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LATTICE BIMORPHISMS
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Abstract. In the paper we prove that every orthosymmetric lattice bilinear map on the
cartesian product of a vector lattice with itself can be extended to an orthosymmetric lattice
bilinear map on the cartesian product of the Dedekind completion with itself. The main tool
used in our proof is the technique associated with extension to a vector subspace generated
by adjoining one element. As an application, we prove that if (A, ∗) is a commutative
d-algebra and Ad its Dedekind completion, then, Ad can be equipped with a d-algebra
multiplication that extends the multiplication of A.
Moreover, we indicate an error made in the main result of the paper: M.A.Toumi,

Extensions of orthosymmetric lattice bimorphisms, Proc. Amer. Math. Soc. 134 (2006),
1615–1621.
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1. Introduction

In [13] the author proved the following result: let A be an Archimedean vector

lattice, let Ad be its Dedekind completion and let B be a Dedekind complete vector

lattice. If Ψ0 : A × A → B is an orthosymmetric lattice bilinear map, then every

lattice extension Ψ: Ad × Ad → B of Ψ0 is again orthosymmetric. Unfortunately,

the result and its proof given in [13] are not correct. The aim of the present pa-

per is to indicate the error in the proof of the above mentioned result and to give

a correct formulation concerning extension of orthosymmetric lattice bilinear maps.

With help of a suitable example we show that ([13], Theorem 1) and its proof cannot

be improved. Apart from that, we are going to investigate the problem of exten-

sion of multiplications for d-algebras, which is a question posed by Huijsmans in [8]

(last paragraph of section 7): can the multiplication of d-algebra be extended to its
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Dedekind completion? Under some assumptions (being a slight modification of the

hypotheses imposed in [13]) we prove a result on the extension of orthosymmetric

lattice bilinear maps. The main tool used in our proof is the technique associated

with extension to a vector subspace generated by adjoining one element.

For terminology, notations and concepts that are not explained in this paper we

refer to the standard monographs [1], [11] and [14].

We notice that in [4], the author furnished examples showing that the main result

in [13] is false.

2. Definitions and notations

We shall assume throughout this paper that all vector lattices (or Riesz spaces)

under consideration are Archimedean.

A vector subspace E of a vector lattice A is said to be majorizing (dominating)

A if for each x ∈ A there exists a ∈ E such that |x| 6 a. A linear mapping T

defined on a vector lattice A with values in the vector lattice B is called positive if

T (A+) ⊂ B+ (notation T ∈ L+(A, B) or T ∈ L+(A) if A = B). The linear mapping

T ∈ L+(A, B) is called a lattice (or Riesz ) homomorphism (notation T ∈ Hom(A, B)

or T ∈ Hom(A) if A = B) whenever a ∧ b = 0 implies T (a) ∧ T (b) = 0 see [10].

An (real) algebra A which is simultaneously a vector lattice is called lattice or-

dered algebra (ℓ-algebra). In an ℓ-algebra A we denote the collection of all nilpotent

elements of A by N(A). The ℓ-algebra A is referred to as semiprime if N(A) = {0}.

The ℓ-algebra A is called an f -algebra if A verifies the property that a ∧ b = 0 and

c > 0 imply ac ∧ b = ca ∧ b = 0. Any f -algebra is automatically commutative and

has positive squares. Every unital f -algebra (i.e., an f -algebra with a unit element)

is semiprime. For more information about this field, we refer the reader to [1].

Also we need the following definitions. An ℓ-algebra A is called a d-algebra when-

ever it follows from a ∧ b = 0 and c > 0 that ac ∧ bc = ca ∧ cb = 0 (equivalently,

whenever |ab| = |a||b|). In other words, multiplications by positive elements in

the d-algebra A are lattice homomorphisms. Contrary to the f -algebras, d-algebras

need not be commutative nor have positive squares. For the elementary theory of

d-algebras we refer to [2], [6], [9]. An ℓ-algebra A is called an almost f -algebra

whenever it follows from a ∧ b = 0 that ab = 0.

A vector lattice A is called universally complete if A is a Dedekind complete vector

lattice and every positive orthogonal system in A has a supremum in A. Every vector

lattice A has a universal completion Au, this means that there exists a unique (up

to a Riesz isomorphism) universally complete vector lattice Au such that A can be

identified with an order dense Riesz subspace of Au. The vector lattice Au is equipped

with an f -algebra multiplication, under which Au is an f -algebra with unit element,
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see [1, Section 8, Exercise 13] for an interesting approach to the existence of the

universal completion using orthomorphisms.

We end this section with some definitions of bilinear maps on vector lattices.

Let A, B and C be vector lattices. A bilinear map Ψ from A × B into C is said

to be positive whenever a ∈ A+ and b ∈ B+ imply Ψ(a, b) ∈ C+ (equivalently

|Ψ(a, b)| 6 Ψ(|a|, |b|) for all a ∈ A and b ∈ B). The bilinear map Ψ is called lattice

(or Riesz ) bilinear map whenever the partial operators

Ψ(a, ·) : B −→ C

c 7−→ Ψ(a, c)
and

Ψ(·, b) : A −→ C

c 7−→ Ψ(c, b)

are lattice homomorphisms for every a ∈ A+ and b ∈ B+(equivalently |Ψ(a, b)| =

Ψ(|a|, |b|) for all a ∈ A and b ∈ B). A bilinear map Ψ from A × A into C is said to

be orthosymmetric if a ∧ b = 0 implies Ψ(a, b) = 0.

3. The main results

Grobler and Labuschagne [8], proved that if A and B are vector lattices and if C is

a Dedekind complete vector lattice, then every lattice bilinear map Ψ0 : A×B → C

can be extended to a lattice bilinear map Ψ to Ad × Bd into C, where Ad (or Bd)

is the Dedekind completion of A (of B, respectively). The question arises whether

Ψ is still orthosymmetric when Ψ0 is, in addition, orthosymmetric. The answer is

affirmative.

To reach this aim we need the following result.

Proposition 3.1 ([13], Proposition 1). Let A be a vector lattice, let Ad be

its Dedekind completion, let B be a Dedekind complete vector lattice and let Ψ0 :

A × A → B be an orthosymmetric lattice bilinear map. If Ψ: Ad × Ad → B is

a lattice bilinear map extension of Ψ0 to Ad ×Ad into B, then for all x, y ∈ Ad such

that x∧y = 0, for all xi ∈ A (yi ∈ A, respectively) such that 0 6 xi 6 x (0 6 yi 6 y,

respectively), we have

(AF) Ψ(x, yi) = Ψ(yi, x) = Ψ(xi, y) = Ψ(y, xi) = Ψ(xi, yi) = 0.

R em a r k 3.1. It is natural to ask if any positive extension of an orthosymmetric

lattice bilinear map is again orthosymmetric. The answer is negative and this is

illustrated by the following example:
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E x am p l e 3.1. Let A be the vector lattice of all real stationary sequences.

Its Dedekind completion Ad is the vector lattice of all real bounded sequences

(Ad ≡ ℓ∞(N) ≡ C(βN)). We consider A × A with the coordinatewise vector

space operations and partial ordering. Let Ψ0 : A × A → R, defined by Ψ0(f, g) =

( lim
n→∞

f(n))( lim
n→∞

g(n)) for all (f, g) ∈ A×A. For any u, v ∈ βN \ N, such that u 6= v,

let Ψ: Ad × Ad → R defined by Ψ(f, g) = ((βf)(u))((βg)(v)). It is easily seen that

Ψ0 is an orthosymmetric lattice bilinear map, whereas Ψ is a lattice extension of Ψ0

which is not orthosymmetric.

The foregoing example shows that ([13], Theorem 1) and its proof are regrettably

wrong.

In [12, Remark 19.5] De Pagter proved that for any uniformly complete vector

lattice A with a strong order unit e, there exists a unique multiplication in A such

that A is an f -algebra with a unit element e. Next, we give the well known result

which is dealing with the existence of unital f -algebra multiplications on universally

complete vector lattices.

Lemma 3.1 ([1, Section 8, Exercise 13]). Let A be a universally complete vector

lattice and let e be a weak order unit of A. Then there exists a unique multiplication

in A such that A is an f -algebra with a unit element e.

R em a r k 3.2. We remark that any universally complete vector lattice can be

seen as a universally complete unital f -algebra. So in the sequel, we denote its

f -algebra multiplication by juxtaposition.

A simple combination of Lemma 3.1 and Proposition 3.1 gives:

Proposition 3.2. Let A be a vector lattice, let Ad be its Dedekind completion,

let Au be its universal completion and let B be a Dedekind complete vector lattice.

If Ψ0 : A × A → B is a positive orthosymmetric bilinear map, then every positive

bilinear map extension Ψ of Ψ0 to A × Ad in B satisfies the following property:

Ψ(f, g) 6 Ψ(f ′, g)

for all (f, f ′, g) ∈ A × A × Ad such that fg 6 f ′g.

P r o o f. Let (f, f ′, g) ∈ A × A × Ad such that fg 6 f ′g. Then,

((f − f ′)g)+ = (f − f ′)+g+ + (f − f ′)−g− = 0.
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Hence, (f − f ′)+ ∧ g+ = (f − f ′)− ∧ g− = 0. Since Ψ satisfies the property (AF), it

follows that Ψ((f − f ′)+, g+) = Ψ((f − f ′)−, g−) = 0. Consequently,

Ψ((f − f ′), g) = −Ψ((f − f ′)+, g−) − Ψ((f − f ′)−, g+) 6 0,

which means that Ψ(f, g) 6 Ψ(f ′, g) and the proof is complete. �

For the rest of the paper, we shall fix the following notation and assumptions.

Let A be a vector lattice, let Ad be its Dedekind completion, let Au be its universal

completion, let B be a Dedekind complete vector lattice and let Ψ0 : A × Ad → B

be a positive bilinear map satisfying:

Ψ0(f, g) = 0

for all (f, g) ∈ A ×Ad such that f ∧ g = 0. Since Au can be equipped with unital f -

algebra multiplication (denoted by juxtaposition) in such a manner that Au becomes

an f -algebra, we define for all (f, g) ∈ Ad × (Ad)+,

H(f, g) =

{

(f ′, g1, . . . , gn) ∈ A × ((Ad)+)n : f ′gi > fgi, ∀ 1 6 i 6 n,

n
∑

i=1

gi = g, ∀n ∈ N
∗

}

and

Ψ1(f, g) = inf

{ n
∑

i=1

Ψ0(f
′, gi) : (f ′, g1, . . . , gn) ∈ H(f, g)

}

,

where the infimum is taken over all finite positive decompositions of g (i.e., gi ∈

(Ad)+,
n
∑

i=1

gi = g) and over all f ′ ∈ A such that f ′gi > fgi. One can easily see, that

Ψ1(λf, g) = Ψ1(f, λg) = λΨ1(f, g) for all (f, g) ∈ Ad × Ad and for all λ ∈ R+. The

following lemma captures the basic features of Ψ1.

Lemma 3.2. The mapping Ψ1 satisfies the following properties:

(1) Ψ1(f, g) = Ψ0(f, g), for all (f, g) ∈ A × (Ad)+,

(2) Ψ1(f, g) = 0, for all (f, g) ∈ Ad × Ad such that f ∧ g = 0,

(3) Ψ1(f0 + f, g) = Ψ0(f0, g) + Ψ1(f, g), for all (f0, f, g) ∈ A × Ad × (Ad)+,

(4) Ψ1(f, g + g′) = Ψ1(f, g) + Ψ1(f, g′), for all (f, g, g′) ∈ Ad × (Ad)+ × (Ad)+.

P r o o f. (1) Let (f, g) ∈ A × (Ad)+ and let f ′ ∈ A, gi ∈ (Ad)+, f ′gi > fgi,
n
∑

i=1

gi = g. By Proposition 3.2, since f ′gi > fgi then Ψ0(f
′, gi) > Ψ0(f, gi) and since
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f ∈ A, it follows that Ψ0(f, g) =
n
∑

i=1

Ψ0(f, gi) and then
n
∑

i=1

Ψ0(f
′, gi) > Ψ0(f, g).

Therefore Ψ1(f, g) > Ψ0(f, g). Moreover, since fg 6 fg, it follows that Ψ1(f, g) 6

Ψ0(f, g). Hence Ψ1(f, g) = Ψ0(f, g).

(2) Let (f, g) ∈ A × Ad such that f ∧ g = 0. Then fg = 0. Let f ′ ∈ A, gi ∈ (Ad)+

such that f ′gi > fgi and
n
∑

i=1

gi = g. It follows that
n
∑

i=1

fgi = fg = 0. Then, fgi = 0

for all 1 6 i 6 n. Consequently, Ψ0(f
′, gi) > 0 and then Ψ1(f, g) > 0. Moreover, in

the case where f∧g = 0, it is evident that Ψ1(f, g) 6 0. As a conclusion, Ψ1(f, g) = 0

for all (f, g) ∈ A × Ad such that f ∧ g = 0.

(3) Let (f0, f, g) ∈ A × Ad × (Ad)+. Then,

Ψ1(f0 + f, g) = inf

{ n
∑

i=1

Ψ0(f
′, gi) : (f ′, g1, . . . , gn) ∈ H(f + f0, g)

}

= inf

{ n
∑

i=1

Ψ0(f
′, gi) : (f ′, g1, . . . , gn) ∈ H(f + f0, g)

}

− Ψ0(f0, g) + Ψ0(f0, g)

= inf

{ n
∑

i=1

Ψ0(f
′, gi) − Ψ0(f0, g) : (f ′, g1, . . . , gn) ∈ H(f + f0, g)

}

+ Ψ0(f0, g)

= inf

{ n
∑

i=1

Ψ0(f
′, gi) −

n
∑

i=1

Ψ0(f0, gi) : (f ′, g1, . . . , gn) ∈ H(f + f0, g)

}

+ Ψ0(f0, g)

= inf

{ n
∑

i=1

Ψ0(f
′ − f0, gi) : (f ′, g1, . . . , gn) ∈ H(f + f0, g)

}

+ Ψ0(f0, g)

= Ψ1(f, g) + Ψ0(f0, g).

(4) Let (f, g, g′) ∈ Ad × (Ad)+ × (Ad)+. Then

Ψ1(f, g) + Ψ1(f, g′) = inf

{ n
∑

i=1

Ψ0(f
′, gi) +

m
∑

j=1

Ψ0(f
′′, gj) : (f ′, g1, . . . , gn) ∈ H(f, g),

(f ′′, g1, . . . , gm) ∈ H(f, g′)

}

> Ψ1(f, g + g′).

Since

Ψ1(f, g + g′) = inf

{ n
∑

i=1

Ψ0(f
′, gi) : (f ′, g1, . . . , gn) ∈ H(f, g + g′)

}

by the Riesz decomposition theorem [7, V, Theorem 1], there exist u1, . . . , un, v1, . . . ,

vn ∈ (Ad)+ such that

ui + vi = gi (i = 1, . . . , n)

g = u1 + . . . + un, g′ = v1 + . . . + vn.
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By our calculation, since f ′(ui +vi) > f(ui +vi), it follows that (f −f ′)(ui +vi) 6 0.

Hence,

((f − f ′)(ui + vi))
+ = (f − f ′)+(ui + vi) = 0.

Therefore,

(f − f ′)+ui = (f − f ′)+vi = 0.

Consequently, f ′ui > fui and f ′vi > fvi. Hence,

Ψ1(f, g + g′) = inf

{ n
∑

i=1

Ψ0(f
′, ui) +

n
∑

i=1

Ψ0(f
′, vi) : (f ′, u1, . . . , un) ∈ H(f, g),

(f ′, v1, . . . , vn) ∈ H(f, g′)

}

> Ψ1(f, g) + Ψ1(f, g′).

Therefore,

Ψ1(f, g + g′) = Ψ1(f, g) + Ψ1(f, g′),

which gives the desired result. �

Let x0 ∈ Ad \ A and let’s denote by Ax0
the space 〈A + Rx0〉.

All the preparations have been made for the first central result in the paper:

Theorem 3.1. Let A be a vector lattice, let Ad be its Dedekind completion, let

0 6 x0 ∈ Ad\A and let B be a Dedekind complete vector lattice. If Ψ0 : A×Ad → B

is an orthosymmetric lattice bilinear map, then Ψ0 has a positive orthosymmetric

extension Ψ′ to Ax0
× Ad in B.

P r o o f. Denote also by Ψ0 the restriction of Ψ0 to A × (Ad)+. Let us take

Ψ: Ax0
×(Ad)+ → B, defined by Ψ′(k, g) = tΨ1(x0, g)+Ψ0(a, g), where k = a+tx0 ∈

Ax0
(a ∈ A, t ∈ R), for all g ∈ (Ad)+. By Lemma 3.2,

Ψ′(k, g1 + g2) = Ψ′(k, g1) + Ψ′(k, g2)

for all g1, g2 ∈ (Ad)+. Then Ψ has a unique positive extension to Ax0
× Ad defined

by

Ψ′(k, g) = tΨ1(x0, g
+) − tΨ1(x0, g

−) + Ψ0(a, g)

for all k = a + tx0 ∈ Ax0
(a ∈ A, t ∈ R) and for all g ∈ Ad.

We may prove now that Ψ is orthosymmetric. Let a + tx0 ∈ Ax0
and g ∈ (Ad)+

such that (a+tx0)∧g = 0. If t = 0, then a∧g = 0. It follows, by using Proposition 3.1,

that Ψ(a, g) = 0. If t > 0, then tx0 > −a. Let f ′ ∈ A, gi ∈ (Ad)+ such that f ′gi >
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tx0gi and
n
∑

i=1

gi = g. Hence, tx0gi > −agi. Since Ψ(−a, gi) = Ψ0(−a, gi) = −Ψ0(a, gi)

and by using Proposition 3.2, it follows that Ψ(f ′, gi) > −Ψ0(a, gi). Therefore,

Ψ′(k, g) = Ψ1(k, g) = tΨ1(x0, g) + Ψ0(a, g) > 0.

Moreover, by using the fact that (a+tx0)g = 0 and by using again Proposition 3.2, we

have Ψ′(k, g) = Ψ1(k, g) 6 0. Therefore, Ψ′(k, g) = 0. Now if t < 0, then −tx0 6 a.

Hence, −tx0g 6 ag. Let f ′ ∈ A, gi ∈ (Ad)+ such that f ′gi > −tx0gi and
n
∑

i=1

gi = g.

It follows that

−tΨ1(x0, g) = Ψ1(−tx0, g) 6 Ψ1(a, g) = Ψ0(a, g).

Consequently,

tΨ1(x0, g) + Ψ0(a, g) > 0.

Now since (a + tx0)g = 0 and by using again Proposition 3.2, we have Ψ′(k, g) 6 0.

Therefore, Ψ′(k, g) = 0, and the proof is complete. �

The extension Ψ′ from Theorem 3.1 satisfies the following:

Proposition 3.3. Let A be a vector lattice, let Ad be its Dedekind completion,

let Au be its universal completion and let B be a Dedekind complete vector lattice.

If Ψ0 : A × Ad → B is a positive orthosymmetric bilinear map, then the positive

orthosymmetric extension Ψ′ to Ax0
× Ad in B satisfies the following property:

Ψ′(f, g) 6 Ψ′(f ′, g)

for all (f, f ′, g) ∈ Ax0
× Ax0

× (Ad)+ such that fg 6 f ′g.

P r o o f. It is sufficient to prove that if (f, g) ∈ Ax0
× (Ad)+ such that fg > 0,

then Ψ(f, g) > 0. To this end, let (f, g) ∈ Ax0
× (Ad)+ such that fg > 0. Hence,

f = a + tx0 ∈ Ax0
(a ∈ A, t ∈ R). If t = 0, then f = a and ag > 0. It follows, by

using Proposition 3.2, that Ψ(a, g) = Ψ(f, g) > 0. If t > 0, then tx0g > −ag. Let

f ′ ∈ A, gi ∈ (Ad)+ such that f ′gi > tx0gi and
n
∑

i=1

gi = g. Hence, tx0gi > −agi. Since

Ψ(−a, gi) = Ψ0(−a, gi) = −Ψ0(a, gi) and by using Proposition 3.2, it follows that

Ψ(f ′, gi) > −Ψ0(a, gi). Therefore,

Ψ′(f, g) = Ψ1(k, g) = tΨ1(x0, g) + Ψ0(a, g) > 0.
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Now if t < 0, then −tx0 6 a. Hence, −tx0g 6 ag. Let f ′ ∈ A, gi ∈ (Ad)+ such that

f ′gi > tx0gi and
n
∑

i=1

gi = g. It follows that

−tΨ1(x0, g) = Ψ1(−tx0, g) 6 Ψ1(a, g) = Ψ0(a, g).

Consequently,

Ψ′(f, g) = tΨ1(x0, g) + Ψ0(a, g) > 0

and we are done. �

Using the same argument as for Ψ, we define for all (f, g) ∈ Ad × (Ad)+

Ψ′

1(f, g) = inf

{ n
∑

i=1

Ψ′(f ′, gi) : f ′ ∈ Ax0
, gi ∈ (Ad)+, f ′gi > fgi,

n
∑

i=1

gi = g

}

,

where the infimum is taken over all finite positive decompositions of g (i.e., gi ∈

(Ad)+,
n
∑

i=1

gi = g) and over all fi ∈ A such that figi > fgi. As easily seen, that

Ψ′

1(λf, g) = Ψ′

1(f, λg) = λΨ′

1(f, g) for all (f, g) ∈ Ad × Ad and for all λ ∈ R+. The

following lemma capture the basic features of Ψ′

1.

Lemma 3.3. The mapping Ψ′

1 satisfies the following properties:

(1) Ψ′

1(f, g) = Ψ′(f, g), for all (f, g) ∈ Ax0
× (Ad)+,

(2) Ψ′

1(f, g) = 0, for all (f, g) ∈ Ad × Ad such that f ∧ g = 0,

(3) Ψ′

1(f0 + f, g) = Ψ′(f0, g) + Ψ′

1(f, g), for all (f0, f, g) ∈ Ax0
× Ad × (Ad)+,

(4) Ψ′

1(f, g + g′) = Ψ′

1(f, g) + Ψ′

1(f, g′), for all (f, g, g′) ∈ Ad × (Ad)+ × (Ad)+.

P r o o f. Using the same argument as in Lemma 3.2, we can deduce properties

(1), (3) and (4).

(2) Let (f, g) ∈ A×Ad such that f ∧g = 0. Then fg = 0. Let f ′ ∈ Ax0
, gi ∈ (Ad)+

such that f ′gi > fgi and
n
∑

i=1

gi = g. It follows that
n
∑

i=1

fgi = fg = 0. Hence,

n
∑

i=1

gif = 0. Then, gif = 0 for all 1 6 i 6 n. Hence, by using Proposition 3.3,

Ψ′(f ′, gi) > 0 and then Ψ′

1(f, g) > 0. Moreover, in the case where f ∧ g = 0, it is

evident that Ψ′

1(f, g) 6 0. A a conclusion, Ψ′

1(f, g) = 0 for all (f, g) ∈ A × (Ad)+

such that f ∧ g = 0. �

By a standard application of the Kuratowski-Zorn lemma, we get from Theo-

rem 3.1 and Lemma 3.3:
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Corollary 3.1. Let A be a vector lattice, let Ad be its Dedekind completion and

let B be a Dedekind complete vector lattice. If Ψ0 : A×A → B is an orthosymmetric

lattice bilinear map, then Ψ0 can be extended as an orthosymmetric lattice bilinear

map Ψ to Ad × Ad in B.

P r o o f. By Proposition 3.1, Ψ0 can be extended as a lattice bilinear map, de-

noted also by Ψ0, to A×Ad in B which is orthosymmetric. By a standard application

of the Kuratowski-Zorn lemma, we deduce from Theorem 3.1, Proposition 3.3 and

Lemma 3.3 that Ψ0 can be extended as an orthosymmetric positive bilinear map

Ψ to Ad × Ad in B. Then (by [5]), Ψ is symmetric. It remains to prove that Ψ is

a lattice bilinear map. Let f, f ′ ∈ Ad such that f ∧ f ′ = 0 and let g ∈ (Ad)+. Then,

by the symmetry of Ψ,

Ψ(f ∧ f ′, g) = Ψ(g, f ∧ f ′) = 0.

Moreover, let g0 ∈ A such that g 6 g0. Consequently,

0 6 Ψ(g, f) ∧ Ψ(g, f ′) 6 Ψ(g0, f) ∧ Ψ(g0, f
′) = Ψ(g0, f ∧ f ′) = 0.

It follows that Ψ(g, f) ∧ Ψ(g, f ′) = Ψ(g, f ∧ f ′) = 0. Since Ψ is symmetric, we have

Ψ(f ∧ f ′, g) = Ψ(g, f ∧ f ′) = Ψ(g, f) ∧ Ψ(g, f ′) = Ψ(f, g) ∧ Ψ(f ′, g) = 0

and we are done. �

The Corollary 3.1 will be applied to d-algebras.

For the rest of the paper we shall fix the following notations and assumptions. Let

(A, ∗) be a d-algebra. Let Ψ0 : A×A → A; (a, b) 7→ a ∗ b be the lattice bilinear map

associated with the d-algebra product of A and let Ψ: Ad × Ad → Ad be a lattice

bilinear map extension of Ψ0. Hence we construct a new multiplication denoted also

by ∗. Next, we will give a necessary and sufficient condition for the associativity of

the extended product. In order to hit this mark, we give the following definition:

Definition 3.1. A lattice bilinear map Ω: A × A → A is said to be two power

orthosymmetric if Ωa,b : A × A → A; (x, y) 7→ Ω(Ω(a, x), Ω(y, b)) is orthosymmetric,

for all a, b ∈ A+.

R em a r k 3.3. Let A be a vector lattice and let B be a cofinal vector sublat-

tice of A. It is not hard to see that the property “Ω: A × A → A is two power

orthosymmetric” is equivalent to the following property: Ωa,b : A×A → A; (x, y) 7→

(Ω(a, x), Ω(y, b)) is orthosymmetric, for all a, b ∈ B+.
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Theorem 3.2. If Ψ is two power orthosymmetric, then the new multiplication ∗

is associative, that is (a ∗ b) ∗ c = a ∗ (b ∗ c), for all 0 6 a, b, c ∈ Ad.

P r o o f. Let 0 6 a, c ∈ Ad. Let Ta,c : A → Ad; x 7→ a∗x∗c. Then Ta,c is a lattice

homomorphism, so it can be extended as a lattice homomorphism in two different

ways, which are

T1 : Ad → Ad; x 7→ (a ∗ x) ∗ c

and

T2 : Ad → Ad; x 7→ a ∗ (x ∗ c).

We claim that T1 + T2 is a lattice homomorphism. Indeed, if x1 ∧ x2 = 0 in Ad, we

have in the unital f -algebra a universal completion Au of A, where the f -algebra

multiplication is denoted by juxtaposition,

((T1 + T2)(x1))((T1 + T2)(x2))

= [((a ∗ x1) ∗ c) + (a ∗ (x1 ∗ c))][((a ∗ x2) ∗ c) + (a ∗ (x2 ∗ c))]

= ((a ∗ x1) ∗ c)(a ∗ (x2 ∗ c)) + (a ∗ (x1 ∗ c))((a ∗ x2) ∗ c).

Let e = (a∗x1)+c+a+(x2∗c)+(x1∗c)+(a∗x2), let f = e∗e and let Φ: Ad

e×Ad

e → Ad

f ,

defined by (x, y) 7→ (x∗ y). It is well known that there exists a unique multiplication

(denoted by •) on Ad

f such that Ad

f becomes an f -algebra with a unit element f (see

[12, Remark 19.5]). Moreover, by [3, Theorem 1], we have

x ∗ y = (x ∗ e) • (e ∗ y),

for all x, y ∈ Ad

e . Then,

0 6 ((a ∗ x1) ∗ c) • (a ∗ (x2 ∗ c)) 6 ((a ∗ x1) ∗ e) • (e ∗ (x2 ∗ c)) = (a ∗ x1) ∗ (x2 ∗ c) = 0.

Hence,

((a ∗ x1) ∗ c) ∧ (a ∗ (x2 ∗ c)) = 0.

Then,

(a ∗ (x1 ∗ c)) • ((a ∗ x2) ∗ c) = ((a ∗ x2) ∗ c) • (a ∗ (x1 ∗ c))

6 ((a ∗ x2) ∗ e) • (e ∗ (x1 ∗ c)) = (a ∗ x2) ∗ (x1 ∗ c) = 0.

Then,

(a ∗ (x1 ∗ c)) ∧ ((a ∗ x2) ∗ c) = 0.
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Consequently,

((a ∗ x1) ∗ c)(a ∗ (x2 ∗ c)) = (a ∗ (x1 ∗ c))((a ∗ x2) ∗ c) = 0.

Therefore,

((T1 + T2)(x1))((T1 + T2)(x2)) = 0.

Since any unital f -algebra is semiprime, ((T1 + T2)(x1)) ∧ ((T1 + T2)(x2)) = 0 and

then, T1+T2 is a lattice homomorphism. Let us take S = T1/2+T2/2. Consequently,

S is a lattice extension to Ad of Ta,c, which implies that S is an extreme extension of

Ta,c. Hence T1 = S = T2. Finally, we have (a∗b)∗c = a∗(b∗c), for all 0 6 a, b, c ∈ Ad

and we are done. �

Thus we deduce the following corollaries.

Corollary 3.2. Let (A, ∗) be a d-algebra and Ad its Dedekind completion. Then,

Ad can be equipped with a d-algebra multiplication that extends the multiplication

of A if and only if there exists a two power orthosymmetric map Ψ: Ad × Ad → Ad

a lattice bilinear map extension of Ψ0, the lattice bilinear map associated with the

d-algebra A.

Corollary 3.3. Let (A, ∗) be a commutative d-algebra and Ad its Dedekind

completion. Then, Ad can be equipped with a d-algebra multiplication that extends

the multiplication of A.

P r o o f. Let Ψ0 : A×A → A; (a, b) 7→ a∗b be the lattice bilinear map associated

with the commutative d-algebra product of A. Then, Ψ0 is an orthosymmetric lattice

bilinear map, then by using Corollary 1, Ψ0 can be extended as an orthosymmetric

lattice bilinear map Ψ to Ad × Ad in Ad. Let a, b ∈ A+ and let x1 ∧ x2 = 0 in Ad.

Since Ψ is symmetric, we have

Ψ(Ψ(a, x), Ψ(y, b)) = Ψ(Ψ(x, a), Ψ(y, b)).

Moreover, since Ψ is a lattice bilinear map, Ψ(x, a) ∧ Ψ(y, b) = 0. By the fact that

Ψ is orthosymmetric,

Ψ(Ψ(a, x), Ψ(y, b)) = 0,

which gives the desired result. �

A c k n ow l e d g em e n t. I would like to thank the referee for his/her helpful and

constructive remarks.
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