∞),
Ali–Mikhail–Haq with θ ∈ [0, 1), Gumbel–Hougaard with θ ∈ [1,∞), etc, see [26] Table 4.1.
Then by estimating VCθ ([0, 1/2]d) using sn

1,1,...,1 in the generalized transformation matrix S n
m as

defined in equation (18), we can find a unique value of θ̂ such that f (θ̂) = sn
1,1,...,1. In general, we

need to find f −1 in order to give θ̂, but in many cases f −1 may not have an analytic expression.
However, it can be approximated very accurately with a numerical procedure.

Observe that when m = 2 from Proposition 3.2, we are trying to estimate the value of θ ∈ Θ
such that f (θ) = VCθ (Ri0 ) = pi0 = Cθ(1/2, 1/2, . . . , 1/2), where i0 = 〈1, 1, . . . , 1〉, based on a
sample from Cθ of size n. We know from the basic properties of the multinomial distribution that
the number of observations that fall in the d-box Ri0 , let us say Xi0 , is distributed as a binomial
with parameters n and pi0 . Therefore, sn

1,1,...,1 = Xi0/n is distributed as a rescaled binomial with
values in {0, 1/n, 2/n, . . . , 1}, and for n large enough sn

1,1,...,1 is a good estimator of f (θ), hence
θ̂ = f −1(sn

1,1,...,1) is a good estimator of θ. The procedure of estimation follows the next steps:

1. Find the direct image f [Θ] = { f (θ) = Cθ(1/2, . . . , 1/2)|θ ∈ Θ} ⊂ I for the family {Cθ|θ ∈
Θ}.

2. Given a sample Un = {x1, . . . , xn} find the value of sn
1,1,...,1 in the construction of the sample

d-copula of order m = 2. If sn
1,1,...,1 ∈ int f [Θ] proceed with the next steps.

3. If f −1 has an analytic expression define θ̂ = f −1(sn
1,1,...,1), and we are done. In other case,

if Θ is bounded, give a fine grid of Θ, to approximate f [Θ], otherwise give a fine grid of a
bounded subset Θ0 of Θ such that sn

1,1,...,1 ∈ f [Θ0] and it is close to f [Θ], and use a linear
interpolation to estimate f −1(sn

1,1,...,1) = θ̂.

As an application of this methodology we use the Frank family of copulas for d = 2 and
d = 3. In the case d = 2 it is easy to see that f [Θ] = (0, 1/4)∪(1/4, 1/2) and f (θ) = Cθ(1/2, 1/2)
is a strictly increasing function which is symmetric with respect to the point 〈0, 1/4〉. If d ≥ 3
then f [Θ] = [1/2d, 1/2) since θ ≥ 0. In these cases f −1 has no analytic expression, so, we use
the grid construction defined above to estimate θ.

We generated 5000 samples of different sizes n = 500, 1000, 10000, 50000, 100000 from the
Frank copula with parameters θ = 2 and θ = 5. In Tables 8, 9, 10 and 11 we can see the basic
statistics of the estimations for the 5000 samples.
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n E(θ̂) Var(θ̂) min(θ̂) max(θ̂)
500 2.03938 0.582948 -0.51333 5.54950
1000 2.01002 0.286775 0.35233 3.97850
10000 2.00103 0.027756 1.42433 2.65066
50000 2.00187 0.005590 1.74500 2.27800
100000 1.99985 0.002830 1.81266 2.19766

Tab. 8: Estimations of θ for the Frank copula with d = 2 and θ = 2.

n E(θ̂) Var(θ̂) min(θ̂) max(θ̂)
500 2.00465 0.215213 0.37775 3.63266
1000 2.00282 0.103440 0.94150 3.33600
10000 2.00082 0.010230 1.61925 2.42125
50000 2.00155 0.002118 1.85150 2.20225
100000 2.00017 0.001008 1.88675 2.10825

Tab. 9: Estimations of θ for the Frank copula with d = 3 and θ = 2.

n E(θ̂) Var(θ̂) min(θ̂) max(θ̂)
500 5.17081 1.950315 1.57509 13.84323
1000 5.07970 0.891967 2.29133 10.10000
10000 5.01109 0.083791 3.90100 6.12500
50000 5.00001 0.016473 4.58750 5.53900
100000 5.00227 0.008161 4.69700 5.32500

Tab. 10: Estimations of θ for the Frank copula with d = 2 and θ = 5.

n E(θ̂) Var(θ̂) min(θ̂) max(θ̂)
500 5.07597 0.678271 2.66900 10.07200
1000 5.04366 0.319974 3.16400 7.27900
10000 5.00105 0.031167 4.40900 5.67650
50000 5.00303 0.006224 4.73633 5.28200
100000 5.00040 0.002999 4.82266 5.22500

Tab. 11: Estimations of θ for the Frank copula with d = 3 and θ = 5.

As can be observed in Tables 8, 9, 10 and 11, the average estimation of θ is good in all
cases, and as expected the variances decrease as n increases. The minima and maxima of the
estimations are relatively far from each other when the sample size is n = 500. So, we do
not recommend to use this methodology for small n. It is also very important to observe that, as
expected from the binomial distribution and the central limit theorem, the estimation of θ is quite
good for n = 100000, but if we try to use the empirical distribution function when d = 3, we
would need an array of 1015 terms, which is needed to perform calculations in order to estimate
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θ, which no computer can handle. However, in our tables the elapsed time for each simulation
was 15.98 seconds for θ = 2 and d = 3, and 16.25 seconds for θ = 5 and d = 3.

As a third application we propose a simple goodness-of-fit test. Let us assume that we take
a sample of size n coming from a d-copula C and we take 2 ≤ m ≤ n a fixed integer. Let Ri
for i ∈ Im be the partition of Id in the construction of the sample d-copula, and assume that
S n

m =
(
sn

i1,...,id

)m

i1,...,id=1
is a generalized transformation matrix. From Proposition 3.2 we know

that the square d-dimensional matrix S n
m has a multinomial distribution with parameters n and

{qi}i∈IC
m
, where IC

m = {i ∈ Im | qi > 0}. Therefore, we want to test the simple hypothesis

H0 : n · S n
m { Mult

(
n, {qi}i∈IC

m

)
, (40)

against the alternative composite hypothesis H1 : n · S n
m 6{ Mult

(
n, {qi}i∈IC

m

)
. In the literature

there are several proposals for a goodness-of-fit test for the multinomial distribution, see for
example [4] or [27]. In order to prove H0 vs H1 we used the most common statistics, that is,
Pearson’s X2, which has asymptotically a chi-squared distribution with k−1 degrees of freedom,
where k denotes de the cardinality of IC

m. Here we present a couple of examples:
In the first one we choose the case d = 2, m = 2, and the Frank copula with θ = 10, and differ-

ent values of n, in this case q〈1,1〉 = q〈2,2〉 = 0.43136 and q〈1,2〉 = q〈2,1〉 = 0.06844. In Table 12 we
give the basic statistical results of 10000 simulations with values of n = 5, 25, 100, 250, 500
and n = 1000. As we can observe, even for n as small as 25, the expected values of sn

i, j
for i, j ∈ {1, 2} are close to the real ones, with smaller variances as n increases as expected.
In Table 13 we present the results of the number of rejections of H0 at level α = 0.05 for
n = 100, 250, 500, 1000 and the mean of the p-values of the 10000 tests. From these results we
can see that the test performs as expected when α = 0.05. In order to check the power of the test,
depending on θ the parameter of the Frank copula, we performed 10000 tests of H0 as above,
for n = 1000 with different values of θ varying from θ = 6 up to θ = 15 taking integer values,
the number of rejections of H0 in order were 9997 for θ = 6, 9815 for θ = 7, 6692 for θ = 8,
1860 for θ = 9, 1147 for θ = 11, 3577 for θ = 12, 6646 for θ = 13, 8816 for θ = 14 and 9709
for θ = 15.

Observe that the null hypothesis (40) does not characterize a unique copula, but only gives the
volumes of the d-boxes needed in the construction of a d-sample copula of order m. However,
when m is large enough (40) approximates closely the underlying copula C, by Theorem 3.6.
We also performed simulations for d = 3 for different families of 3-copulas obtaining similar
results. Of course, we can also use different statistics to test (40), for example the ones proposed
in [4] or [27].

n E(sn
1,1) Var(sn

1,1) E(sn
1,2) Var(sn

1,2) E(sn
2,1) Var(sn

2,1) E(sn
2,2) Var(sn

2,2)
5 0.4359 0.03509 0.0668 0.01200 0.0658 0.01196 0.4315 0.03426
25 0.4312 0.00973 0.0681 0.00263 0.0690 0.00254 0.4316 0.00986
100 0.4431 0.00244 0.0688 0.00063 0.0685 0.00064 0.4319 0.00244
250 0.4312 0.00099 0.0683 0.00025 0.0685 0.00025 0.4320 0.00101
500 0.4312 0.00049 0.0688 0.00013 0.0686 0.00013 0.4314 0.00048
1000 0.4314 0.00025 0.0686 0.00006 0.0687 0.00006 0.4313 0.00024

Tab. 12: Estimations of sn
i j, i, j ∈ 1, 2 for the Frank copula with d = 2, m = 2 and θ = 10.
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n Number of rejections Mean of p-value
100 485 0.50105
250 487 0.49428
500 508 0.49923
1000 492 0.50140

Tab. 13: Rejections of H0 for the Frank copula with d = 2, m = 2 and θ = 10.

As a second example we generated 10000 simulations of the copula M2 for m = 3 and different
values of n between 5 and 1000. In this case q〈1,1〉 = q〈2,2〉 = q〈3,3〉 = 1/3 and zero in any other
case. On Table 14 we report the basic statistics of the simulations. On Table 15 we report the
number of rejections of H0 for n ≥ 25, and observe that even for n = 25 we obtain nice results.

n E(sn
1,1) Var(sn

1,1) E(sn
2,2) Var(sn

2,2) E(sn
3,3) Var(sn

3,3)
5 0.33288 0.019545 0.33364 0.019482 0.33347 0.019482
25 0.33371 0.008919 0.33326 0.008833 0.33302 0.008880
100 0.33331 0.002206 0.33327 0.002223 0.33340 0.002229
250 0.33340 0.000889 0.33319 0.000889 0.33340 0.000889
500 0.33329 0.000444 0.33331 0.000445 0.33339 0.000445
1000 0.33324 0.000222 0.33336 0.000222 0.33339 0.000223

Tab. 14: Estimations of sn
i j, i, j ∈ 1, 2 for the copula M2 with d = 2 and m = 3.

n Number of rejections Mean of p-value
25 477 0.49930
100 543 0.49839
250 496 0.49869
500 498 0.50014
1000 507 0.49868

Tab. 15: Rejections of H0 for the M2 copula with d = 2 and m = 3.

As a fourth application we propose a methodology to test two simple hypotheses, that is,

H0 : X { C0 VS H1 : X { C1 (41)

where C0 and C1 are two completely determined d-copulas which are obviously different. Let
m ≥ 2 fixed and denote by Vol0(Ri) and Vol1(Ri) to the volumes of the uniform partition given
in (11) of [0, 1]d under H0 and H1 respectively. Observe that since C0 , C1 then it is clear that
there exist m ≥ 2 and i1, i2 ∈ Im such that Vol0(Ri1 ) , Vol1(Ri1 ) and Vol0(Ri2 ) , Vol1(Ri2 ). In
several typical cases m = 2 satisfies the above condition.

Let Un = {x1, . . . , xn} be a random sample from the d-copula C0 and obtain the matrix S n
m as

defined in equations (17) and (18). If S n
m is a generalized transformation matrix, using Propo-

sition 3.2 and the classical Neyman–Pearson’s theorem, see for example [19], we can find the
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likelihood ratio L(θ0; n · S n
m)/L(θ1; n · S n

m), where θ0 = {Vol0(Ri)}i∈Im and θ1 = {Vol1(Ri)}i∈Im ,
which is given by

T d
m,n = Πi∈Im

(
Vol0(Ri)
Vol1(Ri)

)n·sn
i

. (42)

Then the best critical region to test H0 VS H1 is given by

D = {Un | Un is a sample of size n from C0 such that T d
m,n ≤ Kα},

where P(T d
m,n ≤ Kα|H0 is true) = α and 0 < α < 1 is the probability of Type 1 error.

Since the distribution of T d
m,n is not known, we can estimate Kα for α = 0.01, 0.05 and

α = 0.1, by simulating samples from C0 a large number of times L, we estimate the required
quantiles of the distribution of T d

m,n. We recommend to use L ≥ 50000 to estimate the values of
Kα.

We calculated T d
m,n 10,000 times to test all possible couples of the following 2-copulas:

Clayton(6), Frank(14.1385) and Gumbel(4), which correspond to three copulas with the same
Kendall’s tau where τ = 0.75. We used m = 6 and m = 8, n = 150 and L = 1, 000, 000. We
compare our results to the best percentage of rejections, out of seven different statistics given in
Genest et al. [16], Table 3, when m = 6 and m = 8 in Table 16.

Copula under H0 True copula m = 6 m = 8 Best percentage in [16]
Clayton Clayton 5.15 5.20 4.9-5.4
Clayton Frank 99.63 100 99.9
Clayton Gumbel 100 100 99.9
Frank Clayton 99.73 99.99 96.6
Frank Frank 5.01 5.08 4.5-5.2
Frank Gumbel 80.69 93.91 81.9
Gumbel Clayton 100 100 99.9
Gumbel Frank 80.24 93.51 83.8
Gumbel Gumbel 5.19 4.88 4.4-5.2

Tab. 16: Percentage of Rejections of H0 for n = 150 and α = .05.

From Table 16 we can see that when m = 6 we have similar results as in Genest et al. [16].
However, when m = 8 we improve in all cases the percentages of rejections in [16]. When
the true copula coincides with the copula under H0 we report the percentage average of the test
when H0 is fixed, and in column 5 we report the lower and upper percentages in [16].

We are in the process of making all the comparisons with [16] in the preprint Testing simple
hypotheses using the sample d-copula of order m. For example, in the comparison for Plack-
ett(68.46996) VS Frank(14.1385) both with τ = 0.75, we obtained 90.3 % of rejections while
the best percentage reported out of the seven statistics used in Genest et al. [16] is 18.5 %, that
is, we improved their power by more than 70 %.

It is very important to observe that it may be possible to make Bayesian inference. By
Proposition 3.2, we know that the square d-dimensional matrix S n

m needed in the construction
of the d sample copula of order m follows a multinomial distribution, with restrictions on the
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values of the pi for qi ∈ I
C
m. So, we could try to extend the classical approach of considering a

Dirichlet prior for the parameters in order to obtain the posterior distribution based on a sample,
as in [2]. But, this is material for future research.

Now we study the general setting of the sample d-copulas.

3.2. Sample d-Copula of Order m for a Continuous d-Distribution Function

Let m, d ≥ 2 be fixed integers and let H be a continuous d-distribution function in RI d. Let
Vn = {z1, . . . , zn} be a random sample from H of size n ≥ m. Let Un = {x1, . . . , xn} be the usual
modified sample or pseudo sample, that is, if j ∈ {1, . . . , n} and zj = 〈z j,1, . . . , z j,d〉 ∈ RI d, define
for k ∈ {1, . . . , d}

R j,k =

n∑
l=1

1{zl,k≤z j,k}, (43)

where R j,k is the rank of the observation z j,k for l varying between 1 and n. Now define for every
j ∈ {1, . . . , n}, xj = 〈x j,1, . . . , x j,d〉 where

x j,k =
R j,k

n
and for every k ∈ {1, . . . , d}. (44)

Then
Un = {x1, . . . , xn} ⊂ {1/n, . . . , (n − 1)/n, 1}d ⊂ [0, 1]d. (45)

Of course, from the continuity assumption on H, the ranks in the definition of xj are all different
for every j ∈ {1, . . . , n} almost surely.

Recall that the empirical d-copula for the modified sample Un is defined for every 〈u1, . . . , ud〉 ∈

[0, 1]d by

Cn(u1, . . . , ud) =
1
n

n∑
j=1

1{x j,1≤u1,...,x j,d≤ud}, (46)

see for example Nelsen [26]. Observe that the empirical d-copula is not a d-copula. For example,
if u = 〈u1, . . . , ud〉 and 0 < u1 < 1/n then Cn(u1, . . . , ud) = 0. In fact, since Cn(u1, . . . , ud) = 0
if for some j ∈ {1, . . . , d}, u j = 0. Then it is well known that the restriction of Cn to the grid
{0, 1/n, . . . , (n − 1)/n, 1} is a d-subcopula.

For m ≥ 2, n ≥ m and Un a modified random sample from a continuous d-distribution
function H. Define sn

i1,...,id
, S n

m,S
+ and Cn

m as in equations (17), (18), (20) and (21).
In this case the structure of the modified sample Un simplifies significantly the structure of

the sample d-copula of order m, as can be seen in the following:

Theorem 3.8. Let Un be a modified random sample obtained from an original random sample
Vn of H a continuous d-distribution function in RI d. Define sn

i1,...,id
, S n

m,S
+ and Cn

m as in equations
(17), (18), (20) and (21). Then

S n
m ∈ S

+ for every 2 ≤ m ≤ n, (47)
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that is, S n
m is always a generalized transformation square matrix. Besides, if 2 ≤ m ≤ n and we

define for every j ∈ {1, . . . , d} the partitions πn
j = {0 = p j,0, p j,1, . . . , p j,m−1, p j,m = 1} given in

equation (14), then

p j,k =
b k·n

m c

n
for every j ∈ {1, . . . , d} and for every k ∈ {1, . . . ,m}, (48)

where bac denotes the greatest integer less than or equal to a. In particular, when n = m,
πn

j = {0, 1/n, . . . , (n − 1)/n, 1} for every j ∈ {1, . . . , d}.
Even more, when n = m ≥ 2 the sample d-copula Cn

n is such that

Cn
n(u1, . . . , ud) = Cn(u1, . . . , ud) for every 〈u1, . . . , ud〉 ∈ {0, 1/n, . . . , (n − 1)/n, 1}d, (49)

that is, we recover the empirical d-copula defined in equation (46) on the grid {0, 1/n, . . . , 1}d.

P r o o f . Let Un be a modified random sample obtained from an original random sample Vn of
H a continuous d-distribution function in RI d and define sn

i1,...,id
, S n

m,S
+ and Cn

m as in equations
(17), (18), (20) and (21).

Of course, it is enough to see that equation (47) holds for the limit case, that is, when n =
m ≥ 2. So Assume that n = m ≥ 2, in this case, from equations (43) and (44), we know that
x j,k = R j,k/n for every j, k ∈ {1, . . . , n}. But, since all the ranks are different with probability
one, we have that the matrix S n

n = (sn
i1,...,id

)n
i1,...,id=1, given in equation (18), satisfies that for every

j ∈ {1, . . . , d} and for every k ∈ {1, . . . , n}

n∑
i1=1

· · ·

n∑
i j−1=1

n∑
i j+1=1

· · ·

n∑
id=1

sn
i1,...,i j−1,i j=k,i j+1,...,id =

1
n
. (50)

Therefore, S n
n is a d-dimensional square matrix which is a generalized transformation matrix,

that is, S n
n ∈ S

+. So, (47) holds.
Now, assume that m is such that 2 ≤ m ≤ n and define for every j ∈ {1, . . . , d} the partitions

πn
j = {0 = p j,0, p j,1, . . . , p j,m−1, p j,m = 1} given in equation (14). Then we know that

p j,k =

k∑
i j=1

m∑
i1=1

· · ·

m∑
i j−1=1

m∑
i j+1=1

· · ·

m∑
id=1

sn
i1,...,i j−1,i j,i j+1,...,id .

Now using the sample size n, the partition of [0, 1]d given by {Ri}i∈Im , see equation (11), and by
equation (30), we have that there are b(k · n)/mc points in the regions defined by p j,k, where bac
is the greatest integer less than or equal to a. Therefore, (48) holds.
Finally, if we assume that n = m ≥ 2, using the definition of the d-sample copula of order n,
Cn

n given in equation (21), the definition of the empirical copula in equation (46), the partition
given in equation (11), together with (15) and its generalizations. It is easy to see that equation
(49) also holds. �

Observe that in the last Theorem, if n is a multiple of m, then by equation (48), p j,k = k/m
for every j ∈ {1, . . . , d} and for every k ∈ {1, . . . ,m}, that is, we recover the original partition of
[0, 1]d. In the case that n is not a multiple of m the partition given in equation (48) is still a good
approximation of the original partition given by {Ri}i∈Im in equation (11).
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Remark 3.9. We know that the empirical copula Cn is a d-subcopula, then if we use the multi-
variate extension of Lemma 2.3.5 in [26], used in the proof of Sklar’s theorem, we can extend
the empirical copula Cn to a d-copula Cn

∗ using standard multilinear interpolation. Observe that
in this case Cn

∗ = Cn
n the sample d-copula of order n.

Returning to Example 3.1 and by Remark 3.9 the density of the 2-copula C4
∗ = C4

4 is given
by

c4
∗(u, v) =

{
4 if 〈u, v〉 ∈ R1,4 ∪ R2,1 ∪ R3,3 ∪ R4,2
0 otherwise,

where R1,4 = [0, 1/4] × (3/4, 1],R2,1 = (1/4, 2/4] × [0, 1/4],R3,3 = (2/4, 3/4] × (2/4, 3/4] and
R4,2 = (3/4, 1] × (1/4, 2/4]. If we take the copula C4

∗ which has the above density then the sup
distance between C4

∗ and the real one Π2 is 3/16. If we use any other distance it is obvious that
the distance between the sample 2-copula of order 2 C4

2 and the real one is always zero.

Remark 3.10. If we are sampling from a d-copula C and S n
m is not a generalized transformation

matrix for the value of m required in a statistical procedure, then we recommend to obtain the
modified sample and, using Theorem 3.8, the modified S n

m is always a generalized transforma-
tion matrix, even in the case m = n. However, we also recommend to add a warning saying that
the original sample did not allow us to obtain the sample d-copula of order m, this only happens
for relatively small sample sizes n or large values of m.

The statistical procedures presented in Section 3.1 can be used for modified samples. For
example, in the case of the concordance measures Kendall’s tau and Spearman’s rho, we can
observe that if we have two continuous random variables X and Y , such that Y = f (X), where f
is a strictly increasing function almost surely, then it is well known that the copula CX,Y is the
M2 copula. But, in this case, it is obvious to see that if we have an independent random sample
of size n of 〈X,Y〉, and we take m = n, then τCn

n = 1 − 1/n and ρCn
n = 1 − 1/n2 with probability

one, which correspond to the upper bounds in (39). So, even for small values of n both measures
are close to one.

In order to see how the estimation procedure in Section 3.1 works for modified samples, we
generated 10000 samples of different sizes n of a joint distribution with exponential margins and
corresponding copula Frank with parameter θ = 5 and d = 2. We use n = 200, 500, 1000, 5000
and n = 10000. In general the results had the same behavior as the one in Table 10, providing
good estimators of θ.

As an application of the hypothesis testing of (40) with modified samples we generated 10000
samples of Z = 〈X1, X2, X3〉 of three independent normal variables with corresponding variances
1, 4 and 9, with different sample sizes n = 500, 1000, 10000 and n = 100000. Then we obtained
the modified samples for each simulation, and we calculate the corresponding 3-dimensional
transformation matrices S n

3 for m = 3. Finally we tested the hypothesis H0 : q〈i, j,k〉 = 1/27 =
0.0370370 for i, j, k ∈ {1, 2, 3}, corresponding to independence.

Instead of giving large tables we report only the extreme cases for each sample size for the
twenty seven 3-boxes included in each test.

For n = 500 the minimal expected value observed was 0.03683, the maximal expected value
was 0.03727, the minimal value observed was 0.006 and the maximal was 0.078, and the maxi-
mal variance was 0.0000554. For n = 1000 the minimal expected value observed was 0.03690,
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the maximal expected value was 0.03726, the minimal value observed was 0.013 and the maxi-
mal was 0.065, and the maximal variance was 0.0000277. For n = 10000 the minimal expected
value observed was 0.03700, the maximal expected value was 0.03706, the minimal value ob-
served was 0.0297 and the maximal was 0.044, and the maximal variance was 0.0000028. For
n = 100000 the minimal expected value observed was 0.037020, the maximal expected value
was 0.037056, the minimal value observed was 0.03499 and the maximal was 0.03935, and the
maximal variance was 0.00000028. From these results it is clear that the estimations of the qi
largely improve as n increases.

When we implement the hypothesis testing we observed that when α = 0.05, the number of
rejections of (40) was quite small for n ≥ 500.

We also applied the test with m = 2 and d = 3 with similar results.

As a last application we give a new of test of independence for multivariate normal data. We
generated 10000 samples of sizes n = 1000, 10000 and n = 100000 from a tetravariate normal
with mean µ = 0 and variances σ1 = σ2 = σ3 = σ4 = 1 and covariance matrix

1 ρ1,2 ρ1,3 ρ1,4
ρ1,2 1 ρ2,3 ρ2,4
ρ1,3 ρ2,3 1 ρ3,4
ρ1,4 ρ2,4 ρ3,4 1

 .
We want to test the hypothesis

H0 : ρi, j = 0 for every i, j VS H1 : there exist i, j such that ρi, j , 0.

We first obtained the modified samples of the tetravariate normal, then we took m = 2 and we
obtained the sample 4-copulas of order 2. We observe that H0 holds if and only if the coordinates
are independent. So, the copula associated to the observations is the product copula Π4, in this
case we have that we can test alternatively

H0 : V(Ri) =
1
24 for every i ∈ I2 VS H1 : there exists i ∈ I2 such that V(Ri) ,

1
24 .

To find the power of this test we took ρ1,2 , 0 and ρi, j = 0 for any other i, j. The results of these
tests for n = 1000, 10000 and n = 100000 are given in Tables 17, 18 and 19. We used Pearson’s
χ2 to test the hypotheses.

In Tables 17, 18 and 19 p − v stands for “p-value”. In Table 17 we observe that when the
sample size is n = 1000 the number of rejections of H0 increases rapidly when ρ1,2 varies from
0.1 up to 0.4, as expected the mean of the p-value decreases as well as its variances. It is
important to notice that we obtained practically the same results when we took ρi0, j0 , 0 for any
i0 , j0 with i0, j0 ∈ {1, 2, 3, 4} and the remaining ρ′s = 0. We also observed that if we let another
ρi, j , 0 with {i, j} , {1, 2} the number of rejections increases even faster. This last observation
holds also for Tables 18 and 19. In Table 18 we observe that when the sample size is n = 10000
the number of rejections of H0 increases when ρ1,2 varies from 0.03 up to 0.14, observe also that
we would reject independence when ρ1,2 = 0.14 even for α = 0.01. In Table 19 we observe that
when the sample size is n = 100000 the number of rejections of H0 increases rapidly when ρ1,2
varies from 0.01 up to 0.0425, the final observation in Table 17 holds for Table 18.
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ρ1,2 Rejections E(p − v) Var(p − v) min(p − v) max(p − v)
0.1 676 0.5113 0.0947 6.5 e−6 0.9999
0.2 5690 0.1147 0.0327 8.2 e−11 0.9983
0.3 9811 0.0040 0.0040 1.1 e−15 0.6424
0.4 10000 1.2 e−5 1.4 e−7 8.4 e−26 0.0295

Tab. 17: Rejections of H0 for n = 1000 with ρ1,2 , 0.

ρ1,2 Rejections E(p − v) Var(p − v) min(p − v) max(p − v)
0.03 625 0.5278 0.0941 3.7 e−7 0.9999
0.07 6968 0.0729 0.0196 2.7 e−12 0.9576
0.11 9982 0.0005 2.4 e−5 8.2 e−23 0.1906
0.14 10000 1.5 e−6 1.9 e−9 2.8 e−31 0.0035

Tab. 18: Rejections of H0 for n = 10000 with ρ1,2 , 0.

ρ1,2 Rejections E(p − v) Var(p − v) min(p − v) max(p − v)
0.01 700 0.5076 0.0959 1.6 e−6 0.9999
0.02 5593 0.1217 0.0357 1.1 e−10 0.9970
0.03 9722 0.0053 0.0006 1.8 e−17 0.5603
0.04 9997 4.8 e−5 1.7 e−6 5.7 e−28 0.0818
0.0425 10000 3.2 e−6 4.7 e−6 5.4 e−28 0.0052

Tab. 19: Rejections of H0 for n = 100000 with ρ1,2 , 0.

It is quite important to provide elapsed times for each individual run, from different sample
sizes. In Table 20 we give the average elapsed times of each test using modified samples, and
the last column gives us the average times to find the empirical copulas. We observed that
for n ≥ 600 the language R can not allocate arrays of the required size (NA). We ran our
simulations using the language R in a Dell Precision 490 Workstation, we used extensively the
copula package in our programs [18]. It is clear that the elapsed times increase linearly with the
sample size n, instead of polynomially as it is the case for the empirical copula.

n seconds for m = 2 seconds for m = 3 seconds for m = n
50 0.007 0.03 113.28
100 0.017 0.06 1799.36
500 0.08 0.25 722061
1000 0.15 0.50 NA
10000 1.57 4.87 NA
100000 15.94 48.28 NA

Tab. 20: Elapsed times for different sample sizes n in dimension d = 3.



688 J. M. GONZÁLEZ-BARRIOS AND M.M. HERNÁNDEZ-CEDILLO

The empirical d-copula has big restrictions in terms of evaluations in computers, for example if
we consider a sample size n = 1000 in dimension d = 4, then we need an array of 1012 entries,
and in many situations we have to perform calculations with this array, which generally can not
be supported in a computer. The sample d copula of order m only needs an array of md entries
which is more manageable specially for small m. Since we can use in its definition 2 ≤ m ≤ n,
we recommend to use m = 2 as the first approximation, in many instances the sample d-copula
of order 2 gives us some preliminary information about the data, as observed in Section 3.

The sample d-copula of order m can be used in several statistical procedures, such as good-
ness of fit tests, tests of symmetry, estimation of one or more parameters in parametric models,
etc.

Of course by equation (49) in Theorem 3.8, we can also use all the asymptotic results known
for the empirical d-copula in the case that n = m. In the case that 2 ≤ m < n we think that the
convergence of the sample d-copula of order m has also nice asymptotic properties, but this is a
topic for future research.

4. FINAL REMARKS

In the last years many researchers have been proposing methods of constructing multivariate
copulas, see for example [9, 28] and [14]. The idea is to provide new families that allow to
model multivariate data, since the known models are not numerous enough to do so.

To find multivariate extensions of known results for 2-copulas is of great importance, and
lately several papers have been written to achieve this goal. In the case of ordinal sums, see [1] or
[26], we have a multivariate extension given in Mesiar and Sempi [24]. For the shuffles, see [26],
we have the extension of Durante and Fernández-Sánchez [10]. For extensions in construction
of multivariate copulas with a given diagonal, we may cite [20, 29] and [5]. Another interesting
references are [6, 7] and [34], see also a recent note on singular copulas in [12].

The importance of the construction of what the authors called self-similar 2-copulas in
Cuculescu and Theodorescu [5], was extended in [15] to construct interesting examples of 2-
copulas with given fractal supports. For the multivariate extension of the construction of fractal
copulas quite recently in Trutschnig and Fernández-Sánchez [33], using the results in [15], give
a method using transformation matrices to construct new interesting d-copulas.

In this paper we provide in Proposition 2.3 the multivariate generalization of the construction
in Cuculescu and Theodorescu [5].

In Section 3 we introduced the sample d-copula of order m , based on the ideas of the trans-
formation matrices given in [15], and its generalization in [33], in two settings: First when the
sample is obtained from a d-copula C, and second when the sample comes from a continuous
d-distribution function on RI d.

In the first case, we observed that the sample d-copula has very nice properties and we pro-
vided some important asymptotic results. We also observe that even for small values of n the
d-dimensional square matrix S n

m, used in the definition of the sample d-copula of order m, Cn
m

in equation (21), is with high probability a generalized transformation matrix. We also provide
interesting statistical applications such as a new methodology for estimation of parameters, a
goodness-of-fit test results about the concordance measures and a comparison with the empiri-
cal copula results when testing two simple hypotheses, improving their powers.

In the second case, for 2 ≤ m ≤ n, we proved that d-dimensional square matrix S n
m, used in

the definition of the sample d-copula of order m, Cn
m in equation (21), is always a generalized
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transformation matrix, which allows us to have a non trivial sample d-copula. We also saw that
we can recover the empirical d-copula from Cn

n. We also observed that the statistical applications
in the first case can be carried out easily to this case by using the modified samples. We introduce
a new independence test for multivariate normal data with nice power.

In both cases, the empirical d-copula of order m can be used to study the statistical properties
of the sample, and to try to model the d-copula that “better fits” the observations.
How to choose m = m(n)? The selection of m depends on the type of statistical inference
required and on the proposed methodology. For example, in our applications we observed that
m = 2 works fine when we are dealing with parameter estimation for an Archimedean family,
or the new independence test for multivariate normal data, proposed in Section 3.2. In the
case of the estimation of concordance measures Kendall’s tau and Spearman’s rho we need
relatively large values of m as observed in Section 3.1. Finally, in the new proposal of testing
H0 : X { C0 VS H1 : X { C1, which uses the classical Neyman–Pearson’s Theorem,
which gives the best critical region, see for example Hogg and Craig (1978) [19]. We compare
our results to the ones obtained using the empirical copula in Genest et al. We observe that we
need m to be larger than or equal to 6, at least in the case that the sample size is n = 150. For
m = 8 we improved all the percentages of rejections given in Genest et al., in some cases the
improvement is quite significant.

The empirical copula first proposed by Deheuvels in [8], which he called “fonction de dé-
pendance empirique” has very nice theoretical properties. However, for large samples even in
small dimensions it has big problems in applications, because of the limitations of a standard
computer. If the sample size n is small as well as the dimension d we can still use all the strong
statistical techniques developed for empirical copulas, see for example [3, 13] or [16]. However,
if the sample size n is large, let us say n ≥ 100000, even in small dimensions d = 2 or d = 3,
the statisticians require new tools and methods which can be easily implemented in standard
computers, without the need of taking a much smaller subsample. We think the sample d copula
of order m may be this new tool.

We believe the sample d-copula of order m may be quite useful in applications, because it is
easy to obtain and any computer can handle the arrays needed for its construction, considering
medium values of m and values of d not so small, even if the sample size n is quite large. This
last fact is a great advantage for any statistician.

You can find all the programs in https://sites.google.com/site/probstatsr, the programs were
written using language R.
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690 J. M. GONZÁLEZ-BARRIOS AND M.M. HERNÁNDEZ-CEDILLO
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[18] M. Hofert, I. Kojadinovic, M. Maechler, and J. Yan: copula: Multivariate Dependence with Copulas.
R package version 0.999-5. http://CRAN.R-project.org/package=copula, 2012.

[19] R. H. Hogg and A. T. Craig: Introduction to Mathematical Statistics. Fourth edition. Collier Macmil-
lan International Eds., New York-London 1978.

[20] P. Jaworski: On copulas and their diagonals. Inform. Sci. 179 (2009), 2863–2871.

[21] H. M. Mahmoud: Polya urn models. Texts Statist. Sci. Ser., Chapman and Hall/CRC, New York
2008.

[22] J. F. Mai and M. Scherer: Simulating Copulas: Stochastic Models, Sampling Algorithms and Ap-
plications. Series in Quantitative Finance 4, Imperial College Press, London 2012.

[23] M. Marcus: Some properties and applications of double stochastic matrices. Amer. Math. Monthly
67 (1960), 215–221.

http://CRAN.R-project.org/package=copula


Sample d-copulas of order m 691

[24] R. Mesiar and C. Sempi: Ordinal sums and idempotent of copulas. Aequat. Math. 79, (2010), 1–2,
39–52.
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