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FUNCTIONS

Ewa Korczak-Kubiak, Ryszard J. Pawlak,  Lódź

(Received April 18, 2012)

Abstract. In the paper the existing results concerning a special kind of trajectories and
the theory of first return continuous functions connected with them are used to examine
some algebraic properties of classes of functions. To that end we define a new class of
functions (denoted Conn∗) contained between the families (widely described in literature)
of Darboux Baire 1 functions (DB1) and connectivity functions (Conn). The solutions to
our problems are based, among other, on the suitable construction of the ring, which turned
out to be in some senses an “optimal construction”. These considerations concern mainly
real functions defined on [0, 1] but in the last chapter we also extend them to the case of
real valued iteratively H-connected functions defined on topological spaces.
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D-ring; iteratively H-connected function
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1. Introduction

Until recently one dimensional dynamical systems were analyzed almost exclu-
sively with respect to continuous functions and thinner classes of functions. How-
ever, some considerations provoked a necessity to examine discontinuous derivatives.
Therefore many papers regarding dynamic of discontinuous functions (e.g. [1], [6],
[14], [22], [23]) have appeared recently. The interesting fact about the quoted pa-
pers is that all of them are connected with Darboux like functions. Simultaneously,
many papers regarding “first return” notions based on a special kind of trajecto-
ries appeared at the end of 20. century and at the beginning of the current century
(e.g. [7], [8], [9], [10], [19], [21]). The connection of these trajectories with transitive
continuous functions has been described among others in [9].
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Although this paper does not refer to dynamical systems directly, we use tools
connected with some trajectories to consider problems of existence of “optimal con-
structions” of rings of functions. Several previous papers published by the second
author concern dynamical systems generated by Darboux like functions and conse-
quently our considerations are also connected with such transformations.
Algebraic structures play a special role among many problems currently being

examined with respect to various classes of functions. This is indicated by the fact
that in some cases some equivalents to these structures are created being, on the
one hand, the extensions of their concept and, on the other, distant from their
prototypes in abstract algebra. For example, a notion of pseudogroup was developed
by É.Cartan in the early 1900s, which, after some modification, is now used, among
other things, in research dealing with dynamical systems (e.g. in [2]).
The research related to algebraic operations and algebraic structures has been

carried on also with respect to Darboux-like functions. The results published till
now are the starting point of considerations presented in this paper.
In Section 3 we introduce a subfamily, Conn∗, of the connectivity functions family,

and we present its primary properties. The direct motivation to distinguish this
class of functions were the results connected with the theory of dynamical systems
included in papers [6] and [23] and the desire to obtain a wide class of functions
with connected graph, for which there is a possibility to construct rings of functions
belonging to this class. The direction of the research was also connected with the
paper [21]. Further considerations presented in the following parts of the paper
address the class Conn∗.
In Section 4 we examine the possibility of constructing rings (more precisely, com-

plete rings) of functions belonging to the family introduced in Section 3. In the
proof of Theorem 4.1 the construction of a complete ring containing a fixed function
f ∈ Conn∗ and included in Conn∗, is presented. Furthermore, this construction
gives an “optimal ring”. The consequence of “the optimality of the construction”
is Theorem 4.3 saying (under some additional assumptions) that if two functions
belong to a common additive group of Darboux functions, then they also belong to
a common ring which may be constructed by the method presented in the proof of
Theorem 4.1.
Section 5 contains results regarding rings of iteratively H-connected functions, i.e.

functions being of the form f ◦g where g : [0, 1] → R is an H-connected function and
f : X → [0, 1] is a continuous function defined on a topological space. The starting
point of the considerations in this part of the paper are the results presented in [15],
which concludes that there exist topological spaces such that there is no ring of
Darboux functions defined on them. This raises questions concerning assumptions
that would cause existence of the respective rings.
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The paper is closed with an open problem that is, in some senses, a continuation
of Theorem 5.3.

2. Preliminaries

We will use mostly standard notation and definitions ([5], [10], [11], [15], [20],
[21]). In particular, by the letters R, Q and N we denote the sets of all real numbers,
rational numbers and positive integers, respectively.

The closure, interior and boundary of a set A are denoted by Cl(A), Int(A) and
Fr(A), respectively.

The symbol C(f) (D(f)) stands for the set of all continuity (discontinuity) points
of a function f , and Z(f) = f−1(0). By Γ(f) and f ↾ A we denote the graph of
a function f and the restriction of a function f to a set A, respectively.

For a set H ⊂ [0, 1] open in [0, 1], the symbol Cp(H) denotes the set of all com-
ponents of H .

To denote a family of all Darboux functions f : [a, b] → R we use the symbol
DBx([a, b]) while the symbol DB1([a, b]) stands for the family of all Darboux Baire
1 functions f : [a, b] → R.

According to the commonly used definition, a real function f defined on a topo-
logical space X is called a Darboux function if the image f(C) is a connected set,
for each connected set C ⊂ X .

We say that a function f : [0, 1] → R does not intersect the axis OX if f(x) > 0

for x ∈ [0, 1] or f(x) 6 0 for x ∈ [0, 1].

A function f : [0, 1] → R belongs to the class B∗∗
1 if D(f) = ∅ or f ↾ D(f) is

continuous.

Let f, g be real functions defined on [0, 1]. By ̺ we denote the metric of uniform
convergence defined as ̺(f, g) = min(1, sup

x∈[0,1]

|f(x) − g(x)|).

Let ℜ be a ring of fuctions defined on a topological space X . Let us introduce the
following notation:

D(ℜ) =
⋃

h∈ℜ

D(h).

A ring ℜ of functions defined on a topological space X is called a D-ring if D(ℜ) 6=

∅. A D-ring ℜ of functions defined on a topological space X is called a prime ring if
D(f) ⊂ Z(f) for each f ∈ ℜ.

We call the set H ⊂ [0, 1] the od-set if it is open and dense in [0, 1].

Let H be an arbitrary od-set. By an H-trajectory we mean any sequence q̄ =

{qn}n∈N of distinct points such that {qn : n = 1, 2, . . .} is a dense subset of H .
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Let q̄ = {qn}n∈N be a fixed H-trajectory. For any interval (c, d) ⊂ [0, 1], by
rq̄((c, d)) we will denote the first element of the sequence q̄ belonging to (c, d) (i.e.
rq̄((c, d)) = qn0

if and only if n0 = min{n : qn ∈ (c, d)}).
For x ∈ (0, 1] the left first return path to x based on the H-trajectory q̄, Pl(x, q̄) =

{tk}k∈N, is defined recursively via the following formulas:

{

t1 = rq̄((0, x)),

tk+1 = rq̄((tk, x)), for k = 1, 2, . . . .

For x ∈ [0, 1) the right first return path to x based on the H-trajectory q̄, Pr(x, q̄) =

{sk}k∈N, is defined recursively via the following formulas:

{

s1 = rq̄((x, 1)),

sk+1 = rq̄((x, sk)), for k = 1, 2, . . . .

We say that a function f : [0, 1] → R is first return continuous from the left (right)
at a point x ∈ (0, 1] (x ∈ [0, 1)) with respect to the H-trajectory q̄, if

lim
t→x

t∈Pl(x,q̄)

f(t) = f(x)
(

lim
t→x

t∈Pr(x,q̄)

f(t) = f(x)
)

.

If f is first return continuous from the left and from the right at x ∈ (0, 1) with
respect to the H-trajectory q̄, then we say that it is first return continuous at x with
respect to q̄. Moreover, we will say that f is first return continuous at 0 (at 1) with
respect to q̄ if it is first return continuous from the right (from the left) at 0 (at 1)
with respect to q̄.
Let H be a fixed od-set and q̄ a fixed H-trajectory. We say that a function

f : [0, 1] → R is (H, q̄)-first return continuous if it is first return continuous with
respect to q̄ at each point x ∈ H and f is first return continuous from the left with
respect to q̄ at the right end of any component of H and f is first return continuous
from the right with respect to q̄ at the left end of any component of H . The set of
all (H, q̄)-first return continuous functions will be denoted by FRC(H, q̄).

Two known facts concerning the classical notion of first return continuity will be
very useful in the next sections. Now we will formulate them in the terminology used
in this paper.

Lemma 2.1 ([9]). A function f : [0, 1] → R is Darboux Baire 1 if and only if

there exists a [0, 1]-trajectory q̄ such that f ∈ FRC([0, 1], q̄).
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Lemma 2.2 ([7]). Let D ⊂ [0, 1] be countable and dense in [0, 1]. If a function

f : [0, 1] → R is Darboux Baire 1 with Γ(f ↾ D) dense in Γ(f), then there exists an

ordering d̄ = {dn}n∈N of D such that f ∈ FRC([0, 1], d̄).

If H ⊂ [0, 1] is an od-set, I ∈ Cp(H), a and b are the left and the right endpoint
of I respectively, q̄ is an H-trajectory and t : [0, 1] → R is defined as follows: t(x) =

f(x) for x ∈ (a, b); t(x) = f(a) for x ∈ [0, a]; t(x) = f(b) for x ∈ [b, 1], then
t ∈ FRC([0, 1], q̄). By Lemma 2.1 we have:

Proposition 2.3. Let H ⊂ [0, 1] be an od-set and q̄ an H-trajectory. If f ∈

FRC(H, q̄), then for any component I ∈ Cp(H), f ↾ Cl(I) is a Darboux Baire 1

function.

Let H be a fixed od-set and q̄ = {qn}n∈N a fixed H-trajectory. We say that
a function f : [0, 1] → R has a D(H, q̄) property at a point x ∈ [0, 1] if for any ε > 0

there exists δ ∈ (0, ε) such that for any component I of the set H the following
condition is fulfilled:

(I ∩ (x − δ, x + δ) 6= ∅)

⇒ (f({qn : n = 1, 2, . . .} ∩ I ∩ (x − δ, x + δ)) ∩ (f(x) − ε, f(x) + ε) 6= ∅).

One can easily observe:

Proposition 2.4. Let H be a fixed od-set and q̄ a fixed H-trajectory. If f ∈

FRC(H, q̄), then f has a D(H, q̄) property at each point of H .

We say that a function f : [0, 1] → R is H-connected with respect to H-trajectory
q̄ if f ∈ FRC(H, q̄) and f has a D(H, q̄) property at each point x ∈ [0, 1] \ H .

3. The family Conn∗

Let us introduce the following notation:
The symbol Conn∗ will denote the family of all functions f : [0, 1] → R such that

there exist an od-set Hf and an Hf -trajectory q̄ such that f is Hf -connected with
respect to q̄.
Functions with connected graph play a special role in generalizations of consider-

ations dealing with dynamical systems in the case of discontinuous functions (e.g.
[6], [23]). Using the term “H-connected function” suggests that functions with con-
nected graph are the subject of our considerations. The next theorem will show that
each function belonging to the class Conn∗ has indeed a connected graph. In the
proof of this theorem we will use the following lemma.
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Lemma 3.1 ([24]). Let K be a closed and nowhere dense subset of the interval

[0, 1] such that K = [0, 1] \
⋃

i∈N

(ai, bi), where all the intervals (ai, bi) are pairwise

disjoint. Let K0 = [0, 1] \
⋃

i∈N

[ai, bi] and assume that a function f : [0, 1] → R fulfils

the following conditions:

(i) f has a connected graph on each interval [ai, bi];

(ii) for every point x ∈ K0 and subsequence {apn
}n∈N converging to x there exists

a sequence {xn}n∈N such that xn ∈ [apn
, bpn

] (for n ∈ N) and lim
n→∞

(xn, f(xn)) =

(x, f(x)).

Then the function f has a connected graph.

Theorem 3.2. Let H ⊂ [0, 1] be an od-set and f : [0, 1] → R an H-connected

function with respect to an H-trajectory q̄ = {qn}n∈N. Then the function f has

a connected graph.

P r o o f. If the set H consists of a finite number of components, then (using
Lemma 2.1) it is easy to show that f ∈ DB1([0, 1]), so f has a connected graph.

Let us assume now that H has an infinite number of components. ThenH =
∞
⋃

i=1

Ii,

where Ii are open subintervals of (0, 1) or they are either of the form [0, c) or (d, 1]

for some c, d ∈ (0, 1). For i ∈ N let us denote by ai the left endpoint of the interval Ii

and by bi the right endpoint of Ii. Put K = [0, 1]\
⋃

i∈N

(ai, bi). Of courseK is a closed

and nowhere dense subset of [0, 1]. Let K0 = [0, 1] \
⋃

i∈N

[ai, bi]. Since f ∈ FRC(H, q̄),

so by Proposition 2.3, for each i ∈ N, f ↾ [ai, bi] ∈ DB1([ai, bi]), so it has a connected
graph. Thus the condition (i) of Lemma 3.1 is fulfilled.
Now we will show that the condition (ii) of this lemma is also fulfilled.
Let x0 ∈ K0 and let {apn

}n∈N be a subsequence of {an}n∈N such that lim
n→∞

apn
=

x0.
Fix a decreasing and converging to zero sequence of positive numbers {εi}i∈N.

For simplicity of notation, let us assume that ε1 < 1
2 when x0 = 0 or x0 = 1 and,

ε1 < 1
2 min(x0, 1 − x0) when x0 6= 0 and x0 6= 1.

For each i ∈ N choose δi ∈ (0, εi) such that for each j ∈ N, if Ij∩(x0−δi, x0+δi) 6=

∅, then

(3.1) f({qk : k = 1, 2, . . .} ∩ Ij ∩ (x0 − δi, x0 + δi)) ∩ (f(x0) − εi, f(x0) + εi) 6= ∅.

For each l ∈ N, fix nl ∈ N such that

(3.2) (apn
, bpn

) ∩ (x0 − δl, x0 + δl) 6= ∅, for n > nl.

We may require the sequence {nl}n∈N to be increasing.
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We shall define a sequence {xn}n∈N such that xn ∈ [apn
, bpn

], for n ∈ N and
lim

n→∞
(xn, f(xn)) = (x0, f(x0)).

Let n ∈ N. One of the following cases is possible:
(1) n < n1. Then put xn = apn

.
(2) There exists j0 ∈ N such that n ∈ [nj0 , nj0+1). By (3.2), we have (apn

, bpn
) ∩

(x0 − δj0 , x0 + δj0) 6= ∅. Using the implication (3.1), choose an element qkn
of

the H-trajectory q̄ such that qkn
∈ (apn

, bpn
) ∩ (x0 − δj0 , x0 + δj0) and f(qkn

) ∈

(f(x0) − εj0 , f(x0) + εj0). Put xn = qkn
.

It is easy to notice that lim
n→∞

(xn, f(xn)) = (x0, f(x0)). Thus the condition (ii) of

Lemma 3.1 is fulfilled, and this completes the proof. �

It is easy to notice that the following inclusion is true:

DB1([0, 1]) ⊂ Conn∗.

What is more, it occurs that the set DB1([0, 1]) is porous in the space Conn∗ with
the metric of uniform convergence. The proof of this fact will be preceded with some
construction and two technical lemmas.
Let H be an od-set, q̄ = {qn}n∈N an H-trajectory and let H̆ be an open and dense

subset ofH . Then we can construct an H̆-trajectory generated by theH-trajectory q̄.
To this end we will define (by induction) an increasing sequence {kn}n∈N of positive
integers in the following way. Let k1 = min{k : qk ∈ H̆}. Assume that the elements
k1, k2, . . . , kn of this sequence have been already defined, where n is some positive
integer. Then we put kn+1 = min{k > kn : qk ∈ H̆}. Continuing this process we
obtain an infinite sequence q̄∗ = {qkn

}n∈N. It is easy to notice that q̄∗ consists of
these and only these elements of q̄ which belong to H̆ . Then the sequence q̄∗ is an
H̆-trajectory. We will call it an H̆-trajectory generated by the H-trajectory q̄.

Lemma 3.3. Let H̆ ⊂ H be two od-sets in [0, 1], q̄ = {qn}n∈N an H-trajectory,

I ∈ Cp(H̆) and let q̄∗ = {qkn
}n∈N be an H̆-trajectory generated by the H-trajectory

q̄. Then:

(i) for every x ∈ [a, b) (where a, b denote the endpoints of the interval I) and

for each j ∈ {0, 1, 2, . . .} we have sm0+j = wl0+j , where {sm}m∈N = Pr(x, q̄),

{wl}l∈N = Pr(x, q̄∗), m0 = min{m : sm ∈ (x, b)}, l0 = min{l : wl ∈ (x, b)};

(ii) for every x ∈ (a, b] and for each j ∈ {0, 1, 2, . . .} we have zi0+j = ur0+j , where

{zi}i∈N = Pl(x, q̄), {ur}r∈N = Pl(x, q̄∗), i0 = min{i : zi ∈ (a, x)}, r0 = min{r :

ur ∈ (a, x)}.

P r o o f. We will prove (i). Let x ∈ [a, b). It is easy to show

(3.3) rq̄∗((x, c)) = rq̄((x, c)) for any c ∈ (x, b].
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First we will show that sm0
= wl0 .

By the definition of l0 and by the form of the sequence {wl}l∈N, we can conclude
that wl0 = rq̄∗((x, wl0−1)) and b 6 wl0−1 (if l0 = 1 we can put wl0−1 = 1 and then
rq̄∗((x, b)) = rq̄∗((x, 1))). Since wl0 ∈ (x, b) ⊂ (x, wl0−1), we have rq̄∗((x, wl0−1)) =

rq̄∗((x, b)). Consequently,

(3.4) wl0 = rq̄∗((x, b)).

An exactly similar reasoning shows that

(3.5) sm0
= rq̄((x, b)).

By (3.3)–(3.5), we have sm0
= rq̄((x, b)) = rq̄∗((x, b)) = wl0 .

Assume now that sm0+j = wl0+j for some integer j > 0. We shall show that
sm0+j+1 = wl0+j+1.
By the inductive assumption we have (x, sm0+j) = (x, wl0+j) ⊂ (x, b). Thus and

by (3.3) we obtain

sm0+j+1 = rq̄((x, sm0+j)) = rq̄((x, wl0+j)) = wl0+j+1,

which completes the proof of (i).
The proof of (ii) is analogous. �

Lemma 3.4. Let f : [0, 1] → R, H ⊂ [0, 1] be an od-set, q̄ an H-trajectory and

x0 ∈ [0, 1]. Assume that for every ε > 0 there exists δ ∈ (0, ε) such that for every

component I of H having nonempty intersection with the interval (x0 − δ, x0 + δ),

there exists a point x ∈ C(f)∩I∩(x0−δ, x0+δ) with the property f(x) ∈ (f(x0)−ε,

f(x0) + ε). Then the function f has a D(H, q̄) property at the point x0.

P r o o f. Let ε > 0 and let δ ∈ (0, ε) be the number chosen according to the
assumptions of the lemma. Let us consider a component I of the set H such that
I ∩ (x0− δ, x0 + δ) 6= ∅. Then there exists a point x1 ∈ C(f)∩I ∩ (x0− δ, x0 + δ) such
that f(x1) ∈ (f(x0)−ε, f(x0)+ε). One can find σ > 0 such that (x1−σ, x1+σ)∩I ⊂

(x0 − δ, x0 + δ) ∩ I and

(3.6) f((x1 − σ, x1 + σ) ∩ I) ⊂ (f(x0) − ε, f(x0) + ε).

Of course Int((x1 − σ, x1 + σ) ∩ I) 6= ∅, so there exists a positive integer k0 such
that qk0

∈ (x1 − σ, x1 + σ) ∩ I ⊂ (x0 − δ, x0 + δ) ∩ I. Moreover, by (3.6) we have
f(qk0

) ∈ (f(x0) − ε, f(x0) + ε).
Thus the function f has the D(H, q̄) property at x0. �
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Theorem 3.5. The set DB1([0, 1]) is porous in the space (Conn∗, ̺).

P r o o f. Let f ∈ Conn∗ and ε > 0. There exist an od-set H ⊂ [0, 1] and an H-
trajectory q̄ such that f is H-connected with respect to q̄. Let I∗ ∈ Cp(H). Denote
by a∗ and b∗ the left and the right endpoint of I∗, respectively. By Proposition 2.3, we
have f ↾ Cl(I∗) ∈ DB1(Cl(I∗)), so the function f has a continuity point x0 ∈ (a∗, b∗).
We can choose a number δ > 0 such that [x0 − δ, x0 + δ] ⊂ (a∗, b∗) and

(3.7) f([x0 − δ, x0 + δ]) ⊂
(

f(x0) −
ε

3
, f(x0) +

ε

3

)

.

Now define a function f1.
On the interval [x0 − δ, x0 + δ] let us consider a Cantor-like set C̆ containing

x0 − δ and x0 + δ and denote by C̆∗ the set of ends of all components of the set
[x0 − δ, x0 + δ] \ C̆.
Let H̆ = H \C̆. Obviously H̆ is an open and dense subset of H , so we can consider

an H̆-trajectory q̄∗ = {qkn
}n∈N generated by the H-trajectory q̄.

Let (a, b) be a component of the set [x0−δ, x0+δ]\C̆ and let Pr(a, q̄∗) = {tk(a)}k∈N

be the right first return path at a with respect to the H̆-trajectory q̄∗ and k0 = min{k :

tk(a) ∈ (a, (b − a)/2)}. For i > k0, let xi
1, x

i
2 be some points fulfilling inequalities

ti+1(a) < xi
1 < xi

2 < ti(a). Similarly, let Pl(b, q̄
∗) = {sl(b)}l∈N be the left first return

path at b with respect to the H̆-trajectory q̄∗ and l0 = min{l : sl(b) ∈ ((b − a)/2, b)}.
For j > l0, let yj

1, y
j
2 be some points fulfilling inequalities sj(b) < yj

1 < yj
2 < sj+1(b).

On the interval [a, b] define the function f1 as follows: f1(x) = f(x0) for x ∈ {a, b}∪

{ti(a) : i > k0} ∪ {sj(b) : j > l0} ∪ (tk0
(a), sl0(b)); f1(x) = f(x0) − ε/3 for x ∈

{xi
1 : i > k0} ∪ {yj

1 : j > l0}; linear on the intervals [ti+1(a), xi
1], [x

i
1, x

i
2], [x

i
2, ti(a)]

(i > k0), [sj(b), y
j
1], [y

j
1, y

j
2], [y

j
2, sj+1(b)] (j > l0).

In an analogous way we define the function f1 on each component of the set
[x0 − δ, x0 + δ] \ C̆.
Consider a function g : [0, 1] → R defined as follows: g(x) = f1(x) for x ∈ (x0 − δ,

x0 + δ) \ (C̆ \ C̆∗); g(x) = f(x0)+ ε/3 for x ∈ C̆ \ (C̆∗∪{x0 − δ, x0 + δ}); g(x) = f(x)

for x ∈ [0, x0 − δ] ∪ [x0 + δ, 1].
We will show that g ∈ FRC(H̆, q̄∗).
First we will prove that the function g is first return continuous from the right with

respect to q̄∗ at each point of the set H̆ and at the left endpoint of each component
of the set H̆ .
Let x∗ ∈ H̆ or let x∗ be the left endpoint of some component of H̆. The proof

conveniently splits into the following cases:
1.1. x∗ ∈ [x0 + δ, 1). Then it is sufficient to notice that Pr(x

∗, q̄∗) = Pr(x
∗, q̄).

1.2. x∗ ∈ (x0 − δ, x0 + δ). The property to be proved is evidently true if x∗ ∈ H̆ .
So let us consider the case when x∗ is the left endpoint of some component of the
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set H̆ . Denote Pr(x
∗, q̄∗) = {ti(x∗)}i∈N. There exists j0 ∈ N such that for every

i > j0 we have g(ti(x
∗)) = f(x0) = g(x∗). It means that

lim
t→x∗

t∈Pr(x∗,q̄∗)

g(t) = g(x∗),

so g is first return continuous from the right at x∗ with respect to q̄∗.
1.3. x∗ ∈ [0, x0 − δ). Let J ∈ Cp(H) be such that x∗ ∈ Cl(J). Let us denote by

aJ and bJ the left and the right endpoint of J , respectively. Consider first return
paths Pr(x

∗, q̄) = {sm}m∈N and Pr(x
∗, q̄∗) = {wp}p∈N. Put m0 = min{m : sm ∈

(x∗, bJ)} and p0 = min{p : wp ∈ (x∗, bJ)}. By Lemma 3.3 we have sm0+i = wp0+i

for i ∈ {1, 2, . . .}. So the conclusion that g is first return continuous from the right
with respect to q̄∗ at x∗ is immediate.
An exactly similar reasoning shows that the function g is first return continuous

from the left with respect to q̄∗ at each point of the set H̆ and at the right end of
each component of the set H̆ . We next show that g has the D(H̆, q̄∗) property at
each point of the set [0, 1] \ H̆ .
Let z ∈ [0, 1] \ H̆ and ε0 > 0.
2.1. Assume z ∈ [0, x0 − δ) \ H̆ . Let ε1 ∈ (0, min{ε0, x0 − δ − z}). There exists

δ1 ∈ (0, ε1) such that for each I ∈ Cp(H) the following condition is fulfilled if
(z − δ1, z + δ1) ∩ I 6= ∅ then

(3.8) f({qk : k = 1, 2, . . .} ∩ I ∩ (z − δ1, z + δ1)) ∩ (f(z) − ε1, f(z) + ε1) 6= ∅.

Of course z + δ1 < x0 − δ and δ1 ∈ (0, ε0). Let Ĭ1 ∈ Cp(H̆) be such that Ĭ1 ∩ (z −

δ1, z + δ1) 6= ∅. Then the following cases are possible:

a) Ĭ1 ∈ Cp(H) or
b) Ĭ1 = (a∗, x0 − δ) ⊂ I∗ ∈ Cp(H).

In the case a) the condition (3.8), and in the case b) the condition (3.8) and the
equality Ĭ1 ∩ (z − δ1, z + δ1) = I∗ ∩ (z − δ1, z + δ1), imply the existence of n1 ∈ N

such that qn1 ∈ Ĭ1 ∩ (z − δ1, z + δ1) and g(qn1) = f(qn1) ∈ (f(z) − ε1, f(z) + ε1) ⊂

(g(z) − ε0, g(z) + ε0). Of course there exists also n1 such that q∗kn1

= qn1 . Thus g

has the D(H̆, q̄∗) property at z.
2.2. An exactly similar reasoning applies to the case z ∈ (x0 + δ, 1] \ H̆ .
2.3. Assume now z ∈ C̆ \ (C̆∗ ∪ {x0 − δ, x0 + δ}). Let δ2 ∈ (0, ε0) be sufficiently

small for the inclusion (z − δ2, z + δ2) ⊂ (x0 − δ, x0 + δ) to be true. Let Ĭ2 ∈ Cp(H̆)

and Ĭ2 ∩ (z − δ2, z + δ2) 6= ∅. Of course Ĭ2 = (a0, b0) for some a0, b0 ∈ C̆∗. We have
a0 > z or b0 < z. Without loss of generality, we may assume that a0 > z. From
the properties of g we can deduce that there exists a point y∗ ∈ (a0, min{z + δ2, b0})
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such that g(y∗) = f(x0) + ε/3 = g(z). Of course y∗ ∈ Cg ∩ Ĭ2 ∩ (z − δ2, z + δ2)

and g(y∗) ∈ (g(z) − ε0, g(z) + ε0). By Lemma 3.4, the function g has the D(H̆, q̄∗)

property at z.
2.4. Now let z ∈ C̆∗. Then z is the left or the right end of some component (a1, b1)

of H̆. Assume that z = a1 (the case z = b1 is analogous). Let

(3.9) δ3 ∈ (0, min{ε0, b1 − z, z − x0 + δ}).

Moreover, let Ĭ3 = (a3, b3) ∈ Cp(H̆) and (a3, b3)∩(z−δ3, z+δ3) 6= ∅. Then, by (3.9),
there are two possibilities:
2.4.a) (a3, b3) = (a1, b1) or
2.4.b) x0 − δ < a3 and z − δ3 < b3 < z.

In both the cases there exists a point y∗∗ ∈ (a3, b3) ∩ (z − δ3, z + δ3) such that
g(y∗∗) = f(x0) = g(z). Of course y∗∗ ∈ Cg ∩ Ĭ3 ∩ (z − δ3, z + δ3) and g(y∗∗) ∈

(g(z)− ε0, g(z)+ ε0). By Lemma 3.4, the function g has the D(H̆, q̄∗) property at z.
2.5. Now let z ∈ {x0 − δ, x0 + δ}. Assume that z = x0 − δ (the case z = x0 + δ

is analogous). The equality g(z) = f(x0 − δ) and the condition (3.7) imply g(z) ∈

(f(x0) − ε/3, f(x0) + ε/3). Let δ4 ∈ (0, min{ε0, 2δ, x0 − δ − a∗}), Ĭ4 ∈ Cp(H̆) and
Ĭ4 ∩ (z − δ4, z + δ4) 6= ∅. Then we can consider two cases:
2.5.a) Ĭ4 ⊂ (x0 − δ, x0 + δ) or

2.5.b) Ĭ4 = (a∗, x0 − δ) (or Ĭ4 = [a∗, x0 − δ), if a∗ = 0 and 0 ∈ H).
In the case 2.5.a) one can apply a reasoning exactly similar to that in 2.3 and 2.4.

In the case 2.5.b) it is sufficient to notice that g(x) = f(x) for x ∈ [0, x0 − δ] and if
qn ∈ [0, x0 − δ), then qn ∈ {q∗k : k = 1, 2 . . .} for n ∈ N.
We have completed the proof that g ∈ Conn∗.
We will show now that B(g, ε/9) ⊂ B(f, ε).
Let ξ ∈ B(g, ε/9). We have

̺(f, ξ) 6 ̺(f, g) + ̺(g, ξ) <
2ε

3
+

ε

9
< ε.

Since ξ ∈ B(g, ε/9) was chosen arbitrarily, B(g, ε/9) ⊂ B(f, ε).

The task is now to show that B(g, ε/9) ∩ DB1([0, 1]) = ∅.
Let τ ∈ B(g, ε/9). It is easy to notice that τ(x) ∈ (f(x0) − ε/9, f(x0) + ε/9) for

x ∈ C̆∗ and τ(x) ∈ (f(x0) + 2ε/9, f(x0) + 4ε/9) for x ∈ C̆ \ C̆∗. This means that
the function τ ↾ C̆ has no continuity point, so τ is not a Baire 1 function. Since
τ ∈ B(g, ε/9) is arbitrary, we conclude that B(g, ε/9) ∩ DB1([0, 1]) = ∅. �
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4. Rings of H-connected functions

Many papers (e.g. [3], [4], [12], [13], [16], [17], [18]) deal with algebraic properties of
some classes of functions (connected with generalizations of continuity and Darboux-
like functions) or with the possibility of building algebraic structures with respect to
one operation consisting of functions belonging to a fixed class. In this section we
examine a possibility of constructing more complex algebraic structures containing
a fixed function. Simultaneously, our aim is to analyse structures containing all
continuous functions.

The additive group G is called an l-additive group if the following condition is
fulfilled:

if f, g ∈ G, then max(f, g) ∈ G and min(f, g) ∈ G.

The ring ℜ of real functions defined on [0, 1] is called an l-ring if the following
condition is fulfilled:

if f, g ∈ ℜ, then max(f, g) ∈ ℜ and min(f, g) ∈ ℜ.

The ring ℜ of real functions defined on [0, 1] is called a complete ring if it is an
l-ring containing the class of all continuous functions.

The question about existence of rings including the class of all continuous functions
and a fixed function and consisting of functions belonging only to some fixed family,
is an interesting and frequently considered problem. The next theorem is the result
obtained for the class of H-connected functions with respect to an H-trajectory q̄,
when an od-set H and an H-trajectory q̄ are fixed.

Theorem 4.1. Let H be an od-set, let q̄ = {qn}n∈N be an H-trajectory and f :

[0, 1] → R an H-connected function with respect to q̄. Then there exists a complete

ring ℜ consisting of H-connected functions with respect to q̄ such that f ∈ ℜ.

P r o o f. Assume first that [0, 1] \ H 6= ∅. For every point x ∈ [0, 1] \ H and for
each positive integer n, fix a number δx(n) ∈ (0, 1/n) such that for every component
I of the set H the following implication holds if I ∩ (x − δx(n), x + δx(n)) 6= ∅, then

(4.1) f({qk : k = 1, 2, . . .}∩ I ∩ (x− δx(n), x + δx(n)))∩
(

f(x)−
1

n
, f(x) +

1

n

)

6= ∅.

For each pair (x, n) ∈ ([0, 1] \ H) × N let

Cx
n = {I ∈ Cp(H) : I ∩ (x − δx(n), x + δx(n)) 6= ∅}.
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Fix x ∈ [0, 1] \ H and n ∈ N. For any component I ∈ Cx
n fix a point

yI
x,n ∈ {qk : k = 1, 2, . . .} ∩ I ∩ (x − δx(n), x + δx(n))(∗)

such that f(yI
x,n) ∈

(

f(x) −
1

n
, f(x) +

1

n

)

.

Denote D(x, n) = {yI
x,n : I ∈ Cx

n}. For each pair (x, n) ∈ ([0, 1] \ H) × N we can
choose a set D(x, n) in the way presented above.
Let ℜ be the family of all functions g : [0, 1] → R fulfilling the following conditions:
1.1 g ∈ FRC(H, q̄);
1.2 for any x ∈ [0, 1] \ H and for any ε > 0 there exists n(g, x, ε) ∈ N such that

for any integer n > n(g, x, ε) we have g(D(x, n)) ⊂ (g(x) − ε, g(x) + ε). It is easy to
show that the family ℜ is the required ring.
In the case H = [0, 1] it is enough to put ℜ = FRC(H, q̄). �

Notice that in the proof of Theorem 4.1 two methods of constructing a complete
ring containing a fixed function and consisting of functions H-connected with respect
to an H-trajectory q̄ are presented. The first method concerns the situation when
[0, 1] \ H 6= ∅ and the second the case when H = [0, 1]. For the od-set H ⊂ [0, 1]

and the function f : [0, 1] → R, H-connected with respect to the H-trajectory q̄, the
symbol ℜf (H, q̄) will stand for the family of all rings constructed by use of one of
the methods presented in the proof of Theorem 4.1, chosen adequately to the form
of the set H . Moreover, in the first part of the proof of Theorem 4.1 (concerning
the situation when [0, 1] \ H 6= ∅), for a function f , H-connected with respect to
the H-trajectory q̄ and for each pair (x, n) ∈ ([0, 1] \ H) × N some sets D(x, n) are
created (by the method denoted by (∗)). The choice of points constituting these sets
is not fixed. In the further part of the paper, the family of all possible sets D(x, n)

created by the method (∗) for a function f and for a pair (x, n) ∈ ([0, 1] \ H) × N

will be denoted by Df (x, n).
The following lemma will be useful in further considerations.

Lemma 4.2. Let H ⊂ [0, 1] be an od-set such that [0, 1] \ H 6= ∅. Let q̄ be an

H-trajectory, let f : [0, 1] → R be H-connected with respect to q̄ and let (x, n) ∈

([0, 1] \ H) × N. If D(x, n) ∈ Df (x, n), then D(x, n) ∈ D−f (x, n).

The proof of the above lemma is easy but long, so we omit it.
Signalizing the above ring construction methods is not accidental. The next the-

orem will show that these methods are optimal; we mean that if there exists a ring
containing functions f and g, then there exists a ring common to functions f and g

and such that it can be constructed by the method presented in the proof of Theo-
rem 4.1. This theorem will also show that, under some additional assumptions, the
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existence of an additive group containing two fixed Darboux functions implies the
existence of a Darboux ring (constructed by the methods presented in the proof of
Theorem 4.1) containing these functions. Notice that this is interesting because in
the case of the class DB1 the existence of an additive group consisting of Darboux
functions usually does not imply the existence of a Darboux ring containing these
two functions. Indeed, let {x}n∈N and {y}n∈N be sequences converging to 0 and such
that 1 = x1 > y1 > x2 > y2 > x3 > y3 > . . .. Let f and g be functions fulfilling the
following conditions: f(0) = 1

2 , f(y2n) = 1, f([x2n, x2n−1]) = 0, f is linear on the
intervals [y2n−1, x2n−1], [x2n, y2n−1] (n ∈ N), and g(0) = 1

2 , g(1) = 0, g(y2n−1) = 1,
g([x2n+1, x2n]) = 0, g is linear on the intervals [y2n, x2n], [x2n+1, y2n] (n ∈ N). Of
course f, g ∈ DB1. It is easy to notice that f · g 6∈ DBx([0, 1]), so there is no ring of
Darboux Baire 1 functions containing functions f and g. Consider the family G of
functions h : [0, 1] → R continuous on (0, 1] and satisfying the following conditions:

(i) h(xn) = 0 for n ∈ N;
(ii) there exist a, b ∈ R such that h(0) = (a + b)/2 and h(y2n) = a, h(y2n−1) = b

for n ∈ N.

It is easy to show that f, g ∈ G and G ⊂ DB1 is an additive group.

Theorem 4.3. Let f, g : [0, 1] → R be Darboux functions which do not intersect

the axis and such that D(f) ∪ D(g) ⊂ Z(f) ∩ Z(g). Then the following conditions

are equivalent:

(i) there exists an additive group G of Darboux functions such that f, g ∈ G;

(ii) there exists a ring ℜ0 of Darboux functions such that f, g ∈ ℜ0;

(iii) there exist an od-set H , an H-trajectory q̄ and a ring ℜ ∈ ℜf (H, q̄)∩ℜg(H, q̄).

P r o o f. The proof will proceed in the following way: (i) ⇒ (iii) ⇒ (ii) ⇒ (i).
To deduce (iii) from (i), assume that D(f) = D(g) = ∅. Let H = [0, 1] and let q̄

be an H-trajectory. Put ℜ = FRC(H, q̄). Then ℜ ∈ ℜf (H, q̄) ∩ ℜg(H, q̄).
We now turn to the case D(f) 6= ∅ or D(g) 6= ∅. We need only consider 3 cases:

1. f > 0 and g > 0;
2. f 6 0 and g 6 0;
3. (f > 0 and g 6 0) or (f 6 0 and g > 0).

Case 1. Notice that f, g ∈ B∗∗
1 .

This means that the sets D(f) and D(g) are nowhere dense ([20], Lemma 2). It
is easy to notice that Cl(D(f)) ∪ Cl(D(g)) is a nowhere dense set and

(4.2) Cl(D(f)) ∪ Cl(D(g)) ⊂ Z(f) ∩ Z(g).

Let H = [0, 1] \ (Cl(D(f)) ∪ Cl(D(g))). Of course H is an od-set. Put h = f + g.
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We will show that

(4.3) h ∈ DB1([0, 1]).

Of course h ∈ DBx([0, 1]). From the fact that f, g ∈ B∗∗
1 and from Proposition 1

in [20] we obtain f, g ∈ B1([0, 1]). Hence h ∈ B1([0, 1]) and consequently h ∈

DB1([0, 1]).
Introduce some notation. Let L be the set of left endpoints of all components

of H being intervals open from the left and let P be the set of right endpoints of all
components of H being intervals open from the right.
Fix a ∈ L. Denote by Ja

l the component ofH such that a is the left end of it. Then
a ∈ Cl(D(f)) ∪ Cl(D(g)). Because of the inclusion (4.2) we have f(a) = g(a) = 0,
so h(a) = 0.

From (4.3) and by the Young condition ([5], Theorem 1.1) we deduce that there
exists a decreasing sequence {za

n}n∈N ⊂ Ja
l such that lim

n→∞
za

n = a and lim
n→∞

h(za
n) =

h(a) = 0. Let ε1 > 0. Then there exists n0 ∈ N such that for n > n0 we have
|f(za

n) + g(za
n)| < ε1. Hence (using the assumption that f > 0 and g > 0) we

deduce that f(za
n) < ε1 and g(za

n) < ε1 for n > n0. Since ε1 is arbitrary, we have
lim

n→∞
f(za

n) = 0 = f(a) and lim
n→∞

g(za
n) = 0 = g(a).

Let b ∈ P . Denote by Jb
r a component of the set H such that b is the right end

of it. Of course h(b) = 0. Analogously as above we choose an increasing sequence
{yb

n}n∈N ⊂ Jb
r such that lim

n→∞
yb

n = b, lim
n→∞

h(yb
n) = h(b) = 0, lim

n→∞
f(yb

n) = 0 = f(b)

and lim
n→∞

g(yb
n) = 0 = g(b).

Let

A = (H ∩Q) ∪ {za
n : a ∈ L, n ∈ N} ∪ {yb

n : b ∈ P, n ∈ N}.

Of course it would be sufficient to put A = H ∩Q, but considering the set A in the
above form makes the notation of the further part of the proof easier and shorter.
The set A is countable and dense in [0, 1].
We will show that the set

(4.4) W = {(x, h(x)) : x ∈ A} is dense in the set G(h).

Fix (x∗, h(x∗)) ∈ G(h) and let ε2 > 0. Consider an open cube K = (x∗ − ε2,

x∗ + ε2) × (h(x∗) − ε2, h(x∗) + ε2). We will show that W ∩ K 6= ∅.
Assume first that x∗ is a continuity point of h. Then there exists δ2 ∈ (0, ε2) such

that h((x∗ − δ2, x
∗ + δ2)∩ [0, 1]) ⊂ (h(x∗)− ε2, h(x∗)+ ε2). Since A is dense in [0, 1],

there exists a point x1 ∈ A ∩ (x∗ − δ2, x
∗ + δ2) ⊂ A ∩ (x∗ − ε2, x

∗ + ε2). So we have
(x1, h(x1)) ∈ W ∩ K.
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Now let x∗ ∈ D(h). Then x∗ ∈ D(f) or x∗ ∈ D(g). Of course h(x∗) = 0. The
following cases are possible:

1.1 x∗ ∈ L;

1.2 x∗ ∈ P ;

1.3 x∗ ∈ [0, 1] \ (H ∪ L ∪ P ).

In the case 1.1 we have zx∗

n ց x∗ and lim
n→∞

h(zx∗

n ) = 0. Thus there exists n1 ∈ N

such that zx∗

n ∈ (x∗, x∗ + ε2) and h(zx∗

n ) ∈ (−ε2, ε2), for n > n1.

We have (zx∗

n , h(zx∗

n )) ∈ W ∩ K for n > n1.

In the case 1.2, analogously to 1.1, we find n2 ∈ N such that (yx∗

n , h(yx∗

n )) ∈ W ∩K

for n > n2.

We now turn to the case 1.3. Assume first that x∗ 6= 1. Since x 6∈ L and the
set H is dense in [0, 1], there exists a point a∗ ∈ L ∩ (x∗, x∗ + ε2), which means
that Ja∗

l ∩ (x∗, x∗ + ε2) 6= ∅. Analogously to the case 1.1 we find n3 ∈ N such that
(za∗

n , h(za∗

n )) ∈ W ∩ K for n > n3. In the case x∗ = 1 one can notice that there
exists a point b∗ ∈ P ∩ (x∗ − ε2, x

∗). Further we carry out considerations analogous
to those in the case x∗ 6= 1.

The proof of (4.4) is completed.

By Lemma 2.2 there exists such an ordering q̄ = {qn}n∈N of the set A that h ∈

FRC([0, 1], q̄). It is easy to notice that q̄ is an H-trajectory. Of course

(4.5) the function h is H-connected with respect to q̄.

We will show that

(4.6) the functions f and g are H-connected with respect to q̄.

Let x ∈ H . Then x ∈ C(f) ∩ C(g), so f and g are first return continuous at x

with respect to q̄.

Now let x ∈ L. Then f(x) = g(x) = h(x) = 0. We will show that f and g are
first return continuous from the right at x with respect to q̄. Let ε3 > 0. Since the
function h is first return continuous from the right at x with respect to q̄, there exists
δ3 > 0 such that

if 0 < |s − x| < δ3, then |h(s)| < ε3 for every point s ∈ Pr(x, q̄).

Let s ∈ Pr(x, q̄) be such a point that 0 < |s − x| < δ3. Then we have |h(s)| < ε3.
Hence and from the fact that f > 0 and g > 0 we conclude that |f(s)| < ε3 and
|g(s)| < ε3, so f and g are first return continuous from the right at x with respect
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to q̄. Similarly, one can show that f and g are first return continuous from the left
at each point of P . Thus f, g ∈ FRC(H, q̄).
To prove (4.6) it remains to show that

(4.7) functions f and g have the D(H, q̄) property

at each point of the set Cl(D(f)) ∪ Cl(D(g)).

Let x ∈ Cl(D(f)) ∪ Cl(D(g)). Then h(x) = 0. Let ε4 > 0. Since, by (4.5), the
function h has the D(H, q̄) property at x, there exists δ4 ∈ (0, ε4) such that for every
I ∈ Cp(H) the following implication is true if I ∩ (x − δ4, x + δ4) 6= ∅, then

(4.8) h({qk : k = 1, 2, . . .} ∩ I ∩ (x − δ4, x + δ4)) ∩ (−ε4, ε4) 6= ∅.

So let I be such a component of H that I ∩ (x − δ4, x + δ4) 6= ∅. By (4.8) there
exists n4 ∈ N such that qn4

∈ I ∩ (x − δ4, x + δ4) and h(qn4
) ∈ (−ε4, ε4). Hence

and from the fact that f(qn4
) > 0 and g(qn4

) > 0 we obtain f(qn4
) ∈ (−ε4, ε4) and

g(qn4
) ∈ (−ε4, ε4). Since x ∈ Cl(D(f)) ∪ Cl(D(g)) is arbitrary, we deduce that f

and g have the D(H, q̄) property at each point of the set Cl(D(f)) ∪ Cl(D(g)).
The proof of (4.6) is completed.
Now we will construct the desired ring ℜ.
Let x ∈ [0, 1] \ H . Using the properties of h, similarly to the proof of (4.7),

for each n ∈ N we choose δx(n) ∈ (0, 1/n) and for each I ∈ Cp(H) such that
I ∩ (x− δx(n), x + δx(n)) 6= ∅ we choose a point wI

x,n ∈ {qk : k = 1, 2, . . .} ∩ I ∩ (x−

δx(n), x + δx(n)) such that f(wI
x,n) ∈ (−1/n, 1/n) and g(wI

x,n) ∈ (−1/n, 1/n). For
each pair (x, n) ∈ ([0, 1] \ H) × N, denote by D(x, n) the set of all elements wI

x,n

chosen in that way. Then D(x, n) ∈ Df (x, n) ∩ Dg(x, n). Considering the family
{D(x, n) : (x, n) ∈ ([0, 1]\H)×N} we can construct the ring ℜ ∈ ℜf (H, q̄)∩ℜg(H, q̄)

(using the method presented in the proof of Theorem 4.1).
Case 2. (f 6 0 and g 6 0). Of course −f > 0, −g > 0, −f,−g ∈ G, D(−f) =

D(f), D(−g) = D(g), Z(−f) = Z(f) and Z(−g) = Z(g). So D(−f) ∪ D(−g) ⊂

Z(−f) ∩ Z(−g). Let h1 = −f − g. By Case 1 considered above, there exist an
od-set H and an H-trajectory q̄ such that the functions h1, −f and −g are H-
connected with respect to q̄. Of course the functions f and g are also H-connected
with respect to q̄. For each pair (x, n) ∈ ([0, 1] \ H) × N, similarly to Case 1, we
can create sets D(x, n) ∈ D−f (x, n)∩D−g(x, n). Lemma 4.2 allows to conclude that
D(x, n) ∈ Df (x, n) ∩ Dg(x, n) for (x, n) ∈ ([0, 1] \ H) × N. Considering the family
{D(x, n) : (x, n) ∈ ([0, 1]\H)×N}, we can construct the ring ℜ ∈ ℜf (H, q̄)∩ℜg(H, q̄)

(using the first method presented in the proof of Theorem 4.1).
Case 3. One can apply the same reasoning as in Case 2.
The implications (iii) ⇒ (ii) and (ii) ⇒ (i) are obvious. �
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Notice that conditions (ii) and (iii) of Theorem 4.3 regard the existence of a Dar-
boux ring containing two functions fulfilling the assumptions of the theorem. How-
ever, separating these conditions is justifiable, which is illustrated by the follow-
ing example. Let τ1, τ2 : [0, 1] → R be defined as follows: τ1(x) = 0 for x ∈

{0} ∪ {1/2k : k = 0, 1, 2, . . .}; τ1(x) = 1 for x ∈ {3/2k+2 : k = 0, 1, 2, . . .}; τ1 lin-
ear on the intervals [1/2k+1, 3/2k+2] and [3/2k+2, 1/2k], k = 0, 1, 2, . . .; τ2(x) = 0 for
x ∈ {0} ∪ {1/2k : k = 0, 1, 2, . . .}; τ2(x) = −1 for x ∈ {3/2k+2 : k = 0, 1, 2, . . .}; τ2

linear on the intervals [1/2k+1, 3/2k+2] and [3/2k+2, 1/2k], k = 0, 1, 2, . . .. Of course
τ1 and τ2 fulfil the assumptions of Theorem 4.3. Let ℜ0 be the family of all functions
ξ : [0, 1] → R continuous on (0, 1] and such that {0} ∪ {1/2k : k = 0, 1, . . .} ⊂ Z(ξ).
It is easy to show that ℜ0 is a Darboux ring and τ1, τ2 ∈ ℜ0. By Theorem 4.3 there
exist an od-set H and an H-trajectory q̄ such that ℜτ1

(H, q̄) ∩ ℜτ2
(H, q̄) 6= ∅. Let

ℜ ∈ ℜτ1
(H, q̄) ∩ ℜτ2

(H, q̄). Consider g : [0, 1] → R defined by the formula g(x) = x.
Of course g ∈ ℜ \ ℜ0, so no ring belonging to ℜτ1

(H, q̄) ∩ ℜτ2
(H, q̄) is equal to ℜ0.

5. Rings of iteratively H-connected functions

Considerations dealing with real functions of real variable and results presented in
[15] motivate us to make an attempt of generalizing the notion of H-connected func-
tions to the case of functions defined on topological spaces. A typical generalization
is not possible because building one-sided first return paths is closely connected with
the ordering of the real line. Therefore, it seems to be natural to examine composi-
tions h = g ◦ f , where g is H-connected, f : X → [0, 1] and X is a topological space.
One question still unanswered deals with assumptions which need to be imposed on
the function f . The assumption that f is continuous seems to be the best adapted
to our theory.

Let X be a topological space, H an od-set and q̄ an H-trajectory. A function h :

X → R is called iteratively H-connected with respect to q̄ if there exist a continuous
function f : X → [0, 1] and a function g : [0, 1] → R H-connected with respect to q̄

such that h = g ◦ f . The family of all iteratively H-connected functions with respect
to q̄ defined on X will be denoted by It(X, H, q̄).

The symbol It(X) will stand for the family of all functions h : X → R for which
there exist an od-set Hh and an Hh-trajectory q̄ such that h ∈ It(X, Hh, q̄).

Of course, if h ∈ It(X), then h is a Darboux function.

From Theorem 1 in [15] one can immediately conclude that there exists a con-
nected, uncountable, Hausdorff space X such that every function f ∈ It(X) is con-
stant. Hence it is easy to deduce:
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Proposition 5.1. There exists a connected, uncountable, Hausdorff spaceX such

that there is no D-ring ℜ ⊂ It(X).

Theorem 5.2. LetX be nonsingleton, connected and locally connected Tychonoff

space. Then for each od-set H and each H-trajectory q̄ there exists a D-ring ℜ ⊂

It(X, H, q̄).

P r o o f. Let x1, x2 ∈ X . There exists a continuous function f : X → [0, 1]

such that f(x1) = 0 and f(x2) = 1. We will construct an H-connected function
τ0 : [0, 1] → [0, 1] discontinuous at 0 and a sequence {yl}l∈N such that yl ց 0 and
τ0(yl) = 1 for l ∈ N.

Consider two cases.

Case 1. There exists δ > 0 such that (0, δ] ⊂ H . Let Pr(0, q̄) = {tk}k∈N be the
first return path to 0 based on q̄. Put k0 = min{k : tk ∈ (0, δ)}. Consider a sequence
of intervals {(cl, dl)}l∈N such that tl+k0

< cl < dl < tl+k0−1 for l ∈ N and put
yl = (cl + dl)/2 for l ∈ N. Of course the sequence {yl}l∈N converges decreasingly
to 0.

Define a function τ0 in the following way: τ0(x) = 1 for x = yl, l ∈ N; τ0(x) = 0

for x ∈ {cl, dl}, l ∈ N; linear on the intervals [cl, yl] and [yl, dl], l ∈ N; τ0(x) = 0 in
the other cases.

Case 2. There is no δ > 0 such that (0, δ] ⊂ H . Let {In}n∈N be a sequence of
all components of H and let an and bn be the left and the right endpoint of In,
respectively. Consider a sequence of intervals {(cn, dn)}n∈N such that an < cn <

dn < bn for n ∈ N.

Define a function τ0 in the following way: τ0(x) = 1 for x = (cn + dn)/2, n ∈ N;
τ0(x) = 0 for x ∈ {cn, dn}, n ∈ N; linear on the intervals [cn, (cn + dn)/2] and
[(cn + dn)/2, dn], n ∈ N; τ0(x) = 0 in the other cases.

Let {yl}l∈N ⊂ {(cn + dn)/2: n ∈ N} be a sequence converging decreasingly to 0.

In both the above cases it is easy to notice that τ0 is H-connected with respect
to q̄, discontinuous at 0 and τ0(yl) = 1 for l ∈ N. By Theorem 4.1 there exists
a complete ring ℜ0 of functions H-connected with respect to q̄ such that τ0 ∈ ℜ0.
Of course ℜ0 is a D-ring.

Now consider the family ℜ = {τ ◦ f : τ ∈ ℜ0}. It is easy to show that ℜ is a ring
and ℜ ⊂ It(X, H, q̄).

To complete the proof we need to show that D(ℜ) 6= ∅.

Notice that X 6= f−1({0}) 6= ∅. X is connected, so we can choose x0 ∈

Fr(f−1({0})).

Let {Ut : t ∈ T } be a local base of X at x0 consisting of connected sets.
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It is easy to show that for each t ∈ T there exists l0 ∈ N such that for l > l0 we
have

(5.1) Ut ∩ f−1(yl) 6= ∅.

Consider a set Σ consisting of all ordered pairs (t, l) ∈ T ×N fulfilling the condition
(5.1). Let us define the following relation:

(t1, l1) ≪ (t2, l2) ⇔ (Ut2 ⊂ Ut1 ∧ l1 6 l2).

One can easily verify that Σ with the above relation is a directed set.
For σ = (t, l) ∈ Σ let xσ be a fixed point of the intersection Ut ∩ f−1(yl). In this

way we obtain a net {xσ}σ∈Σ.
We will show that

(5.2) x0 ∈ lim
σ∈Σ

xσ and lim
σ∈Σ

(τ0 ◦ f)(xσ) = 1.

Let W be an open neighborhood of x0. There exists t0 ∈ T such that Ut0 ⊂ W . Let
l0 ∈ N be such that Ut0 ∩ f−1(yl0) 6= ∅. Put σ0 = (t0, l0). One can easily show that
xσ ∈ W for σ ≫ σ0, and so, x0 ∈ lim

σ∈Σ
xσ .

Let σ = (t1, l1) ∈ Σ. Then (τ0 ◦ f)(xσ) = τ0(yl1) = 1, so lim
σ∈Σ

(τ0 ◦ f)(xσ) = 1. On

the other hand, (τ0 ◦ f)(x0) = τ0(0) = 0. Hence and from (5.2) we conclude that
x0 ∈ D(ℜ0), which completes the proof. �

Theorem 5.3. Let X be nonsingleton, connected and locally connected, perfectly

normal topological space. Then for each point x0 ∈ X there exist a [0, 1]-trajectory

q̄ and a prime ring ℜ ⊂ It(X, [0, 1], q̄) such that D(ℜ) = {x0}.

P r o o f. Let x0 be a fixed point of X and U 6= X an open neighborhood of
x0. Put F = X \ U . By [25], there exists a continuous function f : X → [0, 1]

such that f−1({0}) = {x0}, f−1({1}) = F and f(X) = [0, 1]. Let ϕ : [0, 1] → R

be a function defined as follows: ϕ(x) = sin(1/x) for x ∈ (0, 1] and ϕ(0) = 0. Of
course ϕ ∈ DB1([0, 1]). By Lemma 2.1, there exists a [0, 1]-trajectory q̄ such that
ϕ ∈ FRC([0, 1], q̄), so ϕ is [0, 1]-connected with respect to q̄.
Let ℜ0 be the family of all functions which are continuous on the interval (0, 1]

and first return continuous from the right with respect to q̄ at 0. Of course ϕ ∈ ℜ0.
It is easy to notice that the family ℜ0 is a ring of functions such that D(ℜ0) = {0}.
Consider the following family of functions defined on X :

ℜ1 = {τ ◦ f : τ ∈ ℜ0}.
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Let ℜ be a subset of ℜ1 consisting of all functions h ∈ ℜ1 such that x0 ∈ Z(h). One
can easily show that ℜ is a ring and ℜ ⊂ It(X, [0, 1], q̄).
We will show that

(5.3) D(ℜ) = {x0}.

Let x ∈ X and x 6= x0. Then x is a continuity point of τ ◦ f for each τ ∈ ℜ0, so
D(ℜ) ⊂ {x0}. Conversely, since D(ϕ) = {0}, one can show (similarly to the proof of
Theorem 5.2) that x0 ∈ D(ϕ ◦ f), and so {x0} ⊂ D(ℜ), which gives (5.3).
Easy observation that D(h) ⊂ Z(h) for each function h ∈ ℜ completes the proof.

�

Open problem. What assumptions need to be imposed on the set A ⊂ X so
that the theorem analogous to Theorem 5.3 with {x0} replaced by A be true?
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