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Abstract. Using the cone theory and the lattice structure, we establish some methods of
computation of the topological degree for the nonlinear operators which are not assumed
to be cone mappings. As applications, existence results of nontrivial solutions for singular
Sturm-Liouville problems are given. The nonlinearity in the equations can take negative
values and may be unbounded from below.
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1. Introduction

Let E be a Banach space with a cone P . Then E becomes an ordered Banach

space under the partial ordering 6 which is induced by P . A cone P is said to be

normal if there exists a positive constant N such that θ 6 x 6 y implies ‖x‖ 6 N‖y‖.
For the concepts and properties concerning the cone we refer to [1], [2].

We call E a lattice under the partial ordering 6 if sup{x, y} and inf{x, y} exist
for arbitrary x, y ∈ E. For x ∈ E, let

x+ = sup{x, θ}, x− = sup{−x, θ};

x+ and x− are called the positive part and the negative part of x respectively, and

obviously x = x+ − x−. Take |x| = x+ + x−, then |x| ∈ P . One can refer to [4] for

The project supported by the National Science Foundation of P. R.China (10971179,
11126094) and Research Award Fund for Outstanding Young Scientists of Shandong
Province (BS2010SF023).
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the definition and the properties of the lattice. For convenience, we use the notation:

x+ = x+, x− = −x−

and clearly

x+ ∈ P, x− ∈ (−P ), x = x+ + x−.

In an ordered Banach space, much research has been done on computation of

topological degree and the fixed point index for cone mappings by using the partial

ordered relation and the functional [7], [9], [3], [10], [8]. The use of the partial

ordered relation to compute topological degree and the fixed point index goes back

to a pioneering paper by M.A.Krasnoselskii [5], which has been so influential as to

motivate several authors to develop further the theory of topological degree and the

fixed point index. His work made a very significant contribution to the field. For

instance, in [8] Sun and Liu gave a computational method of topological degree by

applying the theory of cones to studying non-cone mappings, and in [9], [3], [10], the

authors established some theorems about computation of the topological degree for

nonlinear operators which are not cone mappings, using the partial ordering relation

and the lattice structure.

Motivated by [9], [10], we derive some new theorems about computation of the

topological degree by means of the partial ordering relation and the lattice structure.

As applications of our main results, existence of nontrivial solutions for the singular

Sturm-Liouville problem is considered where the nonlinear term f is a sign-changing

function and not necessarily bounded from below.

To conclude this section, we present a result which will be used in Section 2.

Lemma 1.1 ([1], [2]). Let Ω be a bounded open set in a real Banach space E and

let A : Ω → E be compact. If there exists a u0 ∈ E, u0 6= θ, such that

x − Ax 6= µu0 for all x ∈ ∂Ω and µ > 0,

then the Leray-Schauder degree is

deg(I − A, Ω, θ) = 0.

2. Main results

In this section, we always assume that E is a Banach space, P is a normal cone

in E and the partial ordering 6 in E is induced by P . We also suppose that E is a

lattice in the partial ordering 6.
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Let B : E → E be a positive completely continuous linear operator; r(B) a spec-

tral radius of B; B∗ the conjugated operator of B; P ∗ the conjugated cone of P .

According to the famous Krein-Rutman theorem (see [6]), we infer that if r(B) 6= 0,

then there exist ϕ ∈ P \ {θ} and h ∈ P ∗ \ {θ} such that

(2.1) Bϕ = r(B)ϕ, B∗h = r(B)h, ‖ϕ‖ = ‖h‖ = 1.

Choose δ > 0 and define

P (h, δ) = {x ∈ P ; h(x) > δ‖x‖}.

Then P (h, δ) is also a cone in E.

Definition 2.1 ([9]). Let D ⊂ E and let F : D → E be a nonlinear operator.

Then F is said to be quasi-additive on lattice if there exists y ∈ E such that

(2.2) Fx = Fx+ + Fx− + y, ∀x ∈ D,

where x+ and x− are defined by (1.1).

R em a r k 2.1. By Remark 3.1 in [3], we know that the condition (2.2) appears

naturally in the applications involving nonlinear differential equations and integral

equations.

Now we establish the main theorems:

Theorem 2.1. Let A : E → E be a completely continuous operator satisfying

A = BF , where F is quasi-additive on lattice with y = θ. Suppose:

(H1) There exist ϕ ∈ P \ {θ} and h ∈ P ∗ \ {θ} such that (2.1) holds and B(P ) ⊂
P (h, δ).

(H2) There exists M > 0 such that ‖x‖1 6 M‖x‖, where ‖x‖1 denotes the norm

of |x|.
(H3) There exist η > 0 and r∗ > 0 such that

BFx > r−1(B)(1 + η)Bx, x ∈ P ∩ Br∗ ,

where Br∗ = {x ∈ E | ‖x‖ < r∗}.
(H4) There exist 0 6 a < min{δ/(M(r(B) + δ‖B‖)), r−1(B)(1 + η)} and r∗∗ > 0

such that

Fx + ax ∈ P ∩ Br∗∗ , x ∈ P ; Fx − ax ∈ P, x ∈ (−P ) ∩ Br∗∗ .
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Then there exists 0 < r < min{r∗, r∗∗} such that the topological degree is

deg(I − A, Br, θ) = 0.

R em a r k 2.2. We point out that the condition (H2) of Theorem 2.1 appears

naturally in the applications involving nonlinear differential equations and integral

equations.

Let E = C[0, 1] = {x(t) | x : [0, 1] → R1 is continuous} and P = {x ∈ C[0, 1] |
x(t) > 0}, then C[0, 1] is a lattice under the partial ordering induced by P . For any

x ∈ C[0, 1], it is evident that

x+(t) =

{

x(t), if x(t) > 0,

0, if x(t) 6 0,

x−(t) =

{

x(t), if x(t) 6 0,

0, if x(t) > 0,

and hence |x|(t) = |x(t)|, ‖x‖1 = ‖x‖ and so the condition (H2) of Theorem 2.1 is a

natural condition.

P r o o f. It follows from the normality of the cone P and from (H2) that there

exists r0 > 0 such that ‖x‖ 6 r0(< min{r∗, r∗∗}) implies that ‖x+‖ < min{r∗, r∗∗}
and ‖x−‖ < min{r∗, r∗∗}.
We now claim that there exists 0 < r < r0 such that

(2.3) x − Ax 6= τϕ, ∀x ∈ ∂Br and τ > 0,

where ϕ is the positive eigenfunction of B corresponding to its eigenvalue r(B). If

otherwise, then for all 0 < r < r0 there exist x ∈ ∂Br and τ > 0 such that

(2.4) x = Ax + τϕ.

Then, from (2.1), (H3) and (H4), we have

h(x) > h(Ax) > h(BFx+ + BFx−) > h(r−1(B)(1 + η)Bx+) + h(aBx−)

> h(r−1(B)(1 + η)Bx) = r−1(B)(1 + η)(B∗h)(x) = (1 + η)h(x).

Thus h(x) 6 0. This, together with (2.1) and (H2), implies that

(2.5) h(x + aB(|x|)) = h(x) + ar(B)h(|x|) 6 ar(B)h(|x|) 6 ar(B)M‖x‖.
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Since τr(B)ϕ = τBϕ by virtue of (2.1), we have from conditions (H1) and (H4)

x + aB(|x|) = Ax + τϕ + aB(|x|) = B(Fx+ + ax+) +B(Fx− − ax−) + τϕ ∈ P (h, δ).

So, from the definition of P (h, δ) we obtain

(2.6) h(x + aB(|x|)) > δ‖x + aB(|x|)‖ > δ‖x‖ − δaM‖B‖ ‖x‖.

Thus, by (2.5) and (2.6), we have

(δ − aM(r(B) + δ‖B‖))‖x‖ 6 0.

Since a < min{δ/(M(r(B) + δ‖B‖)), r−1(B)(1 + η)}, (2.4) cannot hold. Therefore,
there exists 0 < r < r0 such that (2.3) holds. Note that the operator A is compact.

The conclusion now readily follows from Lemma 1.1, and this completes the proof of

the theorem. �

Theorem 2.2. Let A : E → E be a completely continuous operator satisfying

A = BF , where F is quasi-additive on lattice and B is a positive bounded linear

operator satisfying the conditions (H1) and (H2) of Theorem 2.1. Suppose in addition

that

(H5) there exist 0 < η < 1 and u0 ∈ P such that

Fx > r−1(B)(1 + η)x − u0, u ∈ P,

Fx > r−1(B)(1 − η)x − u0, x ∈ (−P ).

Then there exists R0 > 0 such that for R > R0, the topological degree is

deg(I − A, BR, θ) = 0.

P r o o f. Setting D = {x ∈ E ; x − Ax = τϕ, τ > 0}, we claim that D is

bounded. Then for x ∈ D there exists τ > 0 such that

(2.7) x = Ax + τϕ.

Then, from (2.2) and (H5), we have

(2.8) x = Ax + τϕ > Ax+ + Ax− + By

> r−1(B)(1 + η)Bx+ + r−1(B)(1 − η)Bx− − 2Bu0 + By−

> r−1(B)(1 − η)Bx− − 2Bu0 + By−.
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Since r−1(B)(1 − η)Bx− − 2Bu0 + By− 6 θ, it follows from (2.8) that

x− > r−1(B)(1 − η)Bx− − 2Bu0 + By−,

and thus

(I − r−1(B)(1 − η)B)x− > −2Bu0 + By−.

This implies that

(2.9) x− > (I − r−1(B)(1 − η)B)−1(−2Bu0 + By−) := w, x ∈ D.

It follows from (2.7) and (2.9) that

x+ > x = Ax + τϕ > BFx+ + BFx− + By−

> r−1(B)(1 + η)Bx+ + r−1(B)(1 − η)Bx− − 2Bu0 + By−

> r−1(B)(1 + η)Bx+ + r−1(B)(1 − η)Bw − 2Bu0 + By−.

This, together with (2.1) and (H2), implies that

h(x+) > r−1(B)(1 + η)h(Bx+) + r−1(B)(1 − η)h(Bw) − 2h(Bu0) + h(By−)

= (1 + η)h(x+) + (1 − η)h(w) − 2r(B)h(u0) + r(B)h(y−).

Thus

(2.10) h(x+) 6 η−1(2r(B)h(u0) − r(B)h(y−) − (1 − η)h(w)) := C2.

On account of (2.2), (2.9), and (H5), we arrive at

Ax > Ax+ + Ax− + By > r−1(B)(1 + η)Bx+ − Bu0

+ r−1(B)(1 − η)Bx− − Bu0 + By−

> r−1(B)(1 + η)Bx+ + r−1(B)(1 − η)Bw − 2Bu0 + By−

= r−1(B)(1 + η)Bx+ + w.

This implies

Ax > w, x ∈ D.

Set v = r−1(B)(1 − η)w − 2u0 + y. By (2.2), (2.9), and (H5), we have

Fx > Fx+ + Fx− + y > r−1(B)(1 + η)x+ − u0 + r−1(B)(1 − η)x− − u0 + y

> r−1(B)(1 − η)w − 2u0 + y = v, x ∈ D.
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So, from the definition of P (h, δ), we get

(2.11) B(Fx − v) ∈ P (h, δ).

(2.1) gives τϕ = τ/(r(B))B(ϕ) and this, together with (2.7) and (2.11), yields

x − Bv = B(Fx − v) + τϕ ∈ P (h, δ).

Therefore,

h(x − Bv) > δ‖x − Bv‖ > δ‖x‖ − δ‖Bv‖.

Hence,

‖x‖ 6
1

δ
(δ‖Bv‖ + h(x) − h(Bv)) 6

1

δ
((1 + δ)‖Bv‖ + h(x+)).

Then for x ∈ D, by (2.10), we have

‖x‖ 6
1

δ
((1 + δ)‖Bv‖ + C2),

which shows that D is bounded.

Let R0 = sup
x∈D

‖x‖. For R > R0 we obtain

(2.12) x − Ax 6= τϕ, ∀x ∈ ∂BR, τ > 0.

Using Lemma 1.1, we infer by (2.12) that the conclusion is true. �

R em a r k 2.3. In Theorem 2.2, we do not assume that the cone P is necessarily

solid. Hence Theorem 2.2 improves the result of Theorem 3.2 in [10] and has a wider

range of applications.

By Theorem 2.1 and Theorem 3.3 in [9] we obtain

Theorem 2.3. Suppose that the conditions in Theorem 2.1 hold. If there exist a

positive bounded linear operator B1 with r(B1) < 1 and v0 ∈ P such that

(2.13) |Ax| 6 B1|x| + v0 ∀x ∈ E,

then A has at least one nonzero fixed point.
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3. Applications

Consider the singular Sturm-Liouville boundary value problem

(3.1)

{

−(Lu)(t) = a(t)f(t, u(t)), 0 < t < 1,

R1(u) = α0u(0) + β0u
′(0) = 0, R2(u) = α1u(1) + β1u

′(1) = 0,

where (Lu)(t) = (p(t)u′(t))′ + q(t)u(t), a(t) is allowed to be singular at both t = 0

and t = 1. Through this section, we always suppose that

p ∈ C1[0, 1], p(t) > 0, q ∈ C[0, 1], q(t) 6 0;

α0 > 0, β0 6 0, α1 > 0, β1 > 0, α2
0 + β2

0 6= 0, α2
1 + β2

1 6= 0;

and the homogeneous equation with respect to (3.1)

(3.2)

{

−(Lu)(t) = 0, 0 < t < 1,

R1(u) = R2(u) = 0

has only the trivial solution.

Let k(t, s) be Green’s function with respect to (3.2). According to the Sturm-

Liouville theory of ordinary differential equations (see [12]), we have

Lemma 3.1. Green’s function k(t, s) possesses the following form:

(3.3) k(t, s) =

{

c−1u0(t)v0(s), 0 6 t 6 s 6 1,

c−1u0(s)v0(t), 0 6 s 6 t 6 1,

where c is a positive constant, and u0, v0 ∈ C2[0, 1] satisfy the following conditions:

(i) k(t, s) = k(s, t) > 0 and k(t, t) = u0(t)v0(t)/c for t, s ∈ [0, 1];

(ii) u0 is increasing on [0, 1] with u0(t) > 0 for t ∈ (0, 1];

(iii) v0 is decreasing on [0, 1] with v0(t) > 0 for t ∈ [0, 1);

(iv) (Lu0)(t) ≡ 0, u0(0) = −β0, u′

0(0) = α0;

(v) (Lv0)(t) ≡ 0, v0(1) = β1, v′0(1) = −α1.

By Lemma 3.1, it is easy to conclude that

(3.4)
ck(t, t)k(s, s)

u0(1)v0(0)
6 k(t, s) 6 k(t, t) (or k(s, s)), 0 6 t, s 6 1,

and

(3.5) k(t, s) >
ck(t, t)

u0(1)v0(0)
k(τ, s) ∀t, τ, s ∈ [0, 1].
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In this section, we always suppose that

(G1) a : (0, 1) → [0, +∞) is continuous, a(t) 6≡ 0 and

0 <

∫ 1

0

a(t) dt < +∞;

(G2) f(t, u) : [0, 1]× R1 → R1 is continuous and f(t, 0) = 0 for t ∈ [0, 1].

Let E = C[0, 1]. Then E is an ordered Banach space with the sup norm ‖u‖ =

sup
06t61

|u(t)| and

P = {u ∈ C[0, 1] | u(t) > 0, t ∈ [0, 1]}
is a cone of E. It is obvious that P is a normal solid cone, and E becomes a lattice

under the natural ordering 6.

Let us introduce the operators

(Aϕ)(t) =

∫ 1

0

k(t, s)a(s)f(s, ϕ(s)) ds, t ∈ [0, 1];(3.6)

(Bϕ)(t) =

∫ 1

0

k(t, s)a(s)ϕ(s) ds, t ∈ [0, 1];(3.7)

(Fϕ)(t) = f(t, ϕ(t)), t ∈ [0, 1].(3.8)

We have

Lemma 3.2. Suppose that (H1) is satisfied. Then for the operator B defined by

(3.7),

(i) B : E → E is a completely continuous linear operator and B(P ) ⊂ P1, where

P1 = {u ∈ P ; u(t) > ck(t, t)/(u0(1)v0(0))‖u‖} is a cone of E;
(ii) the spectral radius r(B) 6= 0 and B has a positive normalized eigenfunction

ϕ ∈ P corresponding to its first eigenvalue λ1 = (r(B))−1;

(iii) there exists δ1 > 0 such that ϕ(s) > δ1k(s, s) > δ1k(t, s) for t, s ∈ [0, 1].

P r o o f. It follows from (3.4), (3.5) and (G1) that the operator B satisfies (i)

and (ii). Since ϕ ∈ P is positive eigenfunction of B, it follows from (3.4) that ϕ(s) >

cλ1k(s, s)/(u0(1)v0(0))
∫ 1

0 k(t, t)a(t)ϕ(t) dt and ϕ(s) 6 λ1

∫ 1

0 k(t, t)a(t)ϕ(t) dt, there-

fore
∫ 1

0
k(t, t)a(t)ϕ(t) dt > 0. Set

δ1 =
cλ1

u0(1)v0(0)

∫ 1

0

k(t, t)a(t)ϕ(t) dt,

then we have

ϕ(s) > δ1k(s, s) > δ1k(t, s), ∀t, s ∈ [0, 1].

�
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Theorem 3.1. Let δ = c/u0(1)v0(0)
∫ 1

0 a(t) dt
∫ 1

0 k(t, t)a(t)ϕ(t) dt, and let (G1)

and (G2) hold. Suppose in addition that there exist η > 0, r > 0 and 0 6 a <

min{δ/(M(r(B) + δ‖B‖)), r−1(B)(1 + η)} such that

f(t, u) − au > 0, for (t, u) ∈ [0, 1] × [−r, 0];(3.9)

lim inf
u→0+

min
t∈[0,1]

f(t, u)

u
> λ1;(3.10)

lim sup
u→+∞

max
t∈[0,1]

f(t, u)

u
< λ1.(3.11)

Then the singular Sturm-Liouville boundary value problem (3.1) has at least one

nontrivial solution.

P r o o f. Let E = C[0, 1]; A, B, F be defined by (3.6), (3.7) and (3.8) respectively.

Clearly, F : E → E is continuous and quasi-additive on lattice with y = θ. Since B :

E → E is completely continuous, we know that A : E → E is completely continuous.

Let h∗(x) =
∫ 1

0
a(t)ϕ(t)x(t) dt and h = h∗/‖h∗‖. For x ∈ P , by k(t, s) = k(s, t)

and Lemma 3.2 (ii) we have

(3.12) (B∗h)(x) = h(Bx) =
1

‖h∗‖h∗(Bx) =
1

‖h∗‖

∫ 1

0

a(t)ϕ(t)(Bx)(t) dt

=
1

‖h∗‖

∫ 1

0

a(t)ϕ(t) dt

∫ 1

0

k(t, s)a(s)x(s) ds

=
1

‖h∗‖

∫ 1

0

a(s)x(s) ds

∫ 1

0

k(t, s)a(t)ϕ(t) dt

=
1

‖h∗‖

∫ 1

0

a(s)x(s) ds

∫ 1

0

k(s, t)a(t)ϕ(t) dt

=
1

‖h∗‖

∫ 1

0

a(s)x(s)(Bϕ)(s) ds =
1

λ1‖h∗‖

∫ 1

0

a(s)x(s)ϕ(s) ds

=
1

λ1
h(x),

and thus B∗h = r(B)h. For x ∈ P , Lemma 3.2 shows Bx ∈ P . In addition, by

virtue of Lemma 3.2 (iii) and (3.12), we get

h(Bx) >
δ1

λ1‖h∗‖

∫ 1

0

k(t, s)a(s)x(s) ds

>
δ1

λ1

∫ 1

0 a(t) dt

∫ 1

0

k(t, s)a(s)x(s) ds = δ(Bx)(t), t ∈ [0, 1],
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which means that B(P ) ⊂ P (h, δ). This shows that the condition (H1) in Theo-

rem 2.3 is satisfied.

On account of Remark 2.2, we see that the condition (H2) in Theorem 2.3 is

satisfied.

By virtue of (3.9) and (3.10) there exist η > 0 and r∗ > 0 such that

f(t, u) − au > 0 for (t, u) ∈ [0, 1]× [−r, 0],

f(t, u) > λ1(1 + η)u, t ∈ [0, 1], u ∈ [0, r∗],

which clearly implies that

Fx > λ1(1 + η)x, x ∈ P ∩ Br∗∗ ,

Fx − ax ∈ P, x ∈ P ∩ Br∗∗ , r∗∗ = min{r, r∗}.

Hence, (H3) and (H4) in Theorem 2.3 are satisfied.

By (3.11) there exist ε > 0 and a sufficiently large number L1 > 0 such that

(3.13) |f(t, u)| 6 λ1(1 − ε)|u|, t ∈ [0, 1], u > L1.

Combining (3.13) with (H1), we have that there exists b1 > 0 such that

|f(t, u)| 6 λ1(1 − ε)|u| + b1, t ∈ [0, 1], u ∈ R,

and so

(3.14) |Fx| 6 λ1(1 − ε)|x| + b1 ∀x ∈ E.

Since B is a positive linear operator and r(B) = 1/λ1, from (3.14) we have

|Ax| 6 λ1(1 − ε)B|x| + B(b1) ∀x ∈ E.

So condition (2.13) in Theorem 2.3 is satisfied with B1 = λ1(1 − ε)B.

Thus, all conditions in Theorem 2.3 are satisfied. So Theorem 2.3 guarantees that

our conclusion holds. �

R em a r k 3.1. From (3.9) we know that f(t, u) may take negative values for

(t, u) ∈ [0, 1]× [−r, 0], which makes it impossible to apply the methods in [11] to the

present paper. So the method is new and the results obtained in this paper improve

and extend those in [11].
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At the end of this section, we give a rough estimate for a. Since ϕ is the positive

normalized eigenfunction of B corresponding to its first eigenvalue λ1 = r−1(B) and

B(P ) ⊂ P1 (see Lemma 3.2), we have

(3.15) δ =
c

u0(1)v0(0)
∫ 1

0 a(t) dt

∫ 1

0

k(t, t)a(t)ϕ(t) dt

>
c

u0(1)v0(0)
∫ 1

0
a(t) dt

∫ 1

0

k(t, t)a(t)
ck(t, t)

u0(1)v0(0)
‖ϕ‖ dt

=
c2

u2
0(1)v2

0(0)
∫ 1

0 a(t) dt

∫ 1

0

k2(t, t)a(t) dt := δ0.

On the other hand, it is easy to see that δ1 > δ2 > 0 implies that P (h, δ1) ⊂ P (h, δ2)

and r(B) 6 ‖B‖. As a result, by Theorem 3.1, if

(3.16) a ∈
[

0, min
{ δ

M‖B‖(1 + δ)
, r−1(B)

})

,

then the singular Sturm-Liouville boundary value problem (3.1) has at least one

nontrivial solution.

4. An example

In this section, we construct an example to demonstrate the application of our

result obtained in Section 3.

Let h(t) = 1/
√

t(1 − t) and

(4.1) f(t, u) =































√
u, u > 0,

n
∑

i=1

aiu
i, −1 < u < 0,

n
∑

i=1

(−1)iai − (1 + t2) ln |u|, u 6 −1,

where a1 ∈ (−24/131π, +∞). Consider the second-order singular Dirichlet two-point

boundary value problem

(4.2)

{

u′′(t) + h(t)f(t, u) = 0, 0 < t < 1,

u(0) = u(1) = 0.

Green’s function of the relevant homogeneous equation is

k(t, s) =

{

t(1 − s), 0 6 t 6 s 6 1,

(1 − t)s, 0 6 s 6 t 6 1.
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Let (Bu)(t) =
∫ 1

0 k(t, s)h(s)u(s) ds, t ∈ [0, 1]; (B1u)(t) =
∫ 1

0 k(t, s)u(s) ds, t ∈
[0, 1]; (B2u)(t) =

∫ 1

0

√

s(1 − s)u(s) ds, t ∈ [0, 1]. It is easy to show that

B1u 6 Bu 6 B2u, u ∈ P = {u ∈ C[0, 1] | u(t) > 0, t ∈ [0, 1]}.

Thus by [12] and
∫ 1

0

√

s(1 − s) ds = π/8, r(B1) = 1/π
2, we have r(B) > r(B1) > 0

and r(B) 6 ‖B‖ 6 ‖B2‖ 6 π/8. This together with

δ =

∫ 1

0 t
3
2 (1 − t)

3
2 dt

∫ 1

0
1√

t(1−t)
dt

=
3

128

implies

min
{ δ

M‖B‖(1 + δ)
, r−1(B)

}

>
24

131π

.

It is easy to prove that all the conditions in Theorem 3.1 are satisfied. As a result,

BVP (4.1) with the h(t) and f(t, u) given by (4.1) has at least one nontrivial solution.

A c k n ow l e d gm e n t. The authors sincerely thank the referees for their valu-

able suggestions and useful comments that have led to the present improved version

of the original paper.
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