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Abstract. Let K = Fq(T ) be the rational function field over a finite field of q elements.
For any polynomial f(T ) ∈ Fq[T ] with positive degree, denote by Λf the torsion points of
the Carlitz module for the polynomial ring Fq[T ]. In this short paper, we will determine an
explicit formula for the analytic class number for the unique subfield M of the cyclotomic
function field K(ΛP ) of degree k over Fq(T ), where P ∈ Fq[T ] is an irreducible polynomial
of positive degree and k > 1 is a positive divisor of q − 1. A formula for the analytic class
number for the maximal real subfield M+ of M is also presented. Futhermore, a relative
class number formula for ideal class group of M will be given in terms of Artin L-function
in this paper.
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1. Introduction

Let K = Fq(T ) be the rational function field over a finite field Fq of q elements

where q = pn and prime p is the characteristic of Fq. Throughout this paper,

assume that p is an odd prime. Let P be a monic irreducible polynomial of degree

d > 0 in OK = Fq[T ], KP = K(ΛP ) = K(λP ) a cyclotomic function field where

ΛP is the set of P -torsion elements in the Carlitz OK-module K (here K is the

algebraic closure of K) and λP a fixed choice of primitive P -torsion element in

ΛP , and K+
P = K(ΛP )+ the maximal real subfield of KP . It is well known that

KP /K and K+
P /K are cyclic extensions of function fields. Let Ca(x) be the Carlitz

polynomial for 0 6= a ∈ OK . The Galois group Gal(KP /K) is canonically isomorphic

to the multiplicative group (OK/(P ))∗ by σa 7→ a (mod P ) for a ∈ OK , (a, P ) = 1,

where σa is the automorphism determined by σaλP = Ca(λP ). Denote the set
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{σα ∈ Gal(KP /K) : α ∈ F
∗
q} by J . Then the field K+

P is the fixed field of the group

J in KP , and Gal(K+
P /K) ∼= (OK/(P ))∗/F∗

q.

Having introduced the above notations and definitions, we now briefly describe

our main results. Since the Galois group Gal(KP /K) is a cyclic group of order

qd − 1, there is a unique subfield M ⊂ KP such that [M : K] = k for any positive

integer k | qd − 1. Furthermore, if k divides q − 1, we can get an explicit form of M ,

which is the content of Proposition 2.1. For the rest of this paper, let k be a fixed

positive integer with k | q − 1 and M the subfield of KP of degree k over K. Let

M+ = M ∩K+
P , we will call it the maximal real subfield ofM . The explicit formulas

for the analytic class number for M and M+ will be presented in the Theorem 2.5

in the following section.

2. Main results

There are many papers concerned with the class numbers of cyclotomic function

fields (see e.g. [1], [2], [3], [4], [6], et al.). With the notations defined in the previous

section, we will consider the formulas for the analytic class number for M and M+.

To ease notation, we denote byM the set of monic polynomials of degree less than

d in OK . The following proposition gives the specific form of M .

Proposition 2.1. If the degree d of P is even, then M = K( k
√

P ); otherwise

M = K( k
√
−P ).

P r o o f. For the Carlitz polynomial CP (x), we know from Proposition 3.2.6

in [7] that CP (x)/x is the minimal polynomial of P over K, and CP (x)/x =
∏

06=λ∈ΛP

(x − λ).

It is easy to see that the set of non-zero elements of ΛP coincides with {σaλP : 0 6=
a ∈ OK , deg a < d}. Since every non-zero polynomial in OK can be written uniquely

as the product of a constant times a monic one, we can get the following equation

(

∏

α∈F∗

q

α

)(qd−1)/(q−1)
∏

a∈M

(σaλP )q−1 = P.

Note here that
∏

α∈F∗

q

α = −1 by the theory of finite fields, and xk ± P are irreducible

polynomials over K. When d is an even number, we claim that (qd − 1)/(q − 1) is

even, and thus
(

∏

α∈F∗

q

α
)(qd−1)/(q−1)

= 1. In this case, we obtain that K( k
√

P ) is the

unique subfield of KP of degree k over K. If d is odd, we get
∏

a∈M

(σaλP )q−1 = −P ,

800



and thus K( k
√
−P ) is the unique subfield of KP of degree k over K. This completes

our proof. �

Actually, we can say more about the above subfield M of KP . To prove our next

theorem, we give an easy result from elementary number theory.

Lemma 2.2. Let q, d and k be positive integers with q > 1 and k dividing both

q − 1 and d. Then (qd − 1)/(q − 1) ≡ 0 (mod k).

P r o o f. Set d = d1k. Note that
qd−1
q−1 = qd1−1

q−1 (qd1(k−1) + . . . + qd1 + 1).

Combining this equality with the condition k | q − 1 yields our conclusion. �

Theorem 2.3. M ⊆ K+
P if and only if k | d.

P r o o f. First, we address the case when d is even, i.e., M = K( k
√

P ) by

Proposition 2.1. Suppose that M ⊆ K+
P . We note that the infinite prime ∞ = 1/T

of K splits completely inM/K. For any prime p∞ ofM lying over∞, ordp∞
( k
√

P ) =

ord∞(P )/k = −d/k, and thus k | d.

Conversely, we assume that k | d. By the proof of Proposition 2.1, we assert

that
(

∏

a∈M

σaλP

)q−1

= P . Thus, there is some β ∈ (F∗
q)

(q−1)/k such that k
√

P =

β
(

∏

a∈M

σaλP

)(q−1)/k

. For any element α ∈ F
∗
q ,

σα

(

k
√

P
)

= σα

(

β

(

∏

a∈M

σaλP

)(q−1)/k)

= β

(

∏

a∈M

ασaλP

)(q−1)/k

= β(α(qd−1)/(q−1))(q−1)/k

(

∏

a∈M

σaλP

)(q−1)/k

(using 2.2)

=
k
√

P .

Then, by definition of K+
P , we can claim that M ⊆ K+

P .

The proof for the case when d is odd, i.e., M = K( k
√
−P ), is done analogously

and we omit it here for concision. �

Denote by r the greatest common divisor of d and k. It is not hard to show that

r is exactly the degree of M+ over K.

Corollary 2.4. [M+ : K] = r.

P r o o f. Let N be the unique subfield of KP of degree r over K. Combining

the fact that r | d and r | k with Theorem 2.3, we can assert that N is contained

in both M and K+
P , and thus N ⊆ M+. Therefore, r 6 [M+ : K]. The fact that

M+ = M ∩ K+
P yields that [M+ : K] | r, and this completes our proof. �
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Before presenting formulas for the analytic class number for M and M+, we have

to introduce some notations and terminologies. Denote by SM and SM+ respectively

the sets of primes of M and M+ lying above∞. Let OM and OM+ denote the rings

of integers of M and M+ associated to SM and SM+ , respectively. Note that the

cardinalities of SM and SM+ are equal to r. Denote by h(OM ) and h(OM+) the

ideal class number of OM and OM+ , respectively. Denote by hM and hM+ the order

of the group of divisor classes of degree zero of M and M+, respectively.

Based on the relation of zeta functions and Artin L-functions of M and M+, we

can get the following theorem which is the main result of this paper.

Theorem 2.5. Let M denote the subfield of KP of degree k over K and M+ the

maximal real subfield of M , we have

hM+ =
∏

χ6=χ0
χ even

(

∑

a∈M

−χ(a) deg(a)

)

,

and

hM =
∏

χ odd

(

∑

a∈M

χ(a)

)

∏

χ6=χ0
χ even

(

∑

a∈M

−χ(a) deg(a)

)

,

where the χ in the above formulas is non-trivial character of Gal(M/K).

P r o o f. Note that all characters of Gal(KP /K) corresponding toM/K are even

and the cardinalities of SM and SM+ are equal to r, the result follows as in the proof

of Theorem 16.8 in [5]. �

Two facts hM/hM+ is a rational number and
∏

χ odd

(

∑

a∈M

χ(a)
)

is an algebraic

integer yield that hM/hM+ is a rational integer, and thus hM+ | hM .

It is easy to see that the extensionM/M+ is totally imaginary extension of function

fields. In other words, every prime in SM+ has only one prime above it inM . In fact,

all primes in SM+ are totally ramified inM/M+. By the Theorem 3.1 of [6], we know

that O∗
M = O∗

M+ and h(OM+) divides h(OM ). Set h−(OM ) = h(OM )/h(OM+), we

have

Theorem 2.6. With notations defined as above,

h−(OM ) =
( r

k

)r−1 ∏

χ odd

LS
M+

(0, χ),

where χ in the product runs over all odd characters of Gal(M/K), and LS
M+

(ω, χ)

is SM+ -L-function for M/M+.
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P r o o f. This follows from Theorem 4.5 in [6]. �
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