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PRESSING DOWN LEMMA FOR λ-TREES AND ITS APPLICATIONS

Hui Li, Liang-Xue Peng, Beijing

(Received May 14, 2012)

Abstract. For any ordinal λ of uncountable cofinality, a λ-tree is a tree T of height λ

such that |Tα| < cf(λ) for each α < λ, where Tα = {x ∈ T : ht(x) = α}. In this note we get
a Pressing Down Lemma for λ-trees and discuss some of its applications. We show that if η
is an uncountable ordinal and T is a Hausdorff tree of height η such that |Tα| 6 ω for each
α < η, then the tree T is collectionwise Hausdorff if and only if for each antichain C ⊂ T

and for each limit ordinal α 6 η with cf(α) > ω, {ht(c) : c ∈ C} ∩ α is not stationary in α.
In the last part of this note, we investigate some properties of κ-trees, κ-Suslin trees and
almost κ-Suslin trees, where κ is an uncountable regular cardinal.
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1. Introduction

Recall that a tree is a poset T = (T, <) such that for every x ∈ T , the set

x̂ = {y ∈ T : y < x} is well-ordered by <. The order-type of x̂ under < is the

height of x in T , which is denoted by ht(x). Given A ⊂ T , let Â =
⋃
{â : a ∈ A}.

The αth level of T is the set Tα = {x ∈ T : ht(x) = α}. We set T ↾ α =
⋃

β<α

Tβ.

Define T ↾ C =
⋃

β∈C

Tβ . The height of T , ht(T ), is the least α such that Tα = ∅.

An antichain of T is a pairwise incomparable subset of T . The interval topology on

a tree T is the topology whose base is all sets of the form (s, t] = {x ∈ T : s < x 6 t},

together with all singletons {t} such that t is a minimal member of T (see [2]). If

a tree T with its interval topology is a Hausdorff topological space, then the tree T is

called a Hausdorff tree. We know that if T is a Hausdorff tree, then for any elements

s, t ∈ T of a limit level of T , t = s if and only if t̂ = ŝ.

Research supported by the National Natural Science Foundation of China (Grant
No. 11271036), and by Doctoral Fund of Innovation of Beijing University of Technology.
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An ω1-tree is a tree T such that: (1) ht(T ) = ω1; (2) for each α < ω1, |Tα| 6 ω;

(3) for every t ∈ T and for every α, ht(t) < α < ω1, t has at least two successors of

height α; (4) if ht(t) = ht(s) is a limit ordinal, t = s if and only if t̂ = ŝ (see [2]). In

[8], Hart showed the Pressing-Down Lemma (PDL) for ω1-trees. Some properties of

ω1-trees were investigated in [4] and [8].

For any uncountable regular cardinal κ, a κ-tree is a tree T such that |T | = κ

and |Tα| < κ for each α < κ (see [9]). For any ordinal λ of uncountable cofinality,

a λ-tree is a tree T of height λ such that |Tα| < cf(λ) for each α < λ. In this note

we get the following Pressing Down Lemma for λ-trees: Let T be a λ-tree, where λ

is an ordinal of uncountable cofinality. If A ⊂ T is a set which meets stationary (in

λ) many levels and f : A → T is a function such that f(x) < x for each x ∈ A, then

there is b ∈ T and there is a subset A′ ⊂ A which meets stationary (in λ) many levels

such that b ∈ (f(x), x] for each x ∈ A′. As a corollary, we get that if T is a λ-tree,

where λ is an ordinal of uncountable cofinality, and a subtree X ⊂ T is a subtree of

T such that {ht(x) : x ∈ X} is stationary in λ, then X is not meta-Lindelöf. By this

conclusion, we show that if T is a tree of height η such that |Tα| 6 ω for each α ∈ η

and a subtree X ⊂ T is meta-Lindelöf, then X is a D-space.

Let T be a tree of height κ, where κ is an uncountable regular cardinal. A subset

X of T is called stationary if and only if {ht(x) : x ∈ X} is stationary in κ. An

ω1-tree is an almost ω1-Suslin tree if and only if it has no stationary antichain ([2]).

It was proved in [2] that an ω1-tree is an almost ω1-Suslin tree if and only if its

tree topology is a collectionwise Hausdorff topology. This conclusion is generalized

in this note. We get the following conclusion. If T is a Hausdorff tree of height η,

where η is an uncountable ordinal, and |Tα| 6 ω for each α < η, then the tree T is

collectionwise Hausdorff if and only if for each antichain C ⊂ T and for each limit

ordinal α 6 η with cf(α) > ω, {ht(c) : c ∈ C} ∩ α is not stationary in α.

In the last part of this note, we investigate some properties of κ-trees, κ-Suslin

trees, almost κ-Suslin trees, and ω′

1-trees. A κ-tree is an almost κ-Suslin tree if

and only if it has no stationary antichain. We show that if there is a κ-tree with

property γ, then there is a κ-tree with property γ which is not a κ-Suslin tree. We

show that if there exists an almost κ-Suslin tree, then there exists an almost κ-Suslin

tree which is not a κ-Suslin tree. The following are equivalent for a Hausdorff κ-tree

T : T is normal and collectionwise Hausdorff; T has property γ; T is hereditarily

collectionwise normal.

In this note, the set of all positive integers is denoted by N and ω is N ∪ {0}. In

notation and terminology we will follow [3] and [9].
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2. Main results

Lemma 2.1 ([6]). Let α be an ordinal of uncountable cofinality. If S ⊂ α is

stationary in α [i.e. S ∩ C 6= ∅ for every closed unbounded (in short: cub) subset C

of α] and f : S → α is a regressive function on S [i.e. f(ξ) < ξ whenever ξ ∈ S \{0}],

then there is a stationary subset T ⊂ S and an ordinal ς ∈ α with f(ξ) 6 ς for all

ξ ∈ T . In particular, if α is an uncountable regular cardinal then T and ζ above may

be chosen in such a way that f(ξ) = ζ for all ξ ∈ T .

Definition 2.2 ([9]). For any uncountable regular cardinal κ, a κ-tree is a tree

T of height κ such that |Tα| < κ for each α < κ.

Definition 2.3. For any uncountable ordinal λ with cf(λ) > ω1, a λ-tree is a tree

T of height λ such that |Tα| < cf(λ) for each α < λ.

Theorem 2.4. Let T be a λ-tree, where λ is an ordinal of uncountable cofinality,

and let A ⊂ T be a set which meets stationary (in λ) many levels. If f : A → T

is a function such that f(x) < x for each x ∈ A, then there is b ∈ T and there is

a subset A′ ⊂ A which meets stationary (in λ) many levels such that b ∈ (f(x), x]

for each x ∈ A′.

P r o o f. If A ⊂ T is a set which meets stationary (in λ) many levels, then

S = {ht(x) : x ∈ A} is stationary in λ. For each α ∈ S, we choose xα ∈ A such that

ht(xα) = α. Since f(xα) < xα, we have ht(f(xα)) < ht(xα) = α for each α ∈ S.

By Lemma 2.1, there is a stationary subset S′ ⊂ S and an ordinal δ < λ such that

ht(f(xα)) < δ for each α ∈ S′. We can assume that ht(xα) > δ for each α ∈ S′. For

each x ∈ Tδ, denote Ax = {α : α ∈ S′, x ∈ (f(xα), xα]}. So S′ =
⋃

x∈Tδ

Ax. Suppose

Ax is not stationary in λ for each x ∈ Tδ. There is a cub set Cx of λ such that

Cx ∩ Ax = ∅ for each x ∈ Tδ. Since |Tδ| < cf(λ), we know that
⋂

x∈Tδ

Cx is a cub

set in λ. Thus
( ⋂

x∈Tδ

Cx

)
∩ S′ = ∅, a contradiction. So there is b ∈ Tδ such that

Ab = {α : α ∈ S′, b ∈ (f(xα), xα]} ⊂ S′ is a stationary set in λ. Thus b ∈ (f(xα), xα]

for each α ∈ Ab. If A
′ = {xα : α ∈ Ab}, then A′ ⊂ A is such that the set A′ meets

stationary (in λ) many levels and b ∈ (f(x), x] for each x ∈ A′. �

By the Pressing Down Lemma for an uncountable regular cardinal and a proof

similar to that of Theorem 2.4, we can get the following corollary.
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Corollary 2.5. For any uncountable regular cardinal κ, let T be a κ-tree and let

A ⊂ T be a set which meets stationary (in κ) many levels. If f : A → T is a function

such that f(x) < x for each x ∈ A, then f is constant on a subset of A which meets

stationary (in κ) many levels.

In [8], using Lemma 2.1, K. P.Hart showed the following conclusion which is also

a corollary of Corollary 2.5.

Corollary 2.6 ([8]) (Pressing Down Lemma for ω1-trees). Let T be an ω1-tree

and let A ⊂ T be a set which meets stationary (in ω1) many levels. If f : A → T

is a function such that f(x) < x for each x ∈ A, then f is constant on a set which

meets stationary (in ω1) many levels.

We can get the following proposition by Theorem 2.4.

Proposition 2.7. Let T be a λ-tree, where λ is an ordinal of uncountable cofi-

nality. If a subtree X ⊂ T and {ht(x) : x ∈ X} is stationary in λ, then X is not

meta-Lindelöf.

P r o o f. Let W = {x̂ ∪ {x} : x ∈ T }. If U = {W ∩ X : W ∈ W}, then U is

an open cover of X . Let V be any open (in X) refinement of U . Thus V is also an

open cover of X . For each x ∈ X , there is Vx ∈ V such that x ∈ Vx. If x ∈ X and

ht(x) is a limit ordinal, then there is f(x) < x such that (f(x), x] ∩X ⊂ Vx. Denote

Xl = {x : x ∈ X and ht(x) is a limit ordinal}. Since {ht(x) : x ∈ X} is stationary

in λ, the set {ht(x) : x ∈ Xl} is stationary in λ. Thus there is a subset X ′ ⊂ Xl

which meets stationary (in λ) many levels and z ∈ X such that z ∈ (f(x), x] for each

x ∈ X ′ by Theorem 2.4. Thus [z, x]∩X ⊂ (f(x), x]∩X ⊂ Vx for each x ∈ X ′, where

the set X ′ meets stationary (in λ) many levels. Therefore the point z is contained in

uncountably many elements of V . So V is not point-countable. Therefore X is not

meta-Lindelöf. �

By Proposition 2.7, we can get the following corollaries.

Corollary 2.8. If T is a λ-tree, where λ is an ordinal of uncountable cofinality,

then T is not meta-Lindelöf.

Corollary 2.9. If T is a κ-tree, where κ is an uncountable regular cardinal, then

T is not meta-Lindelöf.

Corollary 2.10 ([8]). No ω1-tree is meta-Lindelöf.
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The notion of a D-space was introduced by E.K. van Douwen and W. F. Pfeffer

in [12]. A neighborhood assignment for a space X is a function ϕ from X to the

topology of the space X such that x ∈ ϕ(x) for any x ∈ X . A space X is called

a D-space, if for any neighborhood assignment ϕ for X there exists a closed discrete

subspace D of X such that X =
⋃
{ϕ(d) : d ∈ D} (see [12]). It is an open problem as

to whether every paracompact Hausdorff space is a D-space. Recall that a spaceX is

a generalized ordered space (abbreviated GO space) if it is embeddable in a linearly

ordered topological space. In [11] (E.K. van Douwen and J. Lutzer, 1997) and [5]

(W.G. Fleissner and A.M. Stanley, 2001), it was proved that every GO space X is

a D-space if and only if X is a paracompact space. We consider the D-property in

a tree and get Theorem 2.11.

Let us recall some facts on D-spaces. The D-property is hereditary with respect

to closed subsets. A countable union of closed D-subspaces in a space X is a D-

space ([1]).

Theorem 2.11. Let T be a tree of height η and |Tα| 6 ω for each α ∈ η. If

a subtree X ⊂ T and X is meta-Lindelöf, then X is a D-space.

P r o o f. The proof is by induction. The statement is true if η = 1. Let η be

an ordinal. Suppose that the statement is true for each ordinal ξ < η. Let ϕ =

{ϕ(x) : x ∈ X} be any neighborhood assignment for X . If η is a successor ordinal,

then there is an ordinal β such that η = β+1. The set X(β) = {x : ht(x) = β, x ∈ X}

is a closed discrete subset of X . If F = X \
⋃
{ϕ(d) : d ∈ X(β)}, then F is a closed

subset of X and F ⊂ X \ X(β). Since X \ X(β) is a D-space by induction and the

D-property is hereditary with respect to closed subsets, the set F is a D-space. Thus

F contains a closed discrete subspace D1 such that F ⊂
⋃
{ϕ(x) : x ∈ D1}. The set

D1 ∪ X(β) is a closed discrete subspace of X and X =
⋃
{ϕ(x) : x ∈ D1 ∪ X(β)}.

Thus X is a D-space. Now we assume that η is a limit ordinal. We consider two

cases:

(1) If cf(η) = ω, then let {αn : n ∈ ω} be an increasing sequence of ordinals

unbounded in η. For each n ∈ ω, let Xn = X ∩T ↾ (αn +1). Then Xn is closed in X

and thus meta-Lindelöf. Further, since ht(Xn) < η, Xn is a D-space for each n ∈ ω.

Thus X =
⋃

n∈ω

Xn is a D-space.

(2) Now we assume that cf(η) > ω. Since X ⊂ T is meta-Lindelöf, {ht(x) : x ∈ X}

is not stationary in η by Proposition 2.7. Let C be cub in η so that C ∩ {ht(x) : x ∈

X} = ∅. We can assume that the order type of C is η. As in case (1), for each

α ∈ η let Xα = X ∩ T ↾ (α + 1). Then Xα is closed in X and thus meta-Lindelöf

and a D-space. Further,
⋃

β∈α

Xβ is closed in X for each α ∈ C. Thus by Guo and

Junnila ([7]), X is a D-space. �
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Recall that a topological space X is a collectionwise Hausdorff space if and only

if whenever Y is a discrete subspace of the space X , there is a disjoint collection

{Ux : x ∈ Y } of open sets of X such that x ∈ Ux for each x ∈ Y (such a collection

being called a separation of Y ).

Definition 2.12 ([9]). For any uncountable regular cardinal κ, a κ-Suslin tree is

a tree T such that |T | = κ and every chain and every antichain of T have cardinality

< κ.

Definition 2.13. For any uncountable regular cardinal κ, a κ-tree is an almost

κ-Suslin tree if and only if it has no stationary antichain.

The notion of an almost Suslin tree which appears in [2] will be called an almost

ω1-Suslin tree in this note. The notion of an ω1-Suslin tree is called a Suslin tree

in [2].

Lemma 2.14 ([2]). Let T be an ω1-tree. T is an almost ω1-Suslin tree if and

only if its tree topology is collectionwise Hausdorff.

In getting an almost ω1-Suslin tree is collectionwise Hausdorff ([2]), the item (3)

which appears in the definition of an ω1-tree is not needed. This is proved in The-

orem 2.15. In proving the following theorem, some basic facts will be used. For

example, every Hausdorff tree is regular; every countable discrete subspace Y in

a regular space X can be separated by disjoint open sets of X (i.e. there is an open

neighborhood Vx of x for each x ∈ Y such that Vx ∩ Vy = ∅ if x, y are distinct

points of Y ). Since these facts are well known, we omit the proofs. We generalize

Lemma 2.14 and get the following theorem.

Theorem 2.15. Let T be a Hausdorff tree of height η such that |Tα| 6 ω for each

α < η, where η is an uncountable ordinal. The tree T is collectionwise Hausdorff if

and only if for each antichain C ⊂ T and for each limit ordinal α 6 η with cf(α) > ω,

{ht(c) : c ∈ C} ∩ α is not stationary in α.

P r o o f. “⇒” Suppose that there is a limit ordinal α 6 η with cf(α) > ω

and there is an antichain C ⊂ T such that {ht(c) : c ∈ C} ∩ α is stationary in α.

If E = C ∩
( ⋃

β<α

Tβ

)
, then E is an antichain of T . Thus the set E is a discrete

subspace of T . The tree T is collectionwise Hausdorff, hence the set E can be

separated by disjoint open sets of the form (f(x), x], where f(x) < x for each x ∈ E.

By Theorem 2.4, there is E1 ⊂ E which meets stationary (in α) many levels of T

and z ∈ T such that z ∈ (f(x), x] for each x ∈ E1. If a, b ∈ E1 and a 6= b, then

z ∈ (f(a), a] ∩ (f(b), b]. This is a contradiction with (f(a), a] ∩ (f(b), b] = ∅.

768



“⇐“ Let X be any discrete subspace of T . Since T is Hausdorff, the tree T is

regular. If α < ω1, then the set T ↾ α is an open countable regular subspace of

T . Thus every discrete subspace of T ↾ α can be separated by disjoint open sets of

T ↾ α. So X ∩ (T ↾ α) can be separated by disjoint open sets of T .

We first prove a claim.

Claim. If the ordinal η has an uncountable cofinality, then the set H = {ht(x) :

x ∈ X} is not stationary in η.

P r o o f of Claim. Suppose that the claim is not true. Then the set H is station-

ary in η. For each x ∈ X , there is an open set Ux disjoint from X \ {x}. Thus we

can pick f(x) < x such that (f(x), x] ∩ X = {x}. There is X ′ ⊂ X , which meets

stationary (in η) many levels and z ∈ T such that z ∈ (f(x), x] for each x ∈ X ′ by

Theorem 2.4. If H ′ = {ht(x) : x ∈ X ′}, then the set H ′ is stationary in η. For any

x ∈ X ′ we have z < x and (z, x) ∩ X ′ = ∅.

In what follows, we show that for any two distinct points x1, x2 ∈ X ′, the points x1

and x2 are incomparable. Suppose that the points x1 and x2 are comparable, we can

assume x1 < x2. Thus (z, x1] ⊂ (z, x2). So x1 ∈ (z, x2]∩X ′ which is a contradiction

with (z, x2) ∩ X ′ = ∅. Thus the points x1 and x2 are incomparable. So the set X ′

is an antichain of the tree T . Thus the set H ′ is not stationary in η by the known

conditions. This contradicts the fact that the set H ′ is stationary in η. Thus we

have proved the claim.

Now we continue to prove the sufficiency of the condition. The proof is by induc-

tion.

We first prove the case of η = ω1. By the claim the set {ht(x) : x ∈ X} is not

stationary in ω1. So there is a cub set F ⊂ ω1 such that F ∩ {ht(x) : x ∈ X} = ∅.

Hence X ∩ (T ↾ F ) = ∅. Since F is a cub set of ω1, we know that T ↾ F is closed

in T . If Y = T \ (T ↾ F ), then the set Y is an open subspace of T and X ⊂ Y .

Let {αv : v ∈ ω1} be the monotone enumeration of F such that, if v ∈ ω1 is a limit

ordinal then αv = sup{αt : t < v}; the ordinal αv+1 is a successor ordinal for each

v ∈ ω1.

ThenX =
( ⋃

{X∩(T ↾ αv+1\T ↾ (αv+1)): v ∈ ω1}
)
∪(X∩(T ↾ (α0+1))). The set

T ↾ (α0+1) is an open subspace of T . For each v ∈ ω1, the set T ↾ αv+1\T ↾ (αv+1) is

an open subspace of T andX∩(T ↾ αv+1\T ↾ (αv+1)) is countable. Since αv+1 < ω1

for each v ∈ ω1, we know that T ↾ αv+1 is collectionwise Hausdorff. Thus X ∩ (T ↾

αv+1 \T ↾ (αv +1)) can be separated by disjoint open sets of T ↾ αv+1 \T ↾ (αv +1)

for each v ∈ ω1. Similarly, we know that X ∩ (T ↾ (α0 + 1)) can be separated by

disjoint open sets of T ↾ (α0+1). {T ↾ αv+1\T ↾ (αv +1): v ∈ cf(η)}∪{T ↾ (α0+1)}

is the family that is a disjoint open cover of Y . Thus the set X can be separated by

disjoint open sets of T .

769



Suppose that the statement is true for each ordinal ω1 6 β < η, that is to say, if

T1 is a tree of height β such that for any antichain C ⊂ T1, {ht(c) : c ∈ C} ∩ α is

not stationary in α for each limit ordinal α 6 β with cf(α) > ω, then the tree T1 is

collectionwise Hausdorff. In what follows, we show the case that ht(T ) = η. Let X

be any discrete subspace of T ; we consider two cases:

(1) The ordinal η is a successor ordinal. So there is an ordinal β such that η = β+1.

(a) If β = γ + 1, then for each x ∈ X ∩ Tβ there is an open set {x} disjoint from

T ↾ β. Since the clopen subspace T ↾ β is collectionwise Hausdorff by induction, X

can be separated by disjoint open sets of T .

(b) Let β be a limit ordinal. Let Tβ = {xn : n ∈ ω}. We will define {f(xn) : n ∈ ω}

so that for each n ∈ ω, f(xn) < xn and {[f(xn), xn] : n ∈ ω} is a pairwise disjoint

locally finite family of clopen sets. Note that if Tβ is finite this is an elementary

exercise.

First suppose cf(β) = ω. Since T is Hausdorff it is routine to choose (f(xn))n∈ω

such that [f(xi), xi] ∩ [f(xj), xj ] = ∅ for i 6= j, ht(f(xi)) > ht(f(xj)) for j < i

and sup{ht(f(xn)) : n ∈ ω} = β. Let x ∈ T ↾ β. So there exists j ∈ ω such that

ht(f(xj)) > ht(x). So x̂ ∩ [f(xi), xi] = ∅ for each i > j.

Now suppose cf(β) > ω. Since T is Hausdorff it is routine to choose (g(xn))n∈ω

such that {[g(xn), xn] : n ∈ ω} is a pairwise disjoint family of clopen sets. Let

α = sup{ht(g(xn)) : n ∈ ω}. For each n ∈ ω, let f(xn) ∈ [g(xn), xn] be such

that ht(f(xn)) = α + 1. Let x ∈ T ↾ β. If ht(x) 6 α, then there is nothing

to show. Suppose ht(x) > α. Consider ({x} ∪ x̂) ∩ Tα+1 = a. If a 6= f(xn) for

any n, then we are done. If a = f(xn), then ({x} ∪ x̂) ∩ [f(xi), xi] = ∅ for all

i 6= n. Thus, {[f(xn), xn] : n ∈ ω} is a clopen, locally finite family. Therefore,

{[f(xn), xn] : n ∈ ω} is locally finite and so T \
⋃

n∈ω

[f(xn), xn] is open and contains

X \ Tβ. By the inductive hypothesis Tβ is collectionwise Hausdorff.

(2) The ordinal η is a limit ordinal.

(a) If cf(η) = ω, then let {αn : n ∈ ω} be a sequence of ordinals which is cofinal

in η such that αn < αn+1 for each n ∈ ω. We can assume that αn is a successor

ordinal for each n ∈ ω.

Since ω1 < η, we can assume that ω1 < αn for each n ∈ ω. Therefore T =( ⋃
{T ↾ αn+1 \ T ↾ αn : n ∈ ω}

)
∪ (T ↾ α0). The set T ↾ α0 is clopen in T . For

each n ∈ ω the set T ↾ αn+1 \ T ↾ αn is also a clopen set in T . By induction, the set

X ∩ (T ↾ αn+1 \ T ↾ αn) can be separated by disjoint open sets of T ↾ αn+1 \ T ↾ αn

for each n ∈ ω. The set X ∩ (T ↾ α0) can also be separated by disjoint open sets of

T ↾ α0 by induction. Thus X can be separated by disjoint open sets of T .

(b) Now we assume cf(η) > ω1. In this case, for each antichain C ⊂ T , the set

{ht(c) : c ∈ C} ∩ α is not stationary in α if α 6 η is a limit ordinal and cf(α) > ω.
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By the claim we get that H = {ht(x) : x ∈ X} is not stationary in η. Thus there

is a cub set C ⊂ η such that X ∩ (T ↾ C) = ∅. If Y = T \ (T ↾ C), then Y is

an open subspace of T and X ⊂ Y . Let C1 = {aα : α ∈ cf(η)} be such that C1 is

homeomorphic to cf(η) and C1 is unbounded in η. Thus C1 is a closed unbounded set

of η. So C ∩C1 is a closed unbounded set of η. Therefore H ∩ (C ∩C1) = ∅. The set

C ∩C1 is also closed unbounded in C1. So we assume C ∩C1 = {αv : v ∈ cf(η)} such

that αv1
< αv2

if v1 < v2 and v1, v2 ∈ cf(η). The set {αv : v ∈ cf(η)} also satisfies

that the ordinal αv+1 is a successor ordinal for each v ∈ cf(η), and if v ∈ cf(η) is

a limit ordinal then αv = sup{αt : t < v}. Thus X ⊂ Y ⊂ T \ (T ↾ C ∩ C1). Denote

Y1 = T \ (T ↾ C ∩ C1).

For each v ∈ cf(η) the set T ↾ αv+1 \ T ↾ (αv + 1) is an open subspace of T . Thus

the family {T ↾ αv+1 \ T ↾ (αv + 1): v ∈ cf(η)} ∪ {T ↾ (α0 + 1)} is a disjoint open

cover of Y1. If v ∈ cf(η), then the set X ∩ (T ↾ αv+1 \ T ↾ (αv + 1)) is a discrete

subspace of a tree T ↾ αv+1 and ht(T ↾ αv+1) < η. If ht(T ↾ αv+1) < ω1, then we

know that the space T ↾ αv+1 is collectionwise Hausdorff. If ht(T ↾ αv+1) > ω1,

then the tree T ↾ αv+1 is collectionwise Hausdorff by induction. Therefore the set

X ∩ (T ↾ αv+1 \ T ↾ (αv + 1)) can be separated by disjoint open sets of the space

T ↾ αv+1 \ T ↾ (αv + 1). The set T ↾ α0 is an open subspace of T . By a similar

argument, the discrete set X ∩ (T ↾ α0) can also be separated by disjoint open sets

of T ↾ α0. Thus X can be separated by disjoint open sets of T .

So the tree T is collectionwise Hausdorff. �

It was proved in [2] that if there is an almost ω1-Suslin tree, then there exists an

almost ω1-Suslin tree which is not an ω1-Suslin tree. In what follows, we denote any

uncountable regular cardinal by κ. Clearly, every κ-Suslin tree is an almost κ-Suslin

tree for any uncountable regular cardinal κ. But as the following theorem shows, the

two concepts are not identical.

Theorem 2.16. If there exists an almost κ-Suslin tree, then there exists an

almost κ-Suslin tree which is not a κ-Suslin tree.

P r o o f. Let T be an almost κ-Suslin tree. If T is not a κ-Suslin tree, then we

are done. Suppose T is a κ-Suslin tree. For each α < κ, pick xα ∈ Tα. Let

T ∗ = T ∪ {(xα, 1): α < κ}

and define a partial ordering <∗ on T ∗ by

s, t ∈ T → [s <∗ t ⇔ s < t];

x 6 xα → x <∗ (xα, 1).
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In all other cases there is no ordering between elements. For each α < κ, the height

of the point (xα, 1) is α + 1 in T ∗. The collection A = {(xα, 1): α < κ} is clearly

an antichain of T ∗. Hence T ∗ is not a κ-Suslin tree. We show that T ∗ is an almost

κ-Suslin tree.

Let E ⊂ T ∗ be an antichain. Let E∗ = E\T . For each x ∈ E∗, ht(x) is a successor

so {ht(x) : x ∈ E∗} is non-stationary. Notice that E = E∗∪ (E ∩T ). Further, E ∩T

is an antichain in T and thus {ht(x) : x ∈ E ∩ T } is non-stationary. Therefore, E is

non-stationary in T ∗. �

An ω1-tree T is said to have property γ if for any antichain A ⊂ T there is a cub

set C ⊂ ω1 such that T \ (T ↾ C) contains a closed neighborhood of A (see [2]).

Definition 2.17. A κ-tree T is said to have property γ if for any antichain A ⊂ T

there is a cub set C ⊂ κ such that T \ (T ↾ C) contains a closed neighborhood of A.

If T is a κ-Suslin tree and A is an antichain of T , then there is α ∈ κ such that

A ⊂ T ↾ α, so T \ (T ↾ C) is a closed neighborhood of A, where C = κ \ (α + 1).

So it is clear that each κ-Suslin tree has property γ. However, the two concepts are

not identical. It was proved in [2] that if there is an ω1-tree with property γ, then

there is an ω1-tree with property γ which is not an ω1-Suslin tree. We get that it

also holds for κ-trees.

Theorem 2.18. If there is a κ-tree with property γ, then there is a κ-tree with

property γ which is not a κ-Suslin tree.

P r o o f. Let T be a κ-tree with property γ. If T is not a κ-Suslin tree, then we

have finished. Suppose T is a κ-Suslin tree. Let xα be any element of Tα for each non-

zero α < κ, and obtain a tree T ∗ from T as in Theorem 2.16. If B = {(xα, 1): α ∈ κ},

then B is clearly an antichain of T ∗. Hence T ∗ is not a κ-Suslin tree.

Let A be any antichain of T ∗. The tree T is a κ-Suslin tree, so every antichain of

T has cardinality < κ. Put b = sup{ht(a) : a ∈ A∩T }. Let C = {α ∈ κ : α is a limit

ordinal and α > b + 1}. Thus A ∩ T ⊂ T \ (T ↾ C) and C is closed and unbounded

in κ.

Let U = (T ↾ (b + 1))∪ (A \T ). We only need to show that U ∩ (T ∗ ↾ C) = ∅. Let

t ∈ T ∗ ↾ C. Then ht(t) > b + 1. Thus, t̂ \ T ↾ (b + 1) 6= ∅ and ({t} ∪ t̂) \ T ↾ (b + 1)

is an open neighborhood of t. Further, t̂ ∩ T ∗ \ T = ∅. So t̂ ∩ A \ T = ∅. Thus,

U ∩ (T ∗ ↾ C) = ∅. �

The trees in [10] are Hausdorff trees. Thus we let the tree in Lemma 2.19 be

a Hausdorff tree.
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Lemma 2.19 ([10]). Let S be a subspace of a Hausdorff tree. The following are

equivalent:

(1) S is normal and collectionwise Hausdorff.

(2) S is strong collectionwise Hausdorff.

(3) S is hereditarily collectionwise normal.

Lemma 2.20. Let T be a κ-tree. If T is collectionwise Hausdorff, then T is an

almost κ-Suslin tree.

P r o o f. Suppose that T is not an almost κ-Suslin tree, then there is an antichain

C of T such that A∗ = {ht(a) : a ∈ C} is stationary in κ. Being an antichain of T ,

the set C is a discrete subspace of the tree T . The tree T is collectionwise Hausdorff,

hence there is a disjoint collection {Va : a ∈ C} of open sets of T such that a ∈ Va for

each a ∈ C. For each a ∈ C there is an f(a) < a such that (f(a), a] ⊂ Va. Therefore

there is C1 ⊂ C which meets stationary (in κ) many levels of T and z ∈ T such that

z ∈ (f(a), a] for each a ∈ C1 by Theorem 2.4. For any distinct points a, b ∈ C1,

we have z ∈ (f(a), a] ∩ (f(b), b]. Thus Va ∩ Vb 6= ∅. This is a contradiction with

Va ∩ Vb = ∅. Thus T is an almost κ-Suslin tree. �

In [8], Hart showed that if T is an ω1-tree and T has property γ, then T is

hereditarily collectionwise normal. By the proof of this result, we can get a similar

result for a κ-tree. Thus we have the following theorem.

Theorem 2.21. The following are equivalent for a Hausdorff κ-tree T :

(1) T is normal and collectionwise Hausdorff.

(2) T has property γ.

(3) T is hereditarily collectionwise normal.

P r o o f. (1) and (3) are equivalent by Lemma 2.19, and we can get (2)⇒(3) by

a proof which is similar to the proof of Theorem 2.1 in [8]. To complete the proof,

we only need to show (1)⇒(2).

Let A be any antichain of T . Since the tree T is collectionwise Hausdorff, T is an

almost κ-Suslin tree by Lemma 2.20. Hence A∗ = {ht(a) : a ∈ A} is not stationary.

So there is a cub set C of κ such that C ∩A∗ = ∅, thus A and T ↾ C are two disjoint

closed sets of T . The tree T is normal, so there are two disjoint open sets U, V of

T such that A ⊂ U and T ↾ C ⊂ V . Thus A ⊂ U ⊂ U ⊂ T \ V ⊂ T \ (T ↾ C).

Therefore T \ (T ↾ C) contains a closed neighborhood of A. So T has property γ. �

In [4] and [8], some properties of ω1-trees were investigated. In what follows, we

consider a tree T such that the item (3) which appears in the definition of an ω1-tree
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is not required. We call such a tree T an ω′

1-tree. An Aronszajn tree is an ω1-tree

with no uncountable branch. It follows from the item (3) which appears in the

definition of an ω1-tree that every ω1-Suslin tree is an Aronszajn tree. The ordinal

ω1 is an ω′

1-tree with no uncountable antichain, but it has an uncountable branch.

The following conclusion appears in [2]. Let T be an ω1-tree. T is an ω1-Suslin tree

if and only if whenever A, B are disjoint closed subsets of the space T , Â ∩ B̂ is

countable. For an ω′

1-tree, we have the following result.

Theorem 2.22. Let T be an ω′

1-tree. If whenever A and B are disjoint closed

subsets of the space T , Â ∩ B̂ is countable, then T has no uncountable antichain.

P r o o f. Suppose that the statement is not true. There is a maximal uncountable

antichain C of T . Thus the set C is a closed discrete subspace of the space T . For

any a ∈ C, put â = {x : x ∈ T, x < a}. Since the set C is uncountable and |T0| 6 ω,

there are x0 ∈ T0 and C0 ⊂ C such that |C0| = ω1 and â∩T0 = {x0} for each a ∈ C0.

Since |Tα| 6 ω for each α ∈ ω1, the set {ht(x) : x ∈ F} is unbounded in ω1 if F is

an uncountable subset of C.

Let α ∈ ω1. Assume that Cβ is defined for each β < α satisfying |Cβ | = ω1 and

there is xβ ∈ Tβ such that â ∩ Tβ = {xβ} for each a ∈ Cβ . The family {Cβ : β < α}

also satisfies that Cβ+1 ⊂ Cβ if β + 1 < α.

If α = β + 1 for an ordinal β, then |Cβ | = ω1. Since Cβ is uncountable and

|Tα| 6 ω, there are xα ∈ Tα and Cα ⊂ Cβ such that |Cα| = ω1 and â ∩ Tα = {xα}

for each a ∈ Cα.

Now we assume that α is a limit ordinal. Since C is uncountable and |Tα| 6 ω,

there are xα ∈ Tα and Cα ⊂ C such that |Cα| = ω1 and â ∩ Tα = {xα} for each

a ∈ Cα.

Thus we can get a set Cα ⊂ C and a point xα ∈ Tα for each α ∈ ω1 such that

|Cα| = ω1 and â ∩ Tα = {xα} for each a ∈ Cα. The family {Cα : α ∈ ω1} satisfies

that Cα+1 ⊂ Cα for each α ∈ ω1. So xα < xα+1 for each α ∈ ω1.

Let y1 ∈ C1 and y2 ∈ C2 \ {y1}. Let α ∈ ω1. Assume that we have a set

{y2β+1, y2β+2 : β < α} of distinct points of T . Pick y2α+1 ∈ C2α+1 \ {y2β+1, y2β+2 :

β < α} and y2α+2 ∈ C2α+2 \ ({y2β+1, y2β+2 : β < α} ∪ {y2α+1}).

If A = {y2α+1 : α ∈ ω1} and B = {y2α+2 : α ∈ ω1}, then A and B are disjoint

closed subsets of T . Since C2α+2 ⊂ C2α+1 for each α ∈ ω1, we have ŷ2α+1 ∩ T2α+1 =

ŷ2α+2∩T2α+1. Thus Â∩ B̂ is uncountable. This is a contradiction with the fact that

Â ∩ B̂ is countable. Thus the tree T has no uncountable antichain. �
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