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Abstract. The Laplacian, signless Laplacian and normalized Laplacian characteristic
polynomials of a graph are the characteristic polynomials of its Laplacian matrix, signless
Laplacian matrix and normalized Laplacian matrix, respectively. In this paper, we mainly
derive six reduction procedures on the Laplacian, signless Laplacian and normalized Lapla-
cian characteristic polynomials of a graph which can be used to construct larger Laplacian,
signless Laplacian and normalized Laplacian cospectral graphs, respectively.
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1. INTRODUCTION

Let G be a simple graph with vertex set V(G) = {v1,va,..., v, } and edge set E(G).
Its adjacency matriz is defined to be the n x n matrix A(G) = (a;;), where a;; = 1 if
v; is adjacent to v;; and a;; = 0, otherwise. The degree of a vertex v in a graph G is
denoted by d¢(v) or simply d(v) if G is clear from the context. The Laplacian matriz
L(G) = D(G) — A(G) is the difference of D(G) = diag(d(vy1),d(v2),...,d(vy,)), the
diagonal matrix of vertex degrees, and the adjacency matrix. The signless Laplacian
matriz and normalized Laplacian matriz are defined to be Q(G) = D(G)+ A(G) and
L(G) = D(G)"Y?(D(G) — A(G))D(G)~/? (with the convention that if the degree
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of v is 0 then (d(v))~'/2 = 0, see [3]), respectively. If v € V(G), let L,(G) (Q.(G),
L,(G)) be the principal submatrix of L(G) (Q(G), L(G)) formed by deleting the
row and column corresponding to the vertex v. Similarly, if H is a subgraph of
G, let Ly(G) (Qu(G), Lu(G)) be the principal submatrix of L(G) (Q(G), L(G))
formed by deleting the rows and columns corresponding to all vertices of V(H). In
particular, if e is an edge of G, then L.(G) (Q.(G), L.(G)) is the principal submatrix
of L(G) (Q(G), L(G)) formed by deleting the rows and columns corresponding to
the vertices of the edge e.

Throughout this paper, we shall denote by ®(B) = ®(B;x) = det(xI — B) the
characteristic polynomial of the square matrix B. In particular, if B = L(G), we
write ®(L(G)) by I'(G; z) or simply by I'(G) and call I'(G) the Laplacian character-
istic polynomial of G; if B = Q(G), we write ®(Q(G)) by ¥(G;x) or simply by ¥(G)
and call ¥(G) the signless Laplacian characteristic polynomial of G; if B = L(G), we
write ®(L(G)) by O(G;x) or simply by O(G) and call ©(G) the normalized Lapla-
cian characteristic polynomial of G. It is both convenient and consistent to define
O(La(Q)) = (Qa(G)) = ®(Le(G)) = 1. The Laplacian characteristic polynomial
of a graph G plays an important role in investigating the eigenvalues of L(G) (see
[4]-[8], [10]-[12]).

For the characteristic polynomial of the adjacency matrix of a graph, Schwenk [9]
obtained the following two results which display respectively the relations between
the characteristic polynomial of A(G) and the corresponding polynomials of A(G—v)
or A(G —e), where v € V(G) and e € E(G).

Proposition 1.1. Let v be a vertex of a graph G, let p(v) be the collection of
cycles containing v, and let V(Z) be the set of all vertices in the cycle Z. Then the
characteristic polynomial ®(A(G)) satisfies

D(A(G)) = 2P(A(G —v)) = Y _B(AG—v—w) =2 Y  D(AG -V (2))),

Zep(v)

where the first summation extends over those vertices w adjacent to v, and the second
summation extends over all Z € ¢(v).

Proposition 1.2. Let e = uv be an edge of G, and let €(e) be the set of all
cycles containing e. Then ®(A(G)) satisfies

D(A(G) =D(A(G —¢)) —D(A(G—u—v)—2 >  D(AG-V(2),
ZEE(e)

where the summation extends over all Z € € (e).
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In this paper, we further investigate the Laplacian, signless Laplacian and nor-
malized Laplacian characteristic polynomials of a graph, and obtain six reduction
procedures which can be used to construct larger Laplacian, signless Laplacian and
normalized Laplacian cospectral graphs, respectively.

2. THE LAPLACIAN AND SIGNLESS LAPLACIAN
CHARACTERISTIC POLYNOMIALS OF A GRAPH

Let S = {x1,22,...,2,} be a set. A one-to-one mapping of S onto itself is
called a permutation of S. Let ay,as,...,a,, be m distinct elements of a set S. If
a permutation o of S is such that it sends

a1 — ag — a3z — ... — Qm — a1

and keeps the remaining elements of S, if any fixed, then o is called a cycle of
length m and is denoted by (ai1,as,...,an). A transposition is a cycle of length 2.
Since permutations are mappings, we define the product of two permutations as the
composition of two mappings.

Lemma 2.1 ([1]). Every permutation either is a transposition or can be expressed
as a product of transpositions. In particular, every cycle of length m > 2 can be
expressed as a product of m — 1 transpositions.

If a permutation o is a product of an even number of transpositions, then it is
called an even permutation. If o is a product of an odd number of transpositions,
then it is called an odd permutation.

The following result displays the relations between the characteristic polynomial
of L(G) and the polynomial of L,(G).

Theorem 2.1. Let v be a vertex of a graph G, let p(v) be the collection of cycles
containing v. Then the Laplacian characteristic polynomial T'(G) satisfies

D(G) = (z = d(v))2(Ly(G)) = Y @(Luw(@) =2 Y (-1)/710(L5(G)),

Zep(v)
where the first summation extends over those vertices w adjacent to v, and the second

summation extends over all Z € p(v), and |Z| denotes the length of Z.

Proof. Let B = (bj;) = I — D + A. Without loss of generality, we can
assume that the first row and column of D — A correspond to the vertex v, that is
v = v;. Then it is easy to see that b;; = ¢ —d(v;) (1 = 1,2,...,n), and b;; = 1 if
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v;v; € E(G); bij = 0, otherwise. In order to get the result, the basic technique in use
is to take the computation of the determinant as a sum over permutations and then
place permutations into several groups depending on whether or not a particular
entry appears. According to the definition of the determinant, we have

(2.1) [(G) =det(x] — D+ A) = epbii bai, - - . bni,
P

where the summation runs over all permutations

< 1 2 ... n) 1, if P is even;
o . ), and ep=
i1 dg ... dp —1, if P is odd.

A term in equation (2.1), Sp = epbis,bas, - .. bps, # 0 if and only if for j # i,,
vjvy, € E(G) (j = 1,2,...,n). Note that P may be represented as a product, say
P =o0105...0p, of disjoint cycles.

Consider the first cycle with length I, say 01 = (12...1), of P. It is easy to see
that if Sp # 0 and [ > 3, then this corresponds to a cycle containing a vertex v
of G. Conversely, to a cycle containing a vertex v, say v(= v1)vovs ... vw, of G, the
corresponding term oy of P may be (123...1) or (11...32); if Sp # 0 and | = 2, then
there exists a one-to-one mapping between the first cycle with length 2 of P and the
edge containing the vertex v of G; if Sp # 0 and [ = 1, then o7 = (11), corresponds
to the vertex v of G. Let M be the set of permutations of S = {1,2,...,n} such
that for each Sp # 0, P € M, let My = {P; P € M, the first term of P is b1},
My, ={P; P € M, the first cycle of P corresponds to the edge uv of G} and My =
{P; P € M, the first cycle of P corresponds to a cycle Z with length [, containing

vertex v of G}, (|Z| = [ > 3). Then M = M; U ( U MM,) U ( U MZ).
weE(G) Zep(v)
Thus, we have

(2.2) F(G) = Z 5Pb1i1b2i2 .. -bm'n = Z EPblil b2i2 .. bnz,,
P

PeMy

=+ Z Z €Pb1i1b21‘2 ... bm'n + Z Z EPblh b2i2 ... bnzﬂ

wWEE(G) PEMy, Zep(v) PEMz

From Lemma 2.1 and applying the definition of the determinant again, we have

(2.3) Z EPblileiQ - -bm',, = Z Epy b11b2i2 - -bm'n
Py

PeM;

= (z—d(v)) Y epbai, .- bni, = (x — d(v))®(Ly(G)),
Py
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where the second summation runs over all permutations
2 ... n
T &
Similarly, if v(= vi)ve € E(G), then

E epbii b2ip - bni, = — E €p,y 0120210345 . . . by,
PEMy, 0,

= — Z€P2b313 .- nzn = (I>(LU1U2 (G))’

where the second summation runs over all permutations

3 ... n
Thus, we have

(24) Z Z EPblh b2i2 .. nzﬂ = — Z Q) U'w

wWEE(G) PEMy.y

If Z=v(=wv1)va...vv is a cycle of G, then

> epbuibaiy b, = —2(=1)") ep,biabas . bibirii, - bni,
PeMyz

- _ 2(_1)1 Z€P3l)l+1iz+1 oo b,
= —2(-1)'o(Lz(Q)),

where the second summation runs over all permutations
(l +1 ... n>
Ut1  --.  ip '
Thus, we have

(2.5) Z Z epbii baiy .. bpi, = =2 Z |Z\<I> (Lz(G)).

Zep(v) PEMz Zep(v)

Substituting equations (2.3)—(2.5) into equation (2.2), we have

D(G) = (z — d)P(Ly(G) = D @(Low(@) =2 Y (—-1)/?0(Lz(G)).

Zep(v)

By reasoning similar to that of Theorem 2.1, we have
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Corollary 2.1. Let H be a proper subgraph of G, and let v be a vertex of G
such that v ¢ V(H). Then we have

O(Lu(G) = (x—d)2(Lus(G) = > ®(Luuw(G))

-2 §: (—D)IZD(Ly 2(G)).
Zep(v);
V(Z)NV (H)=0

Let us consider a special case of this theorem when v is a pendant vertex.

Corollary 2.2. Let v be a pendant vertex of G, and u be the vertex adjacent
to v. Then

[(G) = (z = DG — v) — 20(Luy ().
Proof. From Theorem 2.1 we have
(2.6) [(G) = (z = 1)P(Ly(G)) — (L (G)).

Note that

Substituting the above equation into equation (2.6), we have

T(G) = (x — DI(G — v) — 2®(Lup(Q)).
O

Let G,r and H, s be two disjoint rooted graphs with roots r and s, respectively.
The coalescence of two rooted graphs G,r and H, s, denoted by G - H, is the graph
formed by identifying the two roots r and s. Suppose that the new vertex is w. Then

we have

Corollary 2.3. If G and H are two rooted graphs with roots r and s, respectively,
then the Laplacian characteristic polynomial of the coalescence G - H is

ING-H)=T(G)®(Ls(H)) + T'(H)®(L,(G)) — 2®(L,(G))®(Ls(H)).
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Proof. We apply Theorem 2.1 to G - H with the coalesced vertex w as the
vertex v to get

(27) T(G-H)= (v —deu@)®(Lo(G-H) = > O(Luu(G-H))
wu€E(G-H)

—2 Y ()AL B))

Zepag.u(w)
= (x —da(r) — du(s)) (L (G))®(Ls(H))

—@(LS(H))[ L@ +2 Y (—1)|Z¢(LZ(G))]

rucE(G) Zepg(r)
—@(LAG))[ S a2 Y <—1>'Z<1><LZ<H>>]
svEE(H) Zepmu(s)

where ¢ (r) denotes the collection of all cycles containing the vertex r of G.
Applying Theorem 2.1, respectively, to G and H, we have

[(G) = (x—de(M))®(L(G) — Y ®(Lu(G) =2 > (-1?0(Lz(G)).
rucE(G) Zepa(r)
Then

(2.8) S oL@ 42 Y (—D)P(L(G))

ru€E(G) Zepa(r)
= (z — dg(r)®(L,(G)) - T(G).
Similarly,
(2.9) S (L) +2 > (-1 (H)
sveEE(H) Zepmu(s)

= (z —du(s))®(Ls(H)) - T'(H).
Substituting equations (2.8) and (2.9) into equation (2.7), we have

I'NG-H)=T(G)®(Ls(H))+ T'(H)®(L.(G)) — 2P(L,.(G)P(Ls(H)).
O
The rooted graphs G1,7; and Ga, 19 are called Laplacian cospectrally rooted if

not only I'(G1) = I'(G2), that is G7 and G2 are Laplacian cospectral, but also
®(L,, (G1)) = ®(Ly,(G2)). From Corollary 2.3 we have

Corollary 2.4. If Gy, r1 and Gs, 2 are Laplacian cospectrally rooted and H is
any rooted graph, then I'(G1 - H) =T'(G2 - H).
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Remark 2.1. Corollary 2.4 asserts that a Laplacian cospectrally rooted pair can
be used to build larger Laplacian cospectral graphs. Figure 1 displays two Laplacian

cospectrally rooted graphs.
7:\3 S

Gl G2

Figure 1. Laplacian cospectrally rooted graphs G; and G2 with roots r and s, respectively.

The next theorem displays the relation between the Laplacian characteristic poly-
nomial of G and the polynomial of G — e, where e € E(G).

Theorem 2.2. Let e = uv be an edge of G, and let 6 (e) be the set of all cycles
containing e in G. Then the Laplacian characteristic polynomial of G satisfies

I(G) =T(G —e) — ®(Ly(G —¢€)) — ®(L,(G —¢) _22 DIZ1o(L4(G)),

where the summation extends over all Z € 6 (e).
Proof. Applying Theorem 2.1 to G and G — e, respectively, we have
N(G) = (z = da(u)P(Lu(G) = Y ®(Lw(@) =2 > (-1)/#o(L2(G))
wweE(G) Zepa(u)
and

D(G-e)=(x—dou)+ )O(L(G—€) = > ®(Luw(G—e)

uwweE(G—e)

2 Y (-)7e(Lz(G ~e)),

Zepa—e(u)

where ¢ (v) is the collection of all cycles containing the vertex v of G. Then
(2.10) I'G)—T(G —e) = (z —dg(u)P(L,(G)) — (v — dg(u) + 1)P(L,(G —e))
| T etwen- ¥ oG-

uweE(G) uw€EE(G—e)

—2{ > DPlerz@) - (—1)'Z‘I>(Lz(G—e))}

Zepa(u) Zepa—e(u)
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Note that

(2.11) B(Lu(G)) = D(Lo(G — €)) — (Ly(C — ©))
= ®(Lu(G =€) — 2(Luv(G)),
(212) > ®(Luw(G)) = O(Luw(G =€) = Y ®(Luwo(@)),
uweE(G) uw€EE(G—e) uwe€E(G)
wH#v wH#v

and
(2.13) > ()e(Lz(@)

Ze‘PG—e(u)

VgV (Z)
= > We@zG-e)- D (~DPR(Lz.(G-e)).
Ze€pG—c(u) ZEpG—c(u)
vV (Z) v¢V(2)

Substituting equations (2.11)—(2.13) into equation (2.10), we have

(2.14) I(G)—T(G—e)= —(Ly(G—e)) — (x — dg(u) + 1)P(Lyuy(G))
+ Y Luwe(@) -2 Y (-D)R(L(G)

wwe E(G) ZEbG(e)
wH#v

+2 Y (D)oL (G —e)).
Zepg—e(u)
vEV (Z)

From Corollary 2.1, we have

(2.15) (Lo(G —¢€)) = (¢ — de(w) + DB(Luo(G —€) = > ®(Luwo(G —¢))

wweE(G—e)
wH#v
-2 > (=)70(Lg.(G —¢))
ZepG—c(u)
vgV(2)
= (z —dg(u) + 1)®(Luw(G)) — Z ®(Luw,o(G))
wweE(G)
wH#v
-2 > (=1)P0(L5.(G —¢)).
ZepG—c(u)
VgV (2)

Substituting equation (2.15) into equation (2.14), we have

D(G) —T(G—e) = —0(Ly(G —€)) = (L, (G—e)) =2 Y (-DZIo(L2(q)).

AS A1)
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Thus, we have

D(G) =T(G =€) = B(Lu(G —¢) = B(Lu(G =€) =2 Y (-1)70(Lz(q)).
AS A1) .

From Corollary 2.1, by reasoning similar to that of Theorem 2.2, we have

Corollary 2.5. Let H be a proper subgraph of G, and let e = uv be an edge of G
such that u,v ¢ V(H). Let €(e) be the set of all cycles containing e. Then we have

O(Ly(G) =(Lu(G—e)) —®(Lyu.(G—e))— (LG —e))
—2 > (=) e(Ly £(G)).

Ze%F (e);
V(Z)NV(H)=0

From Theorem 2.2, the following known result is immediate.

Corollary 2.6 ([5]). Let Gy and G2 be two vertex disjoint graphs, and let G =
Giu : vGy be the graph obtained by joining the vertex u of Gy and the vertex v of
G2 by an edge. Then

[(G) = T(G)I(G2) = T(G1)®(Ly(G2)) = @(Lu(G1))T(Go).

By reasoning similar to that of Theorems 2.1 and 2.2, we can obtain similar results
for the characteristic polynomials of the adjacency matrix (see Propositions 1.1 and
1.2) and the signless Laplacian matrix of a graph, respectively.

Theorem 2.3. Let v be a vertex of a graph G, let ¢(v) be the set of all cycles
containing v. Then the signless Laplacian characteristic polynomial U(G) satisfies

V(@) = (2~ d(v))2(Qu(@) = Y ®(Quu(G)) =2 Y ®(Qz(G)),

Zep(v)

where the first summation extends over those vertices w adjacent to v, and the second
summation extends over all Z € ¢(v).

Corollary 2.7. Let H be a proper subgraph of G, and let v be a vertex of G
such that v ¢ V(H). Then we have

2(Qu(G)) = (z—d))2(Qu.(G)— > Qmuw(G)-2 Y ®(Quz(G)).
uwv€E(G); Zep(v);
ugV(H) V(Z)NV (H)=0
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Corollary 2.8. If G and H are two rooted graphs with roots r and s, respectively,
then the signless Laplacian characteristic polynomial of the coalescence G- H satisfies

V(G- H) = V(G)2(Qs(H)) + V(H)D(Qr(G)) — 2®(Qr(G))2(Qs(H))-

Similarly, rooted graphs G1, 71 and G2, r5 are called signless Laplacian cospectrally
rooted if not only ¥(G1) = ¥(Gz), but also ®(Q,,(G1)) = ®(Q,(G2)). From
Corollary 2.8, we have

Corollary 2.9. If G1, r1 and G4, ro are signless Laplacian cospectrally rooted
and H is any rooted graph, then U(G;y - H) = ¥(G2 - H).

Remark 2.2. Corollary 2.9 asserts that a signless Laplacian cospectrally rooted
pair can be used to build larger signless Laplacian cospectral graphs. Figure 2
displays two signless Laplacian cospectrally rooted graphs.

G1 G2

Figure 2. Signless Laplacian cospectrally rooted graphs with roots r and s, respectively.

Theorem 2.4. Let e = uv be an edge of G, and let € (e) be the set of all cycles
containing e. Then the signless Laplacian characteristic polynomial of G satisfies

U(G) =V(G—e) = D(Qu(G —€) — B(Qu(G —e)) =2 (Qz(Q)),
Z

where the summation extends over all Z € € (e).

Corollary 2.10. Let H be a proper subgraph of G, and let e = uv be an edge
of G such that u,v ¢ V(H). Let €(e) be the set of all cycles containing e. Then we
have

(Qu(G)) = 2(Qu(G —e)) — B(Qu.u(G — €)) — D(Qu..(G —¢))
-2 > 2Quz(@).

Z€E (e);
V(Z)NV (H)=0
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3. THE NORMALIZED LAPLACIAN CHARACTERISTIC POLYNOMIAL OF A GRAPH

Recall that the normalized Laplacian matrix of G is £(G) = D(G)~'/?(D(G) —
A(G))D(G)™Y? = (ny;). Note that n;; = 1 for i = 1,2,...,n; ny; = —1/\/did;, if
v; is adjacent to v;; and n;; = 0, if ¢ # j and 1)z is not adjacent to v;. Suppose that
Z =wv1vg...uv; is acycle of G. Let dg(Z) = H d(v;) or simply dz = H d(v;) it G

is clear from the context. By reasoning sunllar to that of Theorems 2. 1 and 2.2, we
also have the following result.

Theorem 3.1. Let v be a non isolated vertex of a graph G, let p(v) be the set
of all cycles containing v. Then the normalized Laplacian characteristic polynomial

O(G) satisfies

O(G) = (o = DH(L(G) = ¥ s ®(Lon(G) =2 3 (-1)/7 L 8(L2(C))

Zep(v) z

where the first summation extends over those vertices w adjacent to v, and the second
summation extends over all Z € ¢(v).

Corollary 3.1. Let H be a proper subgraph of G, and let v be a non isolated
vertex of G — H. Then we have

(Ln(G) = (6= DP(Lno(@) = 3 gosaes
wEE(G);
ugV (H)

1
Z
-2 Y (-1 '@@(cH,AG)).
Zep(v);
V(Z)NV(H)=0

(L ,u0(G))

In particular, if v is a pendent vertex of G, then we have

Corollary 3.2. Let v be a pendant vertex of a graph GG, and let u be the vertex
adjacent to v. Then

(d(u) = 1)(z — 1)@ 2 -2z
d(u)

P(Luwv(G)).

Proof. From Theorem 3.1 we have
(3.1) O(G) = (z — 1)@(Lu(G)) — 775 P(Luw(G)).
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Note that

d(u)—1 . x—1
a0 O(L,(G —e))+

Ol v C R “Z(_u)l

d(u)
Substituting the above equation into equation (3.1), we have

(L,(G)) =

(Luw(G)).

% — 2z
d(u)

@(G) — (d(u) — 1)(1‘ — 1)@(G _ ’U) +

e DL (G))

O

Corollary 3.3. If G and H are two rooted graphs with roots r and s, respectively,
then the normalized Laplacian characteristic polynomial of the coalescence G - H
satisfies

da(r)O(G)2(Ls(H)) + du(s)O(H) (L (G))
dc;(r) + dH(S) ’

Proof. We apply Theorem 3.1 to G - H with the coalesced vertex w as the

oG- H) =

vertex v to get

D(Lyu (G- H))

(32) OG- H)= (- )BL(GH) - Y e

wu€E(G-H)

2 Y AL e(cm)

H(Z
Zepg.u(w) de H( )

= (@ = 1)L (DNO(L(H) = >
ru€E(G)
Ly BLw()OL(G)
du(v)(da(r) + du(s))

O(Lru(G))P(L,(H))
dg (u)(da(r) + du(s))

sveE(H)

_ - |Z\dG(7”)‘I’(£Z(G))¢‘(£s(H))
2ze%<r>( Vel + du()de (2)

B |Z\dH 5)P(L£,(G))P(Lz(H)))
ZZE%) (dg(r) +dy(s))dy(Z)

where o (r) denotes the collection of all cycles containing the vertex r of G.
Applying Theorem 3.1 to G and H, respectively, we have

0(G) = (1 - (L) = 3 ﬁ@(ﬁm(a))
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Then

ru(G)) 1) \ dg(r)®(£L2(G))
&2) ruezE‘: de(u )+dH +22€% ’ (Z)(da(r) +du(s))
dG( )

= m@(@ ~ (2 = DO(L(G))).

Similarly,

(H) e dri (5)P(Lz(H))
(3.4) Y e X (et )

svEE(H) Zepu(s)
dr (s)

= ) Ty U — (= V(L (),

Substituting equations (3.3) and (3.4) into equation (3.2), we have

dg(r)O(G)P(Ls(H)) + du(s)O(H)P(L,(Q)) .

OG- H) = de(r) + dp (s)

O

Similarly, the rooted graphs Gi,71 and Ga,72 are called normalized Laplacian
cospectrally rooted if not only ©(G1) = ©(G2), but also ®(L,, (G1)) = ®(L,,(G2))
and dg, (r1) = dg,(r2). From Corollary 3.3 we have

Corollary 3.4. If G1, r and Go, ro are normalized Laplacian cospectrally rooted
and H is any rooted graph, then ©(Gy - H) = ©(G2 - H).

Remark 3.1. Corollary 3.4 asserts that a normalized Laplacian cospectrally
rooted pair can be used to build larger normalized Laplacian cospectral graphs.
Figure 3 displays two normalized Laplacian cospectrally rooted graphs.

T1 o192

G

Figure 3. Normalized Laplacian cospectrally rooted graphs G; and G2 with roots r; and
r9, respectively.
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Remark 3.2. In [2], Butler posed the following problem:

Are there more general constructions which can be used to make cospectral graphs
with respect to the normalized Laplacian which have arbitrarily high chromatic num-
ber?

From Corollary 3.4 and Remark 3.1, we completely answer the above problem:
Let H be a connected graph with arbitrarily high chromatic number. Then G; - H
and G- H are two cospectral graphs with respect to the normalized Laplacian which
have arbitrarily high chromatic number, where G; and G5 are the graphs shown in

Figure 3.

Theorem 3.2. Let e = uv be an edge of G, and let € (e) be the set of all cycles
containing e. The normalized Laplacian characteristic polynomial of G satisfies

o(q) = 4w ;(i;g(lg) —YVoG-e)+ (d(vzi(_u)g((f “Da(c,(G - e)
+ 0 (£,(G - ) + o (L (C)
1
2SN e,

where the summation extends over all Z € € (e).

Proof. Applying Theorem 3.1 to G and G — e, respectively, we have

1

O(G) = (z — )B(L(G)) - Uw;;(c:) dwyd(w) TG
2 3 ()7 a(es(©)
Zepa(v)
and
1
@(G - 6) - (1' — 1)@(£v(G - 6)) - vweg(:c_e) m@(ﬁvw((; _ 6))
- a4 .
ZZegem( Y (d(v) — 1)dZ‘1’(£Z(G )
ugV(Z)
- —1)2l d(u)d(v) »
22622410( !V (d(u) — 1)(d(v) — 1)dZ<I>(£z(G )
u€V(Z)
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(3.5) fliz))dfvl) e(@) - (d(v) — 1)O(G — ¢)
~ (o= 0 [ G0 a(z,(@) - (@) - )2(L,(G ~ o)
_ d(u) 1 .
[vwg;@( (@) — Lyd(uw) * (@) M;g) dfw) 2 e (G =€)
wH#uU
odte d(u)(~1)/%
—1)l2l
- Y Elewe-a)
Zepg—c(v)
ugV(2)
_ _1\lzl d(u) e
ZE&D%; (v)( . (d(u) - 1)dzq>(£Z(G ))]
ueV(Z)
(o= [59Wa(z,@) - (@) - 1)B(L.(G — )]
d(w)d(v)(~1)7! 1
2 % w1y 2O+ g (@)
_ L dw) .
PN [ =y (Ere(@D) = LG =€)
_ 121 __d(u)d(v) _d(v) .
2ze§c:(v)( v [(d(u - 1)dZ®(£ (@) dz ®(Lz(C ))}
ugV(Z)
Note that
(3.6) 2(£,(@) = M La, @ —o)+ E Lac. @ - o)
' dlw) " dlu)
_d(u) -1 e x—1
= ") G et Ty BL(E))
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Thus, we have

(3.7) S %w) [ d(iguj -B(Lyu(G)) = B(Lo(G — )
vweE(G—e)
z—1
vweg(%e) Mq)(ﬁvw’qt(c;()).
If Z € pg(v) and u ¢ V(Z), then
D(Lz(G)) = d(zgu; 1<I>(£Z(G —e))+ Z(—_u)l@(ﬁz,u(G e))

Thus, we have

(3.8) > (=~ [%Mﬁz(@) _ %‘b(ﬁz(c‘ o)
&
d()(x — 1) (=1)12]
) Zeg (v) ( )Ed(u) 1(1) : P(Lz,u(G —e)).

ugV(Z)

Substituting equations (3.6)—(3.8) into equation (3.5), we have

(3.9)

a1 il ) Dd(w)
_ d(u)d(v)(~1)!”!
QZ;:(@ (d(u) _ 1)dZ (I)('CZ(G))
. d(v)(x —1)(-1)? B
i ZE%(v) (d(u) —1)dz PLzulG ~e)
ugV(Z)
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From Corollary 3.1 we have

P(Lu(G—0) = (0~ DBL(G—0) — Y 1

m‘b(ﬁu,uw@ —e))

vweE(G—e)
d(w)(~1)
: 22621(1» (o) = 1) © Lznu(@=e)
ugV(2)
1
=(z—-1)®(L(G)) — Uweg(:G , m@(ﬁvw’u((;))
d(v) \
-2 Z |Z DA G oy
ZEQOG(U) ’U Z
ugV(Z2)

Then

(3.10) 3 m@(cww))

vweEE(G—e)
d(v)(z — 12
*2 2 —1)1()dz) P(Lzu(G =)
gy
_ [d) —1)(z—1)* (d(v) — 1)(z — 1)
= d(u) 1 (I)(ﬁe(G)) - d(u) 1 (I)(ﬁu(G — e))

Substituting equation (3.10) into equation (3.9), we have

d(u)d(v)
) = 19(@) ~ (@) ~ DG ~ o)
I\ — 2
(= DB(Ly(G—€)) + % (Lun(@)) — mqmw(@)
v) — D)z —1)? wd) (=14l
B L Ll Labpes
ASAG)
+ A== Yae, G - )
— (= 28,6 - ) + T a e, (6 - o)
z(z —2) 3 d(u)d(v)(=1)!
a1 2L (@) 2262%(6) )~ D, 2 (£2(G)):
The result follows. (|

From Corollary 3.1, by reasoning similar to that of Theorem 3.2, we have
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Corollary 3.5. Let H be a proper subgraph of G, and let e = uv be an edge of G

such that u,v ¢ V(H). Let € (e) be the set of all cycles containing e. Then we have

o(Ln(G)) = A ;(igéfg) “Da(Ly(G—e) + (d(”)d(;;;((f)_ Do (LG =)
+ A =D 0241, (6 - ) + 5 2L b( L1 (G)
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