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STABILITIES OF F-YANG-MILLS FIELDS ON SUBMANIFOLDS

GAO-YANG JIA AND ZHEN-RONG ZHOU

ABSTRACT. In this paper, we define an F-Yang-Mills functional, and hence
F-Yang-Mills fields. The first and the second variational formulas are calcu-
lated, and the stabilities of F-Yang-Mills fields on some submanifolds of the
Euclidean spaces and the spheres are investigated, and hence the theories of
Yang-Mills fields are generalized in this paper.

1. INTRODUCTION

Let P(M,G) be a principal bundle over a compact Riemannian manifold M
with structure group G (a Lie group), and let E = P x, V be a vector bundle
associated with P(M,G), whose standard fibre is some vector space V', where
p: G — GL(V) is a representation of G. Denote the space of E-valued p-forms
by QP(E) = T'(A?T*M ® E), and the space of connections of E by Cg. Let
gr = P Xaq4. g be the adjoint vector bundle where g is the Lie algebra of G. It is
known that, for any V,V’ € Cg, we have V — V' € Ql(gg). For each V € Cp, the
curvature 2-form RY € Q2(gg) is defined by R;Y =[Vx,Vy] = Vixy). IfGisa
semisimple Lie group, there is a natural invariant metric on gg which is defined by
the Killing form, and this metric induces a one on Q%(gg). With respect to this
induced metric, the Yang-Mills functional is defined as follows:

1) SV) =3 [ IRTIE.

If a connection V of E is a critical point of the Yang-Mills functional, we call it a
Yang-Mills connection, the associated curvature tensor is called a Yang-Mills field.

For a connection V, its variation is a family V* of connections with [¢| < ¢ (a
small positive number) and V° = V. If

d? .
2 — vH >
@) a7, ST 20
holds for any variations of a Yang-Mills connection V, then we call the Yang-Mills

connection (and the corresponding Yang-Mills field) to be stable. Otherwise, we
call it unstable.
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In the paper [2, 1], J. P. Bourguignon and H. B. Lawson obtained a well known
result on stabilities of Yang-Mills fields as follows:

Theorem 1 ([I]). For n >4, any nonzero Yang-Mills fields on S™ are unstable.

When n = 4, we have S(V) > 47%|p; (E)| for any connection V (where, p1(E) is
the pontryagin number of E, a topological invariant), and the equality holds if and
only if the connection V is self-dual or anti-self-dual (in this case, the connection
is called an instanton). Hence any self-dual or anti-self-dual connection is stable.
Conversely, any stable Yang-Mills connection (or field) on $* with G = SU,, SU3, Uy
is either self-dual or anti-self-dual (see [I]). On the other hand, an infinite number of
unstable Yang-Mills fields on S? with G = SU(2) are constructed by L. M. Sibner,
R. J. Sibner and K. Uhlenbeck in [4].

Y. L. Xin in [5] discussed the stabilities of Yang-Mills fields on submanifolds of
the Euclidean space, and obtained the following

Theorem 2 ([5]). Let M"™ be a compact submanifold of R""*, and satisfy the
following condition:

where hfj is the second fundamental tensor with respect to a local orthonormal
frame of M, 1 < i, 5,k l<n,n+1<pu<n+k, and b <0. Then any nonzero
Yang-Mills fields on M are unstable.

On S™ C R™*!, we can choose a local orthonormal field of frame of R"*!, such
that h?j“ = 0;5. Then the condition in Theorem [2| becomes as n > 4. Therefore,
Theorem [2]is a generalization of Theorem

Remark 3. The condition means that for any tensor A;;, we have

(2hﬁ'h?j5kl — h%h%ékl + QhZhllgl) AikAjl < béijéklAikAjl .

If the integrand of the Yang-Mills functional is replaced by ||RV||P, then we
can obtain a p-Yang-Mills functional, whose critical points are called p-Yang-Mills
connections, and the associated curvature tensors are called p-Yang-Mills fields.
The paper [3] investigated the stabilities of p-Yang-Mills fields of Euclidean and
sphere submanifolds, and generalized the related results of [I] and [5].

Let M™ be a submanifold of R"** or S"** and h(-,-) the second fundamental
form. Let 1 < ¢,5 < n;n+ 1< pu < n+ k. Choose a local orthonormal frame
{ejli=1,--- ,n+k} of R"** or S"** such that, restrict to M™, {e1, - ,e,} are
tangent to M and {e,|u =n+1,--- ,n+k} are normal to M. Set h(e;, e;) = hjje,
and H" =" ht.. Define

Cijkisr = (— H“h?l + 2h% Bl ) Oilsr + 2h,f-bkh5l637‘ +2(p—2)ht Bt .6 .

gm'"ml
For example, if M"™ = S", as a hypersurface of R"*!, then we can choose an
adapted local normal frame such that h;; = h?jﬂ = ;5. In this case, Cijrisr =
(2p - n)(sjléki(ssrw
The paper [3] proved the following theorems:
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Theorem 4 ([3]). Let M™ be a submanifold of R"** satisfying Cijrisr < b0ir0j10sr,

where b < 0. Then any nonzero p-Yang-Mills fields on M are unstable.

Theorem 5 ([3]). Let M™ be a submanifold of S™**, satisfying Cijrisr < (n —
2p)0ikd;i0sr. Then any nonzero p-Yang-Mills fields on M are unstable.

When p = 2, the condition in Theorem [ is the same as that in Theorem
So, Theorem [4] is a generalization of Theorem [2] If we consider S™ as a totally

geodesic submanifold of S"*P, then the condition in Theoremis n > 2p. Therefore
Theorem [f] is another generalization of Theorem [T}

Remark 6. Inequality C;jrsr < (or <)ad;pdj0s means that
Z CijklsrAijAlestBrt < (OI‘ <)a Z 5ik6jlds7“AijAlestBrt

for any tensor A;; and B;;.

Replacing the integrand of the Yang-Mills functional by F(@)7 where
F' is a non-negative function, we define an F-Yang-Mills functional, and hence
F-Yang-Mills fields. These generalize theories of p-Yang-Mills fields. In this paper,
we investigate the stabilities of F-Yang-Mills fields on submanifolds of the Euclidean
space and the spheres, and our main results are in the following:

Theorem 7. Let M" be a submanifold of R"*, which satisfies

(4) Cijrtsr < boi10j1,
where b < 0. Suppose that for t > 0, we have
(5) (p—2)F'(t) > 2tF"(t), F'(t) >0, F(t)>0.

Then any nonzero F-Yang-Mills field RV on M™ is unstable.
Theorem 8. Let M" be a submanifold of S™*, which satisfies

(6) Cijrisr < (n —2p)didji -
Suppose that for t > 0, we have
(7) (p—2)F'(t) > 2tF"(t), F'(t)>0, F(t)>0.

Then any nonzero F-Yang-Mills field RV on M™ is unstable.
Theorem [7] generalizes Theorem [4] and Theorem [§] generalizes Theorem

Remark 9. o ,
(1) The condition (p — 2)F’(t) > 2tF"(t) is equivalent to (F (t2)) <0,ie £

p—

t 2 t 2

is differential and non-increasing.

(2) For p > 2, the following functions satisfy the condition E %(21?)%, In(1+1¢2),

In(t% 4 1+ ), 1+tp,alrctanm fo e~ da, etc.

(3) In general, if f: [0,00) — (0, 00) is differential and non-increasing, F(t) =
P

fot : f(z)dx, then Fp/gz) is differential and non-increasing for p > 2, and hence
t 2
condition ([7)) is satisfied by such an F'.
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2. VARIATIONAL FORMULAS OF F-YANG-MILLS FIELDS

Definition 10. Let F': [0, +00) — [0, +00) be a C* function. Define Sp: Cp — R
as following: For any V € Cg, set

® s = [ p(IEL),

which is called an F-Yang-Mills functional. The critical points of Sg are cal-
led F-Yang-Mills connections, and the associated curvature tensors are called
F-Yang-Mills fields.

Let V! = V + A? be a variation of V € C, where A® € Q!(gg) with A° = 0.
Then the curvature of V? is given by

(9) RV = RY 4 dVA" 4+ Z[A' A A1),

1
2
where, the compound operation [- A -] is defined as follows: For ¢,¢ € Q(gg),
[ A xy = lpx, ¥y] = [py,¥x]. Here, dV is the wedge covariant differentiation.
By a straightforward calculation, we have

o= e () - [ (B )

:/ F,(HRV ||2)<dViAt+|:gAt/\At:| th>

o 2 dt dt ’ '

Let D = %At lt=o and let 6V be the adjoint operator of d¥ with respect to the
inner product. The above equality becomes as

V|12
=0 Jm 2

- [ (o (),

Hence the Euler-Lagrange equation of Sg(+) is

(10)

d t
@«SF(V )

(11)

IRV
2

(12) 5VF’( )RV =0.

In order to discuss the stabilities of F-Yang-Mills fields, we need the second
variational formula. A direct calculation yields

d gdAt 14

4 Lt e +a t t
(13) R =d dt+2dt[A A A']
and

R a2 o, dAt  dA!
(14) Gt =d (G A) + A A+ [T )
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Hence we have

d vt _ v a? vt _ v
(15) %t—oR =d'D, @ﬁoR =d"C+[DAD].
where C' = dt2 lst=0 At. Taking derivatives of ., we have
d : IR v pv
azSrV) = / dt[F( 2 )<dtR Bt >}

(16)

_ /M F//(||th||2>

L ey

Letting t = 0, the above formula becomes as:

129

5:25 (V) = /M F”(ﬂ) <dVD7RV>2 " /M F’(ﬂ)wa RY)
(17) +/M (”RVHQ)<dVC+ D A D) RV>+/ F’(HR [§ )||dVD||2

By (12)), we have:

w e - [ (e e (UL o

Therefore, we obtain

_ " HRVHZ \Y v\ 2
WSF(V)L:O_/MF (72 )<d D,RY)

(19) + F’(

Definition 11. For D € Q!(gp

as

IRV
2

I(D) = /M F”(ﬂ) (d¥D, RV )’

(20) +/MF’<”R:”2) <[D/\D],RV>+/M F’(ﬂ)”dvDHQ.

){[DAD],R) + F(@) 14V D?.

), the index of an F-Yang-Mills field RV is defined

If for any D € Q'(gg), there holds I(D) > 0, then we call RY stable. Otherwise, it

is unstable.
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3. LEMMAS

For ¢ € Q?(gg), w € Q*(M) ® Hom (X(M), X(M)), let

1
(21) (po (“'))X,Y = 9 Z Pejwx,ve; -

We use R to express the Riemannian curvature tensor of M, Ric for the Ricci
operator. On M, we take a local orthonormal frame field {e;};=1,... n, and adopt
the Einstein convention of summation. The range of the indices i, j, k, [, m is
{1,...,n}. Let

(22) (Ric A I)xy = Rie(X) AY + X A Ric(Y)
and
(23) RY(@)xy = > _{[RY x:@e,x] = [RY v e, x]} -

Here, Ric A I € Q?(M) @ Hom (X(M),X(M)), and X AY is defined as:

(24) XAY)(2)=(X,2)Y - (Y, Z) X .

For any ¢ € Q2(gg), we have (see [1])

(25) Ap = V*Vp — o (RicAT+2R)+ RV (p).

Hence we have

(26) %AII«JH2 = (A, 0) = [Vol* — (po (Ric AT +2R), 0) — (RV (¢),¢) -

Lemma 12. For an F-Yang-Mills field RV, we have

RV2
[ (D i e

2
o[ (e e (M) ey
(27) +/MF’(”R2V”2) (RY o (RicAI+2R),RY)=0.

Proof. By a straightforward calculation, we get

ar(E10Y _ _y v, v, p(1E10

2 2
) (BTN BT
- 72%"’(}1 ( 2 )Ve" 2 )
V2 V|12
(28) o s T I Ty (LS N O
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In (26)), taking ¢ = RV, and then substituting the result into (28), we get

ads 1=
aF(E) = =P (IR P9 RY ) )P

- F’(@) (RY(RY),RY) + F’(ﬂ) (AYRY, RY)

V112 V|2
(29) - F(@) IVRY |2 - F(@) (RY o (Ric AT+ 2R),RY) .

Integrating shows that it is sufficient to prove [, F’(@) (AVRY RV) = 0.
By and the Bianchi equality d¥ RY = 0, we have

/ F/(HR;HQ)(AVRV7RV>

M

:/ <dvo5vRV7F’(”R:|2)RV>+/ <§VodvRV,F’(”R2V”2)RV>
M M

- ()« (i ()
M M

(30) =0.
O
Let {X,} be an orthonormal frame of gg, and {e;} on M. Let
(31) RY . = [ Xa, (vekRV)W‘j = firXa.
Then we have f& = —f&, f& = —f& IRVI? = S5 f5, IVRY|? = 5 fos

Lemma 13 ([3]). We have
(i) If M is a submanifold of R"** then
(32)  (RYo(RicAI+2R),RY) = [(H"h — bt bt )ori — Rl Il £5 fs

gm' " ml
(ii) If M™ is a submanifold of S"**, then

(33) (RY o (RicAI+2R),RY)
= [(H"Rjy — W, iy )oni — R RG] 55 i+ 2(n = 2) | RY .

gm'“ml

4. STABILITIES OF F-YANG-MILLS FIELDS

Theorem 14. Let M" be a submanifold of R"*, which satisfies the following
condition:

(34)  [(—HPRE + 2R B Vo + 2Rl R |8 + 2(p — 2)BE5 hE 651 < DOk i,

gm'"ml

where b < 0. If RY is a nonzero F-Yang-Mills field on M™, then it is unstable,
where for t > 0 we have

(35) (p—2)F'(t) > 2tF"(t), F'(t)>0, F(t)>0.
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Proof. Let X and V be two tangent vectors to M™, and let D = iy, RV, then we
have Dx = (iyRY)x = R&X and
(dVD)ese; = (Ve D)e; = (Ve, D)e,
= (Ve,(ivRY)), — (Ve; (ivRY)),,
= Ve (ivRY)e, = (ivRY)v, e, = Ve, (ivRY)e, + (ivR)v, .,

= Ve, (iRY)e, = Ve, (ivRY)e, = RV g, o, + RVg, e, -

e; €4

Because

vej (iVRV)Ei = Vez (RVCJ) - (VejR )Vew + RV Vel _'_]%VVe e;

we have
(36) (dvD)ei,e]‘ = (veiRv)V,ej - (VGJRV)MQ + Rgeiv,ej - Rgej Ve *

Let {E4 | A=1,2,...,n+ k} be the canonical orthonormal base of R"** and
write V4 = v'ye; as the tangent part of E4. Let the indices A, B, C run from 1 to
n + k, the indices ¢, j from 1 to n, and the indice p from n + 1 to n + k. Then we
have

(37) vBv§ =0pc, Ve, Va= v hie;
For Ds =iy, RV, A=1,2,...,n+k, according to we get

ZIF<DA) _ Z/ F”(HRZHQ) <dvDA,RV>2
A A M
SR (VY (5,0, )

(38) +Z/M F(@) (d D, d" D) .
A

By and , we have
(dVDA)ei7ej = (veiRv)VA:e]’ - (Veij)VA7ei + Rgej Va,e; — Rge.VA,ei

(39) = 04 (Ve,RY)epe; = V4 (Ve, RY ey, +VRBERY . — VAR RY L
from which, we have
1
<dvDAvRv> = 2<RZ e;) (dvDA)ei’€j>

1 1
§Uf4< €ie; (veLRv>ez,eJ> §UA<Rev e; 7(V€ij)€l7ei>

2 ff\hitz<Rv RV v>_7 /thlt<RV RV >

ei,e;) e, e; 2 A gl ei,e;) e, e;

VA(RY o (Ve,RY Vere,) +VRE(RY . (RY ).

ei,ej? ei,ejr " ler,e;
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According to one has
> AdVDa, RY)? = (V4(RY o (Ve RY Jer.e,) + VARG(RY, o BT L))
A
X (Ui<RZ,et, (VesRv)ek,et> + Uzhi\k <Revs,etv RZ,et>)
= 6lk<RZ-,eja (VCiRv)el;€j><RZ,et7 (VesRv)ek,et>
+ éﬂkhﬁhg\k <RZ,ej ’ Rz,ej > <Revs,et ) Revk,e)
= <Revi,ej7 (VEiRv)el’€j><Revs,et’ (ves Rv)ez,et>
(40) + hiLlhgk <Revi,ej 9 Rz,ej><ReVS,eta RZ,et> .
Taking use of the Bianchi identity, we reach
<R€Viaej7 (v€iRv>ela€j> = _<RZL,€]'7 (VSzRv)€j7€i> - <RZ,ej7 (v€j Rv)ei,€l>
= <R€Vi,€j7 (vezRv)ei7eg‘> - <R€Vj7ei’ (veij)€l761:> )
from which we obtain
1
(41) D (RY . (Ve,RY )epe,) = 52(}%2@, (Ve,RY )eyre; ) = (RY, V., RY).
ij i,
Substituting into , we have
> (dVDa,RY)* =) (RY,V.RY)* +hihl, (RY . RY )(RY . RY )
A 1
2
(42) = [RYVIP[[VIRVI||” + Rl (R o)y RY o RS o RY, ) -

Therefore
%:/MF"(“’;V”Q)WDA,RW :/M F"(W)IIRVHQHVHRVH I
o/ (VI ot (R B RS, B, )
= [ e (L e e )

RV 2 0 ea
(43) +/M F,/(%>hﬁhgm ijfljftbs ’I’l;’LS7

a

where f/.’s are the components of RZ,EJ_. Because

ppkt pa rfa b b _ g ppp pa pa pb b _ ppopp 5. pa pa £b pb
hilhtm ijfljfts ms — hikhsr ijfkj stJrt = hikhsr(sﬂ ijfklfstfrt’

133
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we have
IRV |2
(44) /M FU(T)hflhgm iajfl(;’ffs 7215
RV 2 " ra
:/M F"(w)h%hg‘jﬂ ijfklfft 7l"7t'
Substituting into , we have
[RY? [RY]? 2
O I e LI e e S LR )
o M M

" ||RVH2 B a ra b rb
(45) S A G LR N R
M
Now, we calculate the third term at the right hand side of (38]). By (39)), we get

v 2 1 v v
ZA:IId Dall* = 2ZAX(d Da)eiress (@ Daese;)

= finfie = figifieg + Wi £ 1 — Wi B fs 113
where, fi“jk’s are the components of V, Rz’ej. From the Bianchi identity, we have

fl?jiflgij = %f%kf%k = ||VRV||2- Hence we have

(46) S 1AV Dal® = [[VRY|? + (Rl hly fi £ — Wb fi £2)
A

from which we arrive at

V|12 V|12
Z/JVIF/<HR2 || )(dvDA,dvDA>:/MF/(HR2 ” )||VRV||2
A

47 F/ ||Rv||2 h/L h/L a a h,u. h,u. a a
( ) + M 2 ( ik ilfkjflj ik jlfkjfli)'

Then we calculate the second term at the right hand side of . By a direct
computation, we have

1
(DA ANDy,RY) = 5<[DA ADalejen, RY o)

ej,ek
= <[DA,eJ 5 DA,ek]a Revj7ek>
- _<[DA,€k7DA,€]‘]’ Revj,ek>
= _<[RVA,ek ) RVA7€j]’ Revj,ek>
= _Ufélle<[R6i>8k ) Re,,e_,»]y Revj,ek>
- _<[Rei,ek ) Rei,ej]7 RZ el
= (RV(RY),RY),
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from which, we get

(48) %:/MF’(”R:Q)<DAADA7RV>—/MF’(

Inserting , and into yields

”RVH2)<§RV(RV)7RV> .

RV2
Steoa = [ p (YR pwE) P
A M 2

o Py (U

F// HRVH2 P hE 5.0 f2 £O b rb
+ M ik!tsr0jl ijfklfst rt

+ F/(||Rv||2)(hu hufa fa _ hM hlt fa fa>
o 2 k'Yl kjJlj k'l kjJli) -

Applying Lemma [12] we can get

N Ip(Da) = - / F'(”RZ||2)<RV o (Ric A T+2RY),RY)
A M

+ | F” M e bt 5 f2 Fa Fo o
M 2 ik!tsrO5l)ij k1) st re
49 F/M h,uh,ua a_h,uh’ua a
) * M 2 ( ik ilfkjflj ik jlfkjfli)'
Then use Lemma [13(i) and (44), and we obtain

E Ir(Dy) = F’ LRVHQ — (H*RhY, — Y hE )i + BE RY | fE F2
F(Da) = " 9 [ ( 4l jm ml) ki I, jl] ijfkl
A

F/ ||RV||2 hu hu a a _hM hM a a
+ M ( ik ilfkjflj ik jlfkjfli>

(50) + /M F"

Since

VBl S0 S ST S

ok _ pHopH _pH pH _ph
hikhilflgjfl? - hkihilfyt'lkqul - hkmhmlf]l'lkf;l = hjmhmlf;eljfl?l

(51) = h;'lmhﬁzl(ski iajf;czlv )

(52) —hi P fig £ = =i fia £ = hahi i 1,

135
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the inequality becomes as

ZI (Da) = Jd M CHMRE L 9R” B VSrs 4 9RE R fa fa
F A) - " ) [( jl+ im ml) ki + ik jl]fijfk’l
A

" ||RV||2 W B 5. FO fa b rb

+ 2 ik!tsr?jl ijfklfstfrt'
M

Let My = {x € M : RV (z) = 0}. Apparently, M\ M, is an open set of M and

My = M is equivalent to RV = 0. If RV # 0, and note that 2||RV||? = fq fq =

Ssrf2 f,, then we have

1 [RY]? 72
IF(DA):/ F’ 2[RV
; g 2RV |2 ( 2 )

% [(—H“h?l +2hY RhE Vo +2hé‘kh§’z] i

gm'"ml

" HRVH2 R RE 5. FO Fa b rb
+ MAM 9 ik!tsrdjl ijfklfstf'rt
0

1 RV|12
:/ _ 2F,<|| I )
g 2[RV | 2

X [(—H" R+ 208, W ) oki + 205 B ] 6, NNy

gm' " ml

F”Mhﬂhué_aabb
" M\ M, 2 il 051 fis fra fse i -
0

In order to make > I'r(D4) negative, we must assume that F’ and F” have some
relations. Because Y bl bt 05 fi foo fo fh = S0 WA fi Fo SO hb fh 2, > 0, we can

assume that F"'(t) < % In this case we have

1 |RV?
IF(DA)s/ P
2 o 7 (52 )

X [(—H" By 4 218 Wl ) Ski + 200 W 0 165 Fi fo

gm' " ml

p—2 |RY|? b b
+/M\M ||RVH2F/( ) )hfkh?rfsjl iajfl?lfst rt
0

1 RV |2
:/ . 2F,<|| I )
i\ 2[RV | 2

X { [(—H" RS 4208, hh ) 0kidsr +2R0 1Y 6, ]

7 gm'"ml

+2(p — 2R RS} f F o
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Let Cyjrirs = [(—H" RS 4 205, Bl )Okibsr + 20505 6] + 2(p — 2)hAy W2 651, then

Fm' ml
by the assumption of the theorem we have

RV||2
I D < F/ || ; o b
; ! A)_/M\M 2| RV ? ( 2 ) ks [ Fif o 2
1 ||RV||2
< F' b6k b18ar O F4 2
a /M\Mo 2||RVH2 ( 2 ) k95t zjfklfst

</ Y F’<”Rv”2) a pa b gb
= g 2IIRY 12 5 )il fafa

\Y
:/ 2bF’(”R I JET|2 <o,
M\MU

which is a contradiction to the stability of RY. Therefore we have RY = 0. (I

Remark 15. We have used the condition in the above proof, which is a
technical assumption. This condition covers many important cases, but don’t covers
the exponential Yang-Mills fields. We plan to discuss the exponential Yang-Mills
fields elsewhere.

Corollary 16. Let M™ be a hypersurface of R™t!, the principal curvatures
A1, Ao, -, Ay of which satisfies the following condition:

(53) HA; > 20A) + 277 +2(p — 2)Ai)s
where H =Y, N;. If for t > 0 we have
(p—2)F'(t) > 2tF"(t), F'(t)>0, F(t) >0,

then any nonzero F-Yang-Mills field RV on M must be unstable.

Especially, if M™ = S™ C R""! and n > 2p, then any nonzero F-Yang-Mills
field RN on S™ must be unstable.

Proof. Let h%“ = X\;d;; and H = H""1 =37, \;, then for fixed 4,7, k, s,7,t,q we
have
Cijiisr = [(= HXj 4200 4 2X0;) + 2(p — 2)AiXs | 6inbj16sr

from which we get

ALRE| s T
> o 2R ET U2

1 RY|?
:/ _ 2F,(II I )
g 2RV | 2
X [(= HAj 4+ 20 A0 + 2X4;) + 2(p — 2)Ni\s] 6in6u0sr £ fia Fo S

—2/ F’(M)[(fo+2A2+2xx)+2( —2)AN] IR <0
- " 9 ¥l 3 i\j p i\s .
\ Mo
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This is impossible because of the stability unless M = Mg i.e. RY = 0. The theorem
follows.

Especially, for M™ = S™ ¢ R"*! we have \; = 1. The condition becomes
as n > 2p. (Il

Theorem 17. Let M™ be a submanifold of S**, satisfying that

[(—H"BE + 20, b )ki + 20l 05 | 0sr + 2(p — 2) hE 61 < (0 — 2p)0ikdj10sr

gm'“ml

where p > 2 and hfj is the components of the second fundamental form h of M™ in
S™tk . Then, any nonzero F-Yang-Mills field RY on M is unstable if

(p—2)F'(t) > 2tF"(t), F'(t)>0, F(t) >0.

Proof. The proof is similar to that of Theorem but Lemma [13((ii) instead of
(i) is used to calculate the curvature.
By Lemma [13] (ii), we can get the first term of as follows:

V|12
7/ F/(M)<RVO(R1<;AI+2RV),RV>
y 7

= F,(HRVHQ)[_(HI%H — b h" Vo + b h“} a fa
" 2 5l jm!tm1)Oki ik'vi1l Jig ki

—2(n—2) /M F(@) IRY|2.

Note that in the second and the third terms of , hZ is the second fundamental
tensor of M in R™**. But in Theorem hfj is the second fundamental tensor

of M in S™**. Because S"t* is a hypersurface of R****1 M can be view as a
submanifold of R"***! whose second fundamental tensor has two parts: one is

that of M in S™** which is also denoted by hj;, another is that of Stk in Rkl

which is i; in an appropriate local frame field. Hence the second and

Rl —
ij
the third terms of become respectively as

RV 2 0 ea RV 2
| (D s s sestoste +a [ e (B mope
M M

and

|RY|? |RY|?
| (5 tntasis g~ sy + 4 P () IRTE.

Therefore we have

Ir(Dy) = F'M—H“h“—h“h“5-h“h“““
Z F(Da) = y [ — (H"R, — R, R )0k + Bl | £ f
A

2
_o(n— (IBYIPY o
2in=2) [ F(FE)IRT)
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RV 2 RV 2
RGeS I e i G Tl
M M

2
The rest discuss is similar to the proof of Theorem so we omit the details. [
Similar to Corollary [I6] we have

Rv 2 a a L a a |Rv 2
(54) +/FﬂLlym%mm—%%mmng/Féﬁiwﬁw.
M M

Corollary 18. Let M™ be a hypersurface of S"t1, the principal curvatures Ay, Ao,
.y An of which satisfies the following condition:

(55) HX; > 2070 + 200 +2(p — 2)\ids — (n — 2p),
where H =, Nj. If for t > 0 we have

(p—2)F'(t) > 2tF"(t), F'(t) >0, F(t)>0,
then any nonzero F-Yang-Mills field RV on M must be unstable.
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