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Abstract. An edge e of a k-connected graph G is said to be k-removable if G − e is
still k-connected. A subgraph H of a k-connected graph is said to be k-contractible if its
contraction results still in a k-connected graph. A k-connected graph with neither removable
edge nor contractible subgraph is said to be minor minimally k-connected. In this paper, we
show that there is a contractible subgraph in a 5-connected graph which contains a vertex
who is not contained in any triangles. Hence, every vertex of minor minimally 5-connected
graph is contained in some triangle.
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1. Introduction

An edge of a k-connected graph G is said to be k-removable if G − e is still k-

connected. A subgraph H of a k-connected graph is said to be k-contractible if its

contraction, that is, identification of every component of H to a single vertex, results

still in a k-connected graph. Further, H is called contractible edges if H ∼= K2.

The existence of k-removable edge or k-contractible subgraph can give an inductive

proof of some topics related to the connectivity of graph. Tutte’s ([8]) famous wheel

theorem implies that every 3-connected graph on more than four vertices contains an

edge whose contraction yields a new 3-connected graph. One can give an inductive

proof of Kuratowski’s theorem by the wheel theorem. So the existence and the dis-

tribution of k-removable edges or k-contractible subgraphs is an attractive research

area within graph connectivity theory.
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For k-connected graphs with k > 4, it is difficult to perform an induction proof by

using single edge contraction as there are infinitely many nonisomorphic k-connected

graphs which do not contain any k-contractible edge. These graphs are called con-

traction critically k-connected.

However, every 4-connected graph on at least seven vertices can be reduced to

a smaller 4-connected graph by contracting one or two edges subsequently. So, nat-

urally, for k > 1, one can expect that there are b and h such that every k-connected

graph on more than b vertices can be reduced to a more smaller k-connected graph

by contracting less than h edges ([5]). This is true for k = 1, 2, 3, 4. But for k > 6,

such a statement fails since toroidal triangulations of large face width are a coun-

terexample ([5]).

The question is still open for k = 5.

Conjecture 1 ([5]). There exist b, h such that every 5-connected graph G with at

least b vertices can be contracted to a 5-connected graph H such that 0 < |V (G)| −

|V (H)| < h.

The icosahedron shows that b > 13. A k-connected graph which can not be

reduced to a smaller k-connected graph by contracting or deleting any number of

edges is said to be a minor minimally k-connected graph. So, in order to deal with

Conjecture 1, we must find all the minor minimally 5-connected graphs. From the

graph minor theorem, it follows that there are only finitely many minor minimally

5-connected graphs. Determining the minor minimally 5-connected graphs should

be a hard task, G. Fijavž posted the following conjecture in [3].

Conjecture 2 ([3]). Every 5-connected graph contains a minor which is isomor-

phic to one of the graphs K6, K2,2,2,1, C5 ∗ K̄3, I, Ī or G0.

Here K6 is the complete graph on six vertices, the Turan graphK2,2,2,1 is obtained

from the complete graph on seven vertices by deleting three independent edges,

C5 ∗ K̄3 is obtained from the cycle C5 by adding three new vertices and making

them adjacent to all vertices of C5. Denote the icosahedron by I and Ī is the graph

obtained from I by replacing the edges of a cycle abcdea induced by the neighborhood

of some vertex with the edges of the cycle abceda. G0 is the graph obtained from the

icosahedron by deleting a vertex w, replacing the edge ab of the cycle abcdea induced

by the neighborhood of w with the two edges ac and ad, and, finally, identifying b

and e.

The statement is true when restricted to minor minimally 5-connected projective

graphs. It is true for all graphs on at most 10 vertices and all 5-regular graphs on at

most 12 vertices (see [3]).
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Let G be a graph with κ(G) = k. A separating set of G with cardinality k is called

a smallest separator. Let G be a graph with κ(G) = 5, T be a smallest separator

of G. We say that T is quasi-trivial if T = N(x) for some x ∈ V (G). We call

a graph with κ(G) = 5 a super 5-connected graph if every smallest separator set is

quasi-trivial. Further, a graph G with κ(G) = 5 is called essentially 6-connected if

for every smallest separator T , G−T has exactly two components and one of them is

an isolated vertex. In [5], M.Kriesell characterized a special kind of minor minimally

5-connected graphs as follows.

Theorem A ([5]). Let G be a minor minimally 5-connected graph. If G is

essentially 6-connected, then G has at most 12 vertices.

In this paper, we show the following two theorems.

Theorem 1. Let G be a 5-connected graph which contains a vertex that is not

contained in any triangles, then G has a contractible subgraph.

Theorem 2. Let G be a minor minimally 5-connected graph, then every vertex

of G is contained in some triangle.

Obviously, Theorem 2 is just a corollary of Theorem 1.

2. Terminology

All graphs considered here are supposed to be finite, simple and undirected.

For terms not defined here we refer the reader to [2]. Let G = (V (G), E(G)) be

a graph, where V (G) denote the vertex set and E(G) the edge set. Let e(G) = |E(G)|

and κ(G) denotes the vertex connectivity of G. An edge joining the vertices x and

y will be written as xy. For x ∈ F ⊆ V (G), we define NG(x) = {y : xy ∈ E(G)},

NG(F ) =
⋃

y∈F

NG(y) − F . By dG(x) = |NG(x)| we denote the degree of x and

Vk(G) stands for the set of vertices with degree k. For A ⊆ V (G), G[A] denotes the

subgraph induced by A and G − A denotes the graph obtained from G by deleting

the vertices of A together with the edges incident with them. A set T ⊆ V (G) is

called a separating set of a connected graph G, if G − T has at least two connected

components. A separating set with κ(G) vertices is called a k-separator. Let G be

a k-connected non-complete graph, T be a k-separator. The union of at least one but

not of all the components of G − T is called a T -fragment. Let F be a T -fragment.

Then, F̄ = V (G)−(F∪T ) 6= ∅, and F̄ is also a T -fragment andNG(F ) = T = NG(F̄ ).

The set of all k-separators of G will be denoted by TG. For NG(x), dG(x), NG(F )

and TG, we often omit the index G if it is clear from the context.
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Moreover, for contraction critical k-connected graph, we need the following nota-

tions. For a graph G, let H be a non-empty set of subsets of E(G). An H-fragment

of G is a T -fragment of G for any T ∈ TG such that there is an H ∈ H with H ⊆ T .

An inclusion-minimal H-fragment of G is called an H-end and one of the least vertex

numbers is an H-atom. The following properties of fragments are well known (for

the proof see [6]), we will use them without any further reference.

Let T, T ′ ∈ TG, and F, F ′ be the T, T ′-fragment of G, respectively. If F ∩ F ′ 6= ∅,

then

(1) |F ∩ T ′| > |F ′ ∩ T |, |F ′ ∩ T | > |F̄ ∩ T ′|.

If F ∩ F ′ 6= ∅ 6= F̄ ∩ F ′, then both F ∩ F ′ and F̄ ∩ F ′ are fragments of G, and

N(F ∩F ′) = (F ′∩T )∪(T ′∩T )∪(F ∩T ′). If F ∩F ′ 6= ∅ and F ∩F ′ is not a fragment

of G, then F̄ ∩ F ′ = ∅ and

(2) |F ∩ T ′| > |F ′ ∩ T |, |F ′ ∩ T | > |F̄ ∩ T ′|.

Also, by definition, the two endvertices of an edge which is not k-contractible are

contained in some k-separator. For an edge e of G, a fragment A of G is said to be

a fragment with respect to e if V (e) ⊆ N(A).

3. Some lemmas

Lemma 1 ([4]). Let A be a fragment of cardinality 2 in a contraction critically 5-

connected graph, and let t1 6= t2 in N(A) be such that |N(t1)∩A| = |N(t2)∩A| = 1.

Then, one of t1, t2 has a neighbor of degree 5, say t3, inN(A)−{t1, t2} and A ⊆ N(t3).

Lemma 2 ([1]). Let G be a contraction critically 5-connected graph. Let A be

a fragment with x ∈ N(A) such that |A| > 3 and |Ā| > 2. If |N(x) ∩ A| = 1, then

there exists a vertex y ∈ N(x) ∩ N(A) ∩ V5(G) such that N(x) ∩ A ⊆ N(y) ∩ A and

|N(y) ∩ A| > 2.

Here we call y is an admissible vertex of (x, A).

Lemma 3. Let G be a contraction critically 5-connected graph, and A = {x, y}

a fragment of G. Let B be a fragment with respect to xz, where z ∈ N(A). If

N(A) − {z} ⊆ N(y), then A ⊆ N(B).

P r o o f. Assume that A 6⊆ N(B), we may let y ∈ A ∩ B. Then we can see that

B̄ ∩ N(A) = ∅, since N(A) − {z} ⊆ N(y). Further, it can be seen that B̄ ∩ A = ∅

since |A| = 2. On the other hand, the facts that A ∩ N(B) 6= ∅ and B̄ ∩ N(A) = ∅

show that B̄ ∩ Ā = ∅. It follows that B̄ = ∅, a contradiction. �
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Lemma 4 ([7]). Let G be a contraction critically 5-connected graph and x is

a vertex of G which does not contained in any triangles. Let H = {xy : y ∈ N(x)},

then every H-end has cardinality 2.

4. Proof of Theorem 1

If G has some contractible edges, then we are done. So we may assume that

G is contraction critically 5-connected. Suppose x ∈ V (G) and x is not contained

in any triangle. Let H = {xy : y ∈ N(x)} and A be an H-atom. By Lemma 4,

we have |A| = 2. Let A = {a, b}, N(A) = {x, y, w1, w2, w3} and xy ∈ E(G). So

we may assume that ax ∈ E(G), then, as x is not contained in any triangle, we

have N(x) ∩ A = {a}, N(y) ∩ A = {b} and N(A) − {x, y} ⊆ N(a) ∩ N(b). By

Lemma 1 and the fact that x is not contained in any triangle, we may assume

d(w1) = 5 and w1y ∈ E(G). Let C be a fragment with respect to xa, then by

Lemma 3, we have A ⊆ N(C). Further, as x is not contained in any triangle, we

have |C ∩ N(A)| = |C̄ ∩ N(A)| = 2. We may assume that C ∩ N(A) = {y, w1},

C̄ ∩ N(A) = {w2, w3}. Thus there is no edge connecting the vertex set {w2, w3} to

the set {x, y, w1}.

Let G1 = G/{aw2, bw3} and w′

2
, w′

3
be the new vertices got by contracting

aw2, bw3, respectively. Next we will show that G1 is 5-connected.

Claim 1. δ(G1) > 5.

P r o o f. By the fact that there is no edge connecting the vertex set {w2, w3} to

the set {x, y, w1}, we can see that for any t ∈ V (G1)−{w′

2
, w′

3
}, dG1

(t) = dG(t) > 5.

Further, for w′

2
and w′

3
, we find that {x, w1, w

′

3
} ⊆ N(w′

2
) and {y, w1, w

′

2
} ⊆ N(w′

3
).

On the other hand, we see that, in G, both w2 and w3 have at least two neighbors

in Ā. It follows that dG1
(w′

2
) > 5 and dG1

(w′

3
) > 5. Hence Claim 1 holds. �

Claim 2. κ(G1) > 4.

P r o o f. Assume that κ(G1) 6 3 and let T ′ be a separator of cardinality 3.

Then, obviously, by the fact κ(G) = 5, we have {w′

2
, w′

3
} ⊆ T ′. Let B′ be a T ′-

fragment in G1. Then, as δ(G1) > 5, we have |B′| > 3 and |B′| > 3. Let T be the

corresponding original state of T ′ in G and B be the corresponding original state of

B′ in G. Clearly, |T | = 5, {a, w2, b, w3} ⊆ T and, further, we can see that B = B′ and

B̄ = B′. It follows that |N(b)∩T | > 3. This implies that |N(b)∩B| = |N(b)∩B̄| = 1.

We may assume that N(b)∩B = {w1}, then N(b)∩B̄ = {y}, which is a contradiction,

as w1y ∈ E(G). Thus we have κ(G1) > 4. �

Claim 3. If κ(G1) = 4, then {w′

2
, w′

3
} is contained in every smallest separat-

ing set.
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P r o o f. Suppose κ(G1) = 4 and let T ′ be a separator of cardinality 4, and B′

be a T ′-fragment in G1. Then, as δ(G1) > 5, we have |B′| > 2, |B′| > 2. Let T be

the corresponding original state of T ′ in G and B be the corresponding original state

of B′ in G. Hence B is a fragment of T . Further, as κ(G) = 5, {w′

2
, w′

3
} ∩ T ′ 6= ∅. If

{w′

2
, w′

3
} 6⊆ T ′, then we distinguish two cases according to the position of w′

2
.

Subcase 3.1. w′

2
∈ T ′ and w′

3
∈ B′.

Clearly, |T | = 5, {a, w2} ⊆ T , {b, w3} ⊆ B and |B| > 3. Further, B and B̄ = B′

are also the fragments of T . As b ∈ B and, for i = 1, 2, 3, wi ∈ N(b), we can see

that N(a) ∩ B̄ = {x} and y ∈ T . If |B̄| = 2, then, obviously, x is contained in some

triangle, a contradiction.

So we may assume that |B̄| > 3, thus, again by Lemma 2, there is an admissible

vertex t of (a, B̄) and x is contained in some triangle, a contradiction.

Subcase 3.2. w′

3
∈ T ′ and w′

2
∈ B′.

Similar to Subcase 3.1, we can see that |T | = 5, {b, w3} ⊆ T , {a, w2} ⊆ B and

|B| > 3. Further, we have B̄ = B′. As a ∈ B and, for i = 1, 2, 3, wi ∈ N(a),

we can see that N(b) ∩ B̄ = {y} and x ∈ T . Thus {x, w1} ⊆ T . If |B̄| = 2, then

let B̄ = {y, t}. As x is not contained in any triangles, xt 6∈ E(G). It follows that

d(t) 6 4, a contradiction.

So we may assume that |B̄| > 3. Now focusing on A and B, we find that a ∈ A∩B,

b ∈ A ∩ T , w2 ∈ N(A) ∩ B, {x, w1, w3} ⊆ T ∩ N(A) and y ∈ N(A) ∩ B̄.

Clearly, B̄ ∩ A = ∅ since |A| = 2. Now as N(A) ∩ B̄ = {y} and |B̄| > 3, we can

see that B̄ ∩ Ā 6= ∅ and |B̄ ∩ Ā| > 2. Next, by Lemma 2, there is an admissible

vertex of (b, B̄). It must be w1, as w3y 6∈ E(G) and x is not contained in any

triangle. So |B̄ ∩ N(w1)| > 2. Similarly, as A ∩ B = {a}, N(A) ∩ B = {w2} and

|B| > 3, we have B ∩ Ā 6= ∅. So B ∩ Ā is a fragment and |N(w1) ∩ (B ∩ Ā)| = 1 and

N(w1) ∩ N(B ∩ Ā) = ∅. Thus, by Lemma 2, we have |B ∩ Ā| 6 2.

If |B ∩ Ā| = 1, let B ∩ Ā = {t}, then we have |B| = 3 and {w1, w2, w3, x} ⊆ N(t).

Now focusing on B and C, we find that a ∈ B ∩ N(C), {b, x} ⊆ N(B) ∩ N(C),

w1 ∈ C ∩ N(B), y ∈ C ∩ B̄, w3 ∈ C̄ ∩ N(B) and w2 ∈ C̄ ∩ B. Now we can see that

|B ∩ C̄| > 2, since xw2 6∈ E(G). It follows that B ∩ C = ∅, as |B| = 3. It follows

that B ∩ C̄ = {w2, t}. This is a contradiction, since w1 ∈ N(t).

So we may assume that |B ∩ Ā| = 2. Now, as |N(w1) ∩ (B ∩ Ā)| = 1, we can see

that B ∩ Ā is connected. Hence, by the fact that x is not contained in any triangles,

we can see that |N(x)∩(B ∩ Ā)| = 1 and, clearly, N(x)∩(B∩ Ā) 6= N(w1)∩(B∩ Ā).

Now, by Lemma 1, there is a vertex of degree 5 in N(B∩Ā)−{x, w1} which adjacent

to one of {x, w1}. On the other hand, N(w1)∩N(B∩ Ā) = ∅. It follows that there is

a vertex of degree 5 in N(B∩ Ā)−{x, w1} which is adjacent to x, thus x is contained

in some triangle, a contradiction. Thus Claim 3 holds. �
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Now we are ready to show that G1 is 5-connected. For otherwise, let T ′ be

a separator of cardinality 4, B′ be a T ′-fragment in G1. Then, as δ(G1) > 5, we have

|B′| > 2, |B′| > 2. Let T be the corresponding original state of T ′ in G and B be

the corresponding original state of B′ in G. By Claim 3, we have {w′

2
, w′

3
} ⊆ T ′ and

thus |T | = 6 and {a, b, w2, w3} ⊆ T . We have B = B′ and B̄ = B′.

We first show that N(b) ∩ B 6= ∅, N(b) ∩ B̄ 6= ∅. Assume N(b) ∩ B = ∅. Let

T0 = T − {b}, then T0 is a smallest separator set of G. Let B0 = B, clearly,

B0 is a fragment of T0. Further, B̄0 = B̄ ∪ {b} (obviously, |B̄0| > 3). Now we

have N(a) ∩ B0 = {x}, |B0| = 2, then, obviously, x is contained in some triangles,

a contradiction. So |B0| > 3; then, by Lemma 2, x is contained in some triangles,

a contradiction.

So N(b) ∩ B 6= ∅ and, similarly, N(b) ∩ B̄ 6= ∅. Without loss of generality, let

N(b) ∩ B = {w1} and N(b) ∩ B̄ = {y}. This is a contradiction, as w1y ∈ E(G). �
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