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Abstract. This work is concerned with the inverse problem of determining initial value
of the Cauchy problem for a nonlinear diffusion process with an additional condition on
free boundary. Considering the flow of water through a homogeneous isotropic rigid porous
medium, we have such desire: for every given positive constants K and T0, to decide the
initial value u0 such that the solution u(x, t) satisfies sup

x∈Hu(T0)
|x| > K, where Hu(T0) =

{x ∈ R
N : u(x, T0) > 0}. In this paper, we first establish a priori estimate ut > C(t)u and

a more precise Poincaré type inequality ‖ϕ‖2L2(B̺)
6 ̺‖∇ϕ‖2L2(B̺)

, and then, we give a

positive constant C0 and assert the main results are true if only ‖u0‖L2(RN ) > C0.
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1. Introduction

Consider the flow of water through a homogeneous isotropic rigid porous medium.

If we assume the density of water to be constant, the volumetric moisture con-

tent u and the seepage velocity v of water are governed by the continuity equation

ut + ∇v = 0. Employing Darcy’s law, we can obtain the well-known porous media

equation (see [6])

(1.1)

{

ut = ∆(um) − κup in QT ,

u(x, 0) = u0(x) on R
N ,

where m > p > 1, κ > 0, QT = R
N × (0, T ) and

(1.2) 0 6 u0 6 L,

∫

RN

u0 dx > 0
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for L > 0. The term −κup in the equation of (1.1) means that the system admits

absorption when κ > 0.

The equation (1.1) is the simplest model of degenerate parabolic equation and

many well-known qualitative properties have been shown in last decades. For exam-

ple, some authors (see [12]) discussed the large-time behavior of the solution to the

Cauchy problem (1.1) and got an estimate ‖u‖L2 6 Ct−α for α > 0. This inequality

shows that the total mass of the system will be extinguished by the absorption −κup

as t → ∞, but it does not tell us how far away the diffusing substance will reach at

a given time T0. That is to say, from such estimates we cannot know where the free

boundary of the solution is.

It is well-known that the study of free boundary has a long history. Certainly,

if we consider a uniform parabolic equation without absorption, for example, the

linear heat equation ut = ∆u, we see that u(x, t) > 0 everywhere in Q if only its

initial value u0 satisfies (1.2), thus, the speed of propagation of u is infinite in this

case. However, this fact is not true for degenerate parabolic equations. For example,

L.A. Peletier and B.H.Gilding (see [5], [11]) discussed the free boundary problems

of degenerate parabolic equations

∂u

∂t
=

∂2ϕ(u)

∂x2

and
∂u

∂t
=

∂2um

∂x2
+

∂un

∂x
,

respectively. They proved that the speeds of propagation of the solutions are fi-

nite. But they got no explicit formulas. For the case of the dimension N > 1, the

Barenblatt function (see [2])

(1.3) B(x, t, C) = t−λ
[

C − σ
|x|2

t2µ

]1/(m−1)

+

gives a source-type solution to the Cauchy problem

{

Bt = ∆(Bm) in Q,

B(x, 0) = Mδ(x) on R
N ,

where m > 1, [h]+ = max{h, 0},

(1.4) λ =
N

N(m − 1) + 2
, µ =

λ

N
, σ =

λ(m − 1)

2mN
,

and C is a positive constant such that
∫

RN B dx = M . For every t > 0 denote

(1.5) Hu(t) = {x ∈ R
N : u(x, t) > 0}.
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Hu(t) is the positivity set of the solution. Then (1.3) implies HB(t) =
{

x ∈ R
N :

|x| <
√

C/κ tµ
}

, and therefore, we get the exact expanding behavior of free bound-

ary:

(1.6) |x| =

√

C

κ
tµ, x ∈ ∂HB(t).

This fact tells us that the solution B(x, t) may retain its positivity at any given point

when t increases. To extend the result of [2], J. L.Vazquez (see [12]), employing the

Barenblatt function and comparison theorem, proved that the solution to the Cauchy

problem of the equation

{

ut = ∆um in Q,

u(x, 0) = u0(x) on R
N

also has a bounded positivity set Hu(t):

(1.7) c1t
µ 6 |x| 6 c2t

µ, x ∈ ∂Hu(t),

where u0(x) satisfies (1.2) and is supported in a bounded set of RN . Here we see

that the speed of propagation of Hu(t) is similar to the one of HB(t). Moreover,

if the initial value u0 subjects to some restrictions (see [6]), so that the solution

u(x, t) is continuous, then (1.7) shows that every point of the space is eventually

reached by the diffusing substance. However, for a general parabolic equation ut =
N
∑

i,j=1

(∂/∂xj)ai,j ∂u/∂xi +
N
∑

i=1

bi ∂u/∂xi +cu, whether the property will be retained or

not, there are yet no other explicit results to the knowledge of the author. Although

the equation (1.1) has an absorption −κup, we can easily see (in Section 2 of the

present work) that the solution of (1.1) will not extinguish for t ∈ (0,∞). Thus, we

guess that the positivity set Hu(t) does not always become smaller as t increases.

So we have such a desire: for every positive constant K and T0 to decide the initial

value u0 such that the solution u(x, t, u0) satisfies

(1.8) sup
x∈Hu(T0)

|x| > K.

We see that the problem (1.1)–(1.2) with the additional condition (1.8) is an over-

determined problem. We know that there are many works devoted to different kinds

of such ill-posed problems on parabolic equations in the recent years (see [9], [7], [8],

[14]). But most of them discussed the solvability of these problems and few of them

are concerned with free boundary problems.
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We say that a nonnegative function u(x, t) ∈ C([0,∞) : L1(RN )) is a solution of

the Cauchy problem (1.1) with the initial value (1.2) in Q if

(i) ut, u
m, ∆um ∈ L1

loc((0,∞) : L1(RN ));

(ii) ut = ∆um − θup in the sense of distributions in Q;

(iii) u(x, t) → u0(x) in L1(RN ) as t → 0.

Our main result reads:

Theorem 1. The problem (1.1)–(1.2) has a unique global nonnegative weak

solution u(x, t) with the properties

ut >
κ(m − p)Lp−1

(m − 1)(e−κ(m−p)Lp−1t − 1)
u

in the sense of distributions in QT , and

(1.9)

∫

RN

us dx > Ls−1e−Lp−1κt

∫

RN

u0 dx

for s ∈ (0, 1] and t > 0.

Theorem 2. Suppose

suppu0 = Bε = {x ∈ R
N : |x| < ε}

with ε > 0. For every given K > 0 and T0, there exists a positive constant C0

depending on T0 and K, such that the solution to (1.1), (1.2) satisfies

sup
x∈Hu(T0)

|x| > K

when ‖u0‖L(RN) > C0.

R em a r k. If there is no absorption in the system, that is to say, κ = 0 in the

equation (1.1), we will show that the positive constant C0 is defined more clearly.

This fact will be shown by a corollary in Section 4 of the present work, where we see

that sup
x∈Hu(T0)

|x| > cT µ
0 for some c > 0, which is just the left of (1.7).

2. Some estimates

We prove our Theorem 1 in this section. To do this, we need to establish some

lemmas firstly. Although the proof of the existence and uniqueness of the solution to

the problem (1.1)–(1.2) has been established by others (see [12], [10]) with a standard

procedure, we also want to show the main steps which will be used to prove our main

conclusion.
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Lemma 2.1 (The existence of a solution). For every given T > 0, the Cauchy

problem (1.1)–(1.2) has a nonnegative solution u(x, t) in QT .

P r o o f. For every k > 2 and T > 0, set

Qk,T = Bk × (0, T ), Sk,T = ∂Bk × (0, T ),

and

u0,η =

∫

RN

u0(y)Jη(x, y) dy, u0η,k = u0ηζk,

where Bk = {x ∈ R
N : |x| < k} and

J(x) =

{

e1/(|x|2−1), |x| < 1,

0, |x| > 1,

and Jη(x) = (1/(γηN ))J(x/η) with γ =
∫

|x|<1 e1/(|x|2−1) dx for η > 0, and {ζk}k>2

is a smooth cutoff sequence with the following properties: ζk(x) ∈ C∞
0 (RN ),











ζk(x) = 1, |x| 6 k − 1,

0 < ζk(x) < 1, k − 1 < |x| < k,

ζk(x) = 0, |x| > k.

Clearly, u0η,k(x) → u0(x) in L1(RN ) as η → 0 and k → ∞. Moreover, it is not

difficult to see that the derivatives of the functions ζk up to second order are bounded

with respect to x ∈ R
N uniformly. Specially, there is a positive constant γ such that

|∇ζk| 6
γ

k
and |∆ζk| 6

γ

k2
.

We next consider the Dirichlet problem

(2.1)











ut = ∆(um) − θup in Qk,T ,

u(x, t) = η∗ in Sk,T ,

u(x, 0) = u0η,k(x) + η in Bk,

where η∗ = (η1−p + (p − 1)θT )1/(1−p). A similar procedure (see Theorem 4

Ch. II in [12]) yields that the Dirichlet problem (2.1) has a unique solution

uη,k ∈ C∞(Qk,T ) ∩ C(Qk,T ). Letting k → ∞, η → 0 and employing a proce-

dure similar to the one used in Chapter III in [12], we see that there exists a

nonnegative function u(x, t), which is the solution of the Cauchy problem (1.1)–(1.2)

in Q and

0 6 u(x, t) 6 L in QT .

�

To prove the uniqueness, we need to give the L1-contraction principle first.
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Lemma 2.2 (L1-contraction principle). Suppose u and ũ to be two solutions to

the problem (1.1)–(1.2) corresponding to the initial data u0 and ũ0. Then

(2.2)

∫

RN

|up − ũp| dx 6

(

pLp−1

∫

RN

|u0 − ũ0| dx

)

· e−pθLp−1t t > 0.

P r o o f. Take a function h(x) ∈ C∞(R1) such that

h(x) =















0, x 6 0,

exp
[−1

x2
exp

−1

(x − 1)2

]

, 0 < x < 1,

1, x > 1.

Clearly, 0 6 h(x) 6 1 and h′(x) > 0. Denote hε(x) = h(x/ε) for ε > 0 and set

w = um − ũm.

We have
∫

RN

(u − ũ)thε(w) dx =

∫

RN

∆whε(w) dx − θ

∫

RN

(up − ũp)hε(w) dx

6 − θ

∫

RN

(up − ũp)hε(w) dx t > 0.

Since w > 0 iff u > ũ, Lemma 3.1 of [3] yields

∫

RN

(u − ũ)tpε(w) dx →
d

dt

∫

RN

[u − ũ]+ dx, as ε → 0,

where [u − ũ]+ = max(u − ũ, 0). Thus,

d

dt

∫

RN

[u − ũ]+ dx 6 −θ

∫

RN

[up − ũp]+ dx, t > 0.

This yields

(2.3)

∫

RN

[u − ũ]+ dx 6

∫

RN

[u0 − ũ0]+ dx − θ

∫ t

0

∫

RN

[up − ũp]+ dxdτ t > 0.

Clearly, [up − ũp]+ 6 pLp−1[u − ũ]+ thanks to 0 6 u, ũ 6 L and p > 1. Using this

inequality in (2.3) yields

∫

RN

[up − ũp]+ dx 6 pLp−1

∫

RN

[u0 − ũ0]+ dx − θpLp−1

∫ t

0

∫

RN

[up − ũp]+ dxdτ.
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Finally, the Gronwall inequality gives

(2.4)

∫

RN

[up − ũp]+ dx 6

(

pLp−1

∫

RN

[u0 − ũ0]+ dx
)

e−θpLp−1t.

Similarly,

(2.5)

∫

RN

[up − ũp]− dx 6

(

pLp−1

∫

RN

[u0 − ũ0]− dx
)

e−θpLp−1t.

Combining (2.4) and (2.5) gives (2.2). �

Lemma 2.2 implies the following result:

Corollary 1 (The uniqueness). The solution u(x, t) obtained in Lemma 2.1 is

unique.

Lemma 2.3. Let u(x, t) be a nonnegative solution of the problem (1.1) with (1.2)

in QT . Then

ut >
κ(m − p)Lp−1

(m − 1)(e−κ(m−p)Lp−1t − 1)
u

in the sense of distributions in QT and,

(2.6)

∫

RN

us dx > Ls−1e−Lp−1κt

∫

RN

u0 dx

for s ∈ (0, 1] and t ∈ (0, T ).

P r o o f. For every given T > 0, suppose that uη,k is the solution of the Dirichlet

problem (2.1) in Qk,T . We first prove

(2.7)
∂

∂t
uη,k >

κ(m − p)(L + η)p−1

(m − 1)(e−κ(m−p)(L+η)p−1t − 1)
uη,k in QT .

To do this, we set

V = (uη,k)m and q =
Vt

V
.

Thereby,

(2.8) q(x, t) = 0 on Sk,T .

For every given t > 0, set

Ω+
k = {x ∈ Ω: q(x, t) > 0},

Ω−
k = {x ∈ Ω: q(x, t) < 0},

Ω0
k = {x ∈ Ω: q(x, t) = 0}.
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Thereby,

QT = (Ω−
k ∪ Ω0

k) × (0, T ) ∪ Ω−
k × (0, T ).

Owing to m > p > 1, the right hand side of (2.7) is negative, so (2.7) is true for

(x, t) ∈ (Ω+
k ∪ Ω0

k) × (0, T ). Therefore, we next prove (2.7) for (x, t) ∈ Ω−
k × (0, T )

only. It follows from Vt = V ′(∆V − κup
η,k) that q = (V ′/V )[∆V − κ(up

η,k)]. Thus,

qt =
V ′

V
[∆Vt − κ(up

η,k)t] +
V ′′ · (uη,k)t · V − V ′ · Vt

V 2
[∆V − κ(up

η,k)]

=
V ′

V
∆Vt +

[∆V − κ(up
η,k)]2

V 2
[V V ′′ − (V ′)2] − κ

V ′

V
(up

η,k)t.

Since ∆Vt = ∆(qV ) = V ∆q + 2∇V · ∇q + q∆V ,

(2.9) qt = V ′∆q + 2
V ′

V
∇V · ∇q +

V ′

V
q∆V +

[∆V − κ(up
η,k)]2

V 2
[V V ′′ − (V ′)2]

− κp
V ′

V
up−1

η,k (uη,k)t

= V ′∆q + 2
V ′

V
∇V · ∇q + q

[

q + κ
V ′

V
(uη,k)p

]

+
q2

(V ′)2
[V V ′′(u) − (V ′)2] − κpqup−1

η,k

= V ′∆q + 2
V ′

V
∇V · ∇q + q2 V V ′′

(V ′)2
+ κq

[V ′

V
(uη,k)p − pup−1

η,k

]

= V ′∆q + 2
V ′

V
∇V · ∇q +

m − 1

m
q2 + κ(m − p)up−1

η,k q.

Recalling q < 0 in this case, uη,k 6 L + η and m > p > 1, we have (m − p)up−1
η,k q >

(m − p)(L + η)p−1q. Thus,

(2.10) qt > ϕ′∆q + 2
ϕ′

V
∇V · ∇q +

m − 1

m
q2 + κ(m − p)(L + η)p−1q.

Moreover,

q = 0 on ∂Ω−
k × (0, T ).

Consider the equation

(2.11) q̄t = ϕ′∆q̄ + 2
ϕ′

V
∇V · ∇q̄ +

m − 1

m
q̄2 + κ(m − p)(L + η)p−1q̄.

It is easy to see that the function

q̄∗ =
mκ(m − p)(L + η)p−1

(m − 1)(e−κ(m−p)(L+η)p−1t − 1)
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satisfies the equation (2.11) in Ω−
k × (0, T ) and

q̄∗(x, 0) = −∞,

q̄∗(x, t) < 0 on ∂Ω−
k × (0, T ).

Although the domain Ω−
k × (0, T ) may not be a cylinder of RN × R

+, the compar-

ison theorem (see Th. 16 in Ch. 2 of [4]) is also applicable in this situation. The

comparison theorem claims q > q̄∗, and this fact means

(2.12)
∂uη,k

∂t
>

κ(m − p)(L + η)p−1

(m − 1)(e−κ(m−p)(L+η)p−1t − 1)
uη,k in Ω−

k × (0, T ).

Thus (2.7) holds in Ω−
k × (0, T ). Finally, letting η → 0 and k → ∞ in (2.7) gives the

first result of our Lemma 2.3.

To get the estimate (2.6), we first take a cutoff function ζk defined in Lemma 2.1,

and integrate by parts as follows:

∫

RN

(u − u0)ζk dx =

∫ t

0

∫

RN

[∆(um) − κup]ζk dxdτ

=

∫ t

0

∫

RN

[um∆ζk − κupζk] dxdτ

>

∫ t

0

∫

RN

[um∆ζk − κLp−1uζk] dxdτ.

Since the definition of the solution tells us um ∈ L1(RN ), we have
∫

RN um∆ζk dx → 0

as k → ∞. So, the above inequality yields
∫

RN (u − u0) dx > −κLp−1
∫ t

0

∫

RN u dxdt.

The Gronwall inequality implies

(2.13)

∫

RN

u dx > e−Lp−1κt

∫

RN

u0 dx t > 0.

For the case of 0 < s < 1, we see that

(2.14)

∫

RN

us dx > Ls−1

∫

RN

u dx

> Ls−1e−Lp−1κt

∫

RN

u0 dx t > 0.

Combining (2.13) and (2.14) gives (2.6). �

Combining the above conclusions, we know our Theorem 1 holds.
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3. The expanding behavior of Hu(t)

In this section, we prove our Theorem 2. Supposing u(x, t) to be the solution of

(1.1), we can first get a rough description on the expanding behavior of Hu(t). In

fact, for every l > 1 and Ω ⊂ R
N , Lemma 2.3 implies

(3.1)
1

l

d

dt

∫

Ω

ul dx >
κ(m − p)Lp−1

(m − 1)(e−κ(m−p)Lp−1t − 1)

∫

Ω

ul dx.

Consequently,

ln
(

∫

Ω
ul(x, t2) dx

∫

Ω ul(x, t1) dx

)

> ln
(eκ(m−p)Lp−1t1 − 1

eκ(m−p)Lp−1t2 − 1

)
l

m−1

.

This means

(3.2)

∫

Ω

ul(x, t2) dx · (eκ(m−p)Lp−1t2 − 1)l/(m−1)

>

∫

Ω

ul(x, t1) dx · (eκ(m−p)Lp−1t1 − 1)l/(m−1).

In other words, if u(x, t) is the solution to (1.1) with (1.2), then (3.2) claims the

following fact:

(3.3) if

∫

Ω

ul(x, t0) dx > 0, then

∫

Ω

ul(x, t) dx > 0 for all t > t0.

Although the formula (3.3) tells us the solution u(x, t) will never vanish even if the

equation (1.1) has the absorption −κup, thereby, the positive set Hu(t) will never

be empty, we are interested in giving an explicit formula. To do this, we need to

establish a more precise Poincaré type inequality. It is well-known that there exists

a positive constant k such that k‖ϕ‖2
L2(Ω) 6 ‖∇ϕ‖2

L2(Ω) for ϕ ∈ H1
0 (Ω). Recently,

Wu (see p. 13 in [13]) proved that

(3.4) k 6 ̺−2

if Ω = {(x1, x2, . . . , xN ) ∈ R
N : ai < xi < ai + ̺}. In order to prove Theorem 2 we

first show that the choice (3.4) is also right if Ω is a sphere in R
N .
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Lemma 3.1. Assume B̺ = {x ∈ R
N : |x| < ̺}. If u ∈ H1

0 (B̺). Then

(3.5) ‖u‖L2(B̺) 6 ̺‖∇u‖L2(B̺).

P r o o f. We first suppose u ∈ C∞
0 (B̺). For every x ∈ B̺, there is a x∗ ∈ ∂B̺,

such that the three points 0, x and x∗ lie on a radius ox∗. Denote the vector from

x∗ to x by r. We have
u(x) = u(x) − u(x∗)

=

∫ x

x⋆

∂u

∂r
dr.

Using the Hölder inequality we get

|u(x)|2 6 ̺

∫ ̺

0

∣

∣

∣

∂u

∂r

∣

∣

∣

2

dr.

This gives

∫

B̺

|u(x)|2 dx 6 ̺

∫

B̺

∫ ̺

0

∣

∣

∣

∂u

∂r

∣

∣

∣

2

dr dx

6 ̺2

∫

B̺

|∇u|2 dx.

The general case is done by approximation. �

P r o o f of Theorem 2. For a given T0 > 0, if Hu(T0) is unbounded, then the

proof is finished. Thereby, we next suppose Hu(T0) to be bounded. Denote

̺(T0) = sup
x∈Hu(T0)

|x|, t > 0.

For every λ > 0, set ̺ = λ + ̺(T0). Clearly, u = 0 on ∂B̺. By Lemma 2.3,

∫

B̺

um[∆(um) − κup] dx >
κ(m − p)Lp−1

(m − 1)(e−κ(m−p)Lp−1T0 − 1)

∫

B̺

u1+m dx.

It follows from (3.5) that

(3.6)
∫

B̺

u2m dx + ̺2κ

∫

B̺

um+p dx 6 ̺2 κ(m − p)Lp−1

(m − 1)(1 − e−κ(m−p)Lp−1T0)

∫

B̺

u1+m dx.

By the Hölder inverse inequality (see p. 24 in [1]), we have

(3.7)

∫

B̺

um+p dx >

(
∫

B̺

um+1 dx

)(m+p)/(1+m)

· |B̺|
(1−p)/(1+m)
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and

(3.8)

∫

B̺

u2m dx >

(
∫

B̺

um+1 dx

)2m/(1+m)

· |B̺|
(1−m)/(1+m).

Using (3.7) and (3.8) in (3.6) gives

(
∫

B̺

um+1 dx

)
2m

1+m

· |B̺|
1−m
1+m + ̺2κ

(
∫

B̺

um+1 dx

)

m+p
1+m

· |B̺|
1−p
1+m

6 ̺2 κ(m − p)Lp−1

(m − 1)(1 − e−κ(m−p)Lp−1T0)

∫

B̺

um+1 dx.

Owing to u0 > 0 on Bε, (3.3) claims
∫

B̺
um+1 dx > 0, hence

(3.9)

(
∫

B̺

um+1 dx

)

m−1
1+m

· |B̺|
1−m
1+m + ̺2κ

(
∫

B̺

um+1 dx

)

p−1
1+m

· |B̺|
1−p
1+m

6 ̺2 κ(m − p)Lp−1

(m − 1)(1 − e−κ(m−p)Lp−1T0)
.

On the other hand, using the Hölder inverse inequality again yields

∫

B̺(x∗)

um+1 dx >

(
∫

B̺(x∗)

us dx

)

1+m
s

· |B̺(x
∗)|

s−1−m
s for 0 < s 6 1 + m.

Thus,

(
∫

B̺

us1 dx

)
m−1

s1

|B̺|
(s1−1−m)(m−1)

s1(1+m)
+ 1−m

1+m + ̺2κ

(
∫

B̺

us2 dx

)

p−1
s2

|B̺|
(s2−1−m)(p−1)

s2(1+m)
+ 1−p

1+m

6 ̺2 κ(m − p)Lp−1

(m − 1)(1 − e−κ(m−p)Lp−1t)

for 0 < s1, s2 6 1. Letting s1 = 1 and s2 = N(p − 1)/(N(m − 1) + 2) (and recalling

the fact |B̺| = π
N/2Γ(1 + N/2)−1̺N ), we have

[
∫

RN

u dx · π
−N

2 Γ
(

1 +
N

2

)

]m−1

+ κ

[
∫

RN

u
N(p−1)

N(m−1)+2 dx · π
−N

2 Γ
(

1 +
N

2

)

]

N(m−1)+2
N

6 ̺2+N(m−1) κ(m − p)Lp−1

(m − 1)(1 − e−κ(m−p)Lp−1T0)
.
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Using (2.13) and (2.14), we have

[

e−Lp−1κT0

∫

RN

u0 dx · π
−N/2Γ

(

1 +
N

2

)

]m−1

+ κ

[

e−Lp−1κT0

∫

RN

u0 dx · L
N(p−m)−2
N(m−1)+2 π

−N/2Γ
(

1 +
N

2

)

]

N(m−1)+2
N

6 ̺2+N(m−1) κ(m − p)Lp−1

(m − 1)(1 − e−κ(m−p)Lp−1T0)
.

Recalling the definition of µ in (1.4), we get

(3.10) ̺ > χµ,

where

χ =
(m − 1)(1 − e−κ(m−p)Lp−1T0)

κ(m − p)Lp−1

×

[

e−Lp−1κT0

∫

RN

u0 dx · π
−N

2 Γ
(

1 +
N

2

)

]m−1

+
(m − 1)(1 − e−κ(m−p)Lp−1T0)

(m − p)Lp−1

×

[

e−Lp−1κT0

∫

RN

u0 dx · L
N(p−m)−2
N(m−1)+2 π

−N
2 Γ

(

1 +
N

2

)

]

N(m−1)+2
N

.

Letting λ → 0 in (3.10) gives

sup
x∈Hu(T0)

|x| > χµ.

Setting

χµ = K

and

y =

(
∫

RN

u0 dx

)m−1

,

we get the following equation with respect to y:

(3.11) y + I1y
1+ 2

N(m−1) − I2K
1
µ = 0,

where

I1 = κL
N(p−m)−2

N

[

e−Lp−1κT0
π
−N

2 Γ
(

1 +
N

2

)

]
2
N

,

I2 =
κ(m − p)Lp−1

(m − 1)(1 − e−κ(m−p)Lp−1T0)

[

e−Lp−1κT0 · π
−N

2 Γ
(

1 +
N

2

)

]1−m

.
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Since the function F (y) = y + I1y
1+2/(N(m−1)) − I2K

1/µ increases with respect to

y > 0, we see that there exists only one positive constant Cm−1
0 , which satisfies the

equation (3.11). Therefore, we see that sup
x∈Hu(T0)

|x| > K if
∫

RN u0 dx > C0. �

4. A special case

Here we show a special case of κ = 0 in the equation (1.1). From Lemma 2.3, we

may easily get ut > −u/((m − 1)t) in this case, which is the well-known estimate

for the equation ut = ∆um (see [12]). Thus, we can employ a procedure similar to

(3.10) and get

χ = (m − 1)T0

[

π
−N

2 Γ
(

1 +
N

2

)

·

∫

RN

u0 dx

]m−1

.

Hence, we have the following results:

Corollary 2. Let κ = 0 in the equation (1.1). For every given K and T0, if
∫

RN u0 dx > C0, where

C0 = K
1

µ(m−1) [(m − 1)T0]
1

1−m

[

π
−N

2 Γ
(

1 +
N

2

)]−1

,

then sup
x∈Hu(T0)

|x| > K.

References

[1] R.A.Adams: Sobolev Spaces. Pure and Applied Mathematics 65. A Series of Mono-
graphs and Textbooks. Academic Press, New York, 1975.

[2] G. I. Barenblatt: On some unsteady motions and a liquid and gas in a porous medium.
Prikl. Mat. Mekh. 16 (1952), 67–78. (In Russian.)

[3] J.R. Esteban, A.Rodríguez, J. L.Vázquez: A nonlinear heat equation with singular dif-
fusivity. Commun. Partial Differ. Equations 13 (1988), 985–1039.

[4] A.Friedman: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood
Cliffs, 1964.

[5] B.H.Gilding: Properties of solutions of an equation in the theory of infiltration. Arch.
Ration. Mech. Anal. 65 (1977), 203–225.

[6] B.H.Gilding, L. A.Peletier: The Cauchy problem for an equation in the theory of infil-
tration. Arch. Ration. Mech. Anal. 61 (1976), 127–140.

[7] V.L.Kamynin: On the inverse problem of determining the leading coefficient in
parabolic equations. Math. Notes 84 (2008), 45–54.

[8] V.L.Kamynin: On the inverse problem of determining the right-hand side of a parabolic
equation under an integral overdetermination condition. Math. Notes 77 (2005),
482–493.

670



[9] A. I.Kozhanov: Solvability of the inverse problem of finding thermal conductivity. Sib.
Math. J. 46 (2005), 841–856.

[10] O.A. Ladyzhenskaja, V.A. Solonnikov, N.N.Ural’tseva: Linear and Quasilinear Equa-
tions of Parabolic Type. Translated from the Russian by S. Smith. Translations of Math-
ematical Monographs Vol. 23. American Mathematical Society, Providence, 1968; Izdat.
Nauka, Moskva, 1967. (In Russian.)

[11] L.A. Peletier: On the existence of an interface in nonlinear diffusion processes. Ordi-
nary and Partial Differential Equations. Proceedings of the conference held at Dundee,
Scotland, 26–29 March, 1974. Lecture Notes in Mathematics 415 (B.D. Sleeman et al.,
eds.). Springer, Berlin, 1974, pp. 412-416.

[12] J. L. Vazquez: An introduction to the mathematical theory of the porous medium equa-
tion. Shape Optimization and Free Boundaries. Proceedings of the NATO Advanced
Study Institute and Séminaire de mathématiques supérieures, held Montréal, Canada,
June 25–July 13, 1990. NATO ASI Series. Series C. Mathematical and Physical Sci-
ences 380 (M.C.Delfour et al., eds.). Kluwer Academic Publishers, Dordrecht, 1992,
pp. 347–389.

[13] Z.Wu, J.Yin, C.Wang: Elliptic and parabolic equations. World Scientific, Hackensack,
2006.

[14] W.Yu: Well-posedness of a parabolic inverse problem. Acta Math. Appl. Sin., Engl. Ser.
13 (1997), 329–336.

Author’s address: Jiaqing Pan, Institute of Mathematics, Jimei University, Xiamen,
361021, P. R.China, e-mail: jqpan@jmu.edu.cn.

671


		webmaster@dml.cz
	2020-07-02T13:45:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




