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Existence of a positive solution to a nonlocal

semipositone boundary value problem on a time scale

Christopher S. Goodrich

Abstract. We consider the existence of at least one positive solution to the dy-
namic boundary value problem

−y∆∆(t) = λf(t, y(t)), t ∈ [0, T ]T

y(0) =

∫

τ2

τ1

F1(s, y(s)) ∆s

y
(

σ2(T )
)

=

∫

τ4

τ3

F2(s, y(s)) ∆s,

where T is an arbitrary time scale with 0 < τ1 < τ2 < σ2(T ) and 0 < τ3 < τ4 <

σ2(T ) satisfying τ1, τ2, τ3, τ4 ∈ T, and where the boundary conditions at t = 0
and t = σ2(T ) can be both nonlinear and nonlocal. This extends some recent
results on second-order semipositone dynamic boundary value problems, and we
illustrate these extensions with some examples.

Keywords: time scales; integral boundary condition; second-order boundary value
problem; cone; positive solution

Classification: Primary 34B10, 34B15, 34B18, 34N05, 39A10; Secondary 26E70,
47H07

1. Introduction

In this paper we consider the existence of at least one positive solution to the
dynamic boundary value problem (BVP)

−y∆∆(t) = λf(t, y(t)), t ∈ [0, T ]T

y(0) =

∫ τ2

τ1

F1(s, y(s)) ∆s

y
(

σ2(T )
)

=

∫ τ4

τ3

F2(s, y(s)) ∆s

(1.1)

for λ > 0 a small parameter, where T is an arbitrary time scale with 0 < τ1 <

τ2 < σ2(T ) and 0 < τ3 < τ4 < σ2(T ) satisfying τ1, τ2, τ3, τ4 ∈ T; we assume that
0, σ2(T ) ∈ T. Since we further assume that f satisfies

(1.2) −u(t) ≤ f(t, y),
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for some function u : [0, T ]T → (0,+∞), for all (t, y) ∈ [0, T ]T × [0,+∞), we
consider in problem (1.1) the semipositone problem. We note that assumption
(1.2), wherein the function f is bounded below by the function u rather than by
a constant, is similar to the assumption used, for example, by Anderson [3]; in
fact, similar to [3], we shall require that u satisfy an integrability condition — see
condition (H5) in Section 2. Furthermore, since F1, F2 : (0, σ2(T ))T× [0,+∞) →
[0,+∞) need not be identically zero, it follows that the boundary condition both
at t = 0 and at t = σ2(T ) can be both nonlocal and nonlinear. The special case
in which both F1 ≡ F2 ≡ 0 and λ = 1 has already been treated in the existing
literature, as will be mentioned momentarily.

In order to contextualize our result, we begin by noting, as intimated above,
that semipositone problem (1.1) in the special case of both λ = 1 and y(0) = 0 =
y(σ2(T )) has been discussed by Sun and Li [34]. In that work the authors discuss
the existence of at least one positive solution to the boundary value problem (1.1)
under the aforementioned restrictions. A follow-up work by the same authors
[35] addresses the same BVP as in [34] but with slightly more general structural
assumptions on the nonlinearity f .

More generally, the study of semipositone BVPs has seen several contributions
in the past few years on a variety of time scales, both in the case of second- and
higher-order BVPs as well as first-order BVPs — see, for example, [2], [3], [4],
[5], [8], [9], [24], [25] and the references therein. Some of these works are in the
setting of an arbitrary time scale, which is the setting in which we work in this
paper. For instance, in [2] Anderson studies the semipositone problem

(

py∇
)∆ − q(t)y(t) + λf(t, y(t)) = 0, t ∈ (t1, tn)T

αy (t1)− βp (t1) y
∇ (t1) =

n−1
∑

i=2

aiy (ti)

γy (tn)− δp (tn) y
∇ (tn) =

n−1
∑

i=2

biy (ti) ,

where n ≥ 3 and T is a time scale. On the other hand, in [3] Anderson studies a
similar problem but in the first-order setting, whereas Anderson and Zhai study in
[4] a second-order delta-nabla problem but with a simpler three-point boundary
condition; each of these papers is also studied in the time scales setting. The
papers by Dahal [8], [9] investigate second-order semipositone problems on a time
scale with two-point boundary conditions. Finally, the paper by Goodrich [24]
studies the problem

∆νy(t) = λf(t+ ν − 1, y(t+ ν − 1)), t ∈ [0, T ]Z

y(ν − 1) = y(ν + T ) +

N
∑

i=1

F (ti, y (ti)) ,
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where 1 < ν ≤ 2, which is a discrete fractional BVP.
Let us mention, furthermore, that the study of analysis on a time scale can

be traced back to Hilger [27] and has attracted considerable attention in recent
years. Indeed, by analyzing problem (1.1) in the time scales setting we recover
here results not only for ordinary differential equations (T = R) but also difference
equations (T = Z), q-difference equations (T = qZ), and other even more exotic
time scales.

On the other hand, the study of BVPs with either nonlocal and/or nonlinear
boundary conditions has seen much study of late. In particular, the boundary
conditions studied in the above mentioned papers are clearly of nonlocal-type. In
addition, the special study of integral boundary conditions has been completed
in a variety of settings — see, for example, [6], [11], [26], [28] and the references
therein. The separate case of nonlinear boundary conditions has also been ad-
dressed recently by Goodrich [12], [13], [14], [16], [17], [18], [20], [22], [23], Infante
[29], and Infante, et al. [30], [31], [32], [33]. Finally, Goodrich [15], [19], [21] has
provided some results for nonlocal BVPs in the discrete and continuous fractional
setting. The archetypical problem studied in the previously mentioned papers (at
least in the continuous setting, though the discrete setting is analogous) is

−y′′(t) = f(t, y(t)), t ∈ (0, 1)

y(0) = ϕ1(y)

y(1) = ϕ2(y),

where ϕ1, ϕ2 : C([0, 1]) → R are nonlinear functionals. In certain cases such
as [18], [20], [22], [23], [29], [30], [31], [32], [33] this very general form is studied
in a slightly specialized setting, wherein the boundary conditions are replaced by
y(0) = H1(L1(y)) and y(1) = H2(L2(y)) where H1, H2 : R → R are continuous
functions and L1, L2 : C([0, 1]) → R are linear functionals. Depending upon
the structural assumptions imposed on the functionals ϕ1 and ϕ2 it is certainly
possible to include integral-type boundary conditions. However, we are not aware
of any existing works of this sort that would include problem (1.1) as a special
case. This is, in part, due to the fact that the functions F1 and F2 appearing in
(1.1) are not necessarily linear in y.

In this brief note we combine some of the aforementioned investigations by con-
sidering problem (1.1). Of particular note, we do not require that either integrand
F1 or F2 appearing in (1.1) splits in the sense that F1(t, y) := α(t)β(y) for some
suitably restricted functions α and β; this seems to be a common assumption in
the literature — see certain of the aforementioned works, for instance [6], [11],
[28]. Rather, we require a superlinearity-type condition on F1 and F2, namely
that

(1.3) lim sup
y→0+

Fi(t, y)

y
< µi,
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uniformly for t ∈ [τ2i−1, τ2i]T ⊆ (0, σ2(T ))T, for each i = 1, 2 and for numbers
µ1 and µ2 to be defined later — see Section 2. By utilizing (1.3) we avoid hav-
ing to make growth assumptions about Fi except essentially at 0. This seems
to be a new approach, and we consider this to be one of the contributions of
this work. Moreover, as a second contribution of this work, since neither F1 nor
F2 is required to be linear in y, the boundary conditions here are examples of
nonlinear, nonlocal boundary conditions, and so, we also provide some new con-
tributions that complement the existing literature on nonlocal BVPs. Our results
specifically generalize Sun and Li [34], [35] since in those works only conjugate
boundary conditions were considered. However, our results also complement the
many papers that have recently appeared on nonlocal BVPs, as mentioned earlier
in this section. Finally, the technique that we employ in this note can certainly
be applied to other similar BVPs, and so, is not limited to problem (1.1).

2. Preliminaries

We assume throughout a general familiarity with the time scales calculus, and
we refer the reader to the textbook by Bohner and Peterson [7] for a thorough
introduction to the subject. Therefore, we begin by constructing an operator with
which to study problem (1.1). To this end, define the function q : [0, σ2(T )]T →
[0, 1) by

(2.1) q(t) :=
t
(

σ2(T )− t
)

(σ2(T ))
2 ,

where we observe that q(0) = 0 = q(σ2(T )). Note that the function q was
introduced previously in [34].

We introduce next the cone in which we shall look for positive solutions of
problem (1.1). In particular, let C([0, σ2(T )]T) represent the collection of all func-
tions y : [0, σ2(T )]T → R such that y is continuous. The space C([0, σ2(T )]T) is
Banach when equipped with the usual max norm, ‖ · ‖. We next define the cone
K ⊆ C([0, σ2(T )]T) by

(2.2) K :=
{

y ∈ C
([

0, σ2(T )
]

T

)

: y(t) ≥ q(t)‖y‖ for t ∈
[

0, σ2(T )
]

T

}

.

Furthermore, define the function G : [0, σ2(T )]T× [0, σ2(T )]T → R by (see either
[7, Chapter 4] or [34, (2.2)])

(2.3) G(t, s) :=
1

σ2(T )

{

t
(

σ2(T )− σ(s)
)

, t ≤ s

σ(s)
(

σ2(T )− t
)

, t ≥ σ(s)
.

We now provide a lemma, which is a slight modification of [34, Lemma 2.1].

Lemma 2.1. For any t ∈ [0, σ2(T )]T and s ∈ [0, σ2(T )]T it holds that

(2.4) 0 ≤ G(t, s) ≤ σ2(T )q(t).
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Furthermore, for each t ∈ [0, σ2(T )]T it holds that

(2.5) 0 ≤ q(t) ≤ min

{

σ2(T )− t

σ2(T )
,

t

σ2(T )

}

.

Proof: The truth of inequality (2.4) follows directly from [34, Lemma 2.1]. On
the other hand, to show that inequality (2.5) is true, we directly compute both
that

t
(

σ2(T )− t
)

(σ2(T ))2
≤ σ2(T )− t

σ2(T )

since it holds that

t ≤ σ2(T ),

and that

t
(

σ2(T )− t
)

(σ2(T ))
≤ t

σ2(T )

since it holds that

σ2(T )− t ≤ σ2(T ).

And this completes the proof. �

Let us next state the assumptions that we make henceforth. As mentioned in
Section 1, due to condition (H1) we make no assumptions about Fi away from
y = 0. In particular, this means that the asymptotic behavior of Fi and f may
be quite different.

H1: For each i = 1, 2, the function Fi : T× [0,+∞) → [0,+∞) is continuous,
and, furthermore, there is µi ≥ 0 such that

(2.6) lim sup
y→0+

Fi(t, y)

y
≤ µi,

uniformly for each t ∈ [τ2i−1, τ2i]T.
H2: Assume that the nonlinearity f : [0, T ]T × R → R is continuous.
H3: Assume that there exist numbers α1, α2 ∈ (0, σ2(T ))T, satisfying α1 < α2,

such that limy→+∞
f(t,y)

y
= +∞, uniformly for t ∈ [α1, α2]T.

H4: Assume that limy→0+
f(t,y)

y
= 0, uniformly for t ∈ [0, σ2(T )]T.

H5: Assume that there is a function u ∈ C((0, T )T) such that −u(t) ≤ f(t, y),
for all (t, y) ∈ [0, T ]T × R, where it holds that

(2.7) 0 <

∫ σ(T )

0

u(s) ∆s < +∞.

As is typical when studying semipositone BVPs, we shall need to consider
solutions of some other problems. First we consider the unique solution of the
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auxiliary problem

−w∆∆ = λu(t), t ∈ (0, T )T

w(0) = 0

w
(

σ2(T )
)

= 0.

(2.8)

Henceforth, we shall denote by w the unique solution of problem (2.8). First of
all, we note that w may be represented by

(2.9) w(t) = λ

∫ σ(T )

0

G(t, s)u(s) ∆s.

In addition, by Lemma 2.1 we estimate

w(t) ≤ λ

∫ σ(T )

0

σ2(T )q(t)u(s) ∆s

≤ λσ2(T )q(t)ξ,

(2.10)

where in (2.10) and the sequel we put

(2.11) ξ :=

∫ σ(T )

0

u(s) ∆s.

Note that by condition (H5) we find that

(2.12) 0 < ξ < +∞.

Having earlier defined K we show next that (y−w)(t) ≥ 0 whenever y ∈ K has
sufficiently large norm.

Lemma 2.2. Let y ∈ K be given. If ‖y‖ ≥ λσ2(T )ξ, then (y − w)(t) ≥ 0, for
each t ∈ [0, σ2(T )]T.

Proof: From the bound on w given in (2.10) together with the fact that y ∈ K
we estimate

y(t)− w(t) ≥ y(t)− λσ2(T )q(t)ξ

≥ q(t)‖y‖ − λσ2(T )q(t)ξ

= q(t)
(

‖y‖ − λσ2(T )ξ
)

.

(2.13)

Since q(t) ≥ 0 for each t ∈ [0, σ2(T )]T, we deduce from (2.13) that (y −w)(t) ≥ 0
for each t ∈ [0, σ2(T )]T provided that

(2.14) ‖y‖ ≥ λσ2(T )ξ.

And this completes the proof. �
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Next we consider the modified problem

−y∆∆ = λ [f (t,max {(y − w)(t), 0}) + u(t)] , t ∈ (0, T )T

y(0) =

∫ τ2

τ1

F1(t,max{(y − w)(t), 0}) ∆t

y
(

σ2(T )
)

=

∫ τ4

τ3

F2(t,max{(y − w)(t), 0}) ∆t.

(2.15)

Let us next show that if y solves (2.15), w solves (2.8), and (y − w)(t) ≥ 0
for each t ∈ [0, σ2(T )]T, then the function x : [0, σ2(T )]T → R defined by
x(t) := y(t)− w(t) is a positive solution of the original problem (1.1).

Lemma 2.3. Suppose that y solves (2.15), w solves (2.8), and (y − w)(t) ≥ 0
for each t ∈ [0, σ2(T )]T. Then the function x : [0, σ2(T )]T → R defined by

x(t) := y(t)− w(t) is a positive solution of the original problem (1.1).

Proof: Note that

(2.16) x(0) = y(0)− w(0) =

∫ τ2

τ1

F1(t, x(t)) ∆t

and that

(2.17) x
(

σ2(T )
)

= y
(

σ2(T )
)

− w
(

σ2(T )
)

=

∫ τ4

τ3

F2(t, x(t)) ∆t.

Thus, x satisfies the boundary conditions in (1.1). On the other hand, we compute

(2.18) −x∆∆(t) = −y∆∆(t)+w∆∆(t) = λf(t, x(t))+λu(t)−λu(t) = λf(t, x(t)).

Thus, the function x is a solution of problem (1.1). Since x(t) ≥ 0 for each t, by
assumption, the function x is a positive solution of problem (1.1), as desired. �

In light of Lemma 2.3, we see that an appropriate operator T : Crd([0, σ2(T )]T)
→ Crd([0, σ2(T )]T) with which to study the existence of solution of the modified
problem (2.15) is defined by

(Ty)(t) :=
σ2(T )− t

σ2(T )

∫ τ2

τ1

F1 (s, y
∗(s)) ∆s

+
t

σ2(T )

∫ τ4

τ3

F2 (s, y
∗(s)) ∆s

+ λ

∫ σ(T )

0

G(t, s) [f (s, y∗(s)) + u(s)] ∆s,

(2.19)

where we have defined y∗ by

(2.20) y∗(t) := max{(y − w)(t), 0}.
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It then follows that fixed points of T are solutions of the modified problem (2.15).
The next lemma demonstrates that K is invariant under T .

Lemma 2.4. Let T be defined as in (2.19). Then T (K) ⊆ K.

Proof: For the most part the result follows from the proof of [34, Lemma 2.4].
We need only account for the perturbation terms in (2.19) that do not appear in
the corresponding operator considered in [34]. This does require a minor modifi-
cation of the strategy employed in the proof of [34, Lemma 2.4].

So, to this end, let us first suppose that there exists t0 ∈ (0, σ2(T ))T such that
‖Ty‖ = (Ty)(t0). Then using both the fact that f(t, y∗(t)) + u(t) ≥ 0, for each t,
and the conclusion of Lemma 2.1 we estimate, for each t ∈ [0, σ2(T )]T,

(Ty)(t) =
σ2(T )− t

σ2(T )

∫ τ2

τ1

F1 (s, y
∗(s)) ∆s

+
t

σ2(T )

∫ τ4

τ3

F2 (s, y
∗(s)) ∆s+ λ

∫ σ(T )

0

G(t, s) [f (s, y∗(s)) + u(s)] ∆s

≥ σ2(T )− t

σ2(T )

∫ τ2

τ1

F1 (s, y
∗(s)) ∆s+

t

σ2(T )

∫ τ4

τ3

F2 (s, y
∗(s)) ∆s

+ q(t)λ

∫ σ(T )

0

G (t0, s) [f (s, y∗(s)) + u(s)] ∆s

≥ q(t)

∫ τ2

τ1

F1 (s, y
∗(s)) ∆s+ q(t)

∫ τ4

τ3

F2 (s, y
∗(s)) ∆s

+ q(t)λ

∫ σ(T )

0

G (t0, s) [f (s, y∗(s)) + u(s)] ∆s

≥ q(t)

[

σ2(T )− t0

σ2(T )

∫ τ2

τ1

F1 (s, y
∗(s)) ∆s+

t0

σ2(T )

∫ τ4

τ3

F2 (s, y
∗(s)) ∆s

+ λ

∫ σ(T )

0

G (t0, s) [f (s, y∗(s)) + u(s)] ∆s

]

= q(t)‖Ty‖.

(2.21)

Note that in (2.21) we have used the fact that whenever G(t0, s) 6= 0 it holds that

(2.22) G(t, s) =
G(t, s)

G (t0, s)
·G (t0, s) ≥ q(t)G (t0, s) ,

where the inequality in (2.22) follows from first part of the proof of [34, Lemma 2.4].
Moreover, observe that the desired inequality in (2.21) holds even if G(t0, s) = 0
and thus (2.22) cannot be invoked. Indeed, we merely observe that if G(t0, s) = 0
for some s, then it trivially follows that G(t, s) ≥ q(t)G(t0, s) = 0. In any case,
(2.21) is valid for all admissible t and s.
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Next suppose that ‖Ty‖ = (Ty)(0). We then estimate, for each t ∈ [0, σ2(T )]T,

(Ty)(t) ≥ σ2(T )− t

σ2(T )

∫ τ2

τ1

F1 (s, y
∗(s)) ∆s ≥ q(t)

∫ τ2

τ1

F1 (s, y
∗(s)) ∆s

= q(t)(Ty)(0)

= q(t)‖Ty‖.

(2.23)

Finally, if ‖Ty‖ = (Ty)(σ2(T )), then we estimate, for each t ∈ [0, σ2(T )]T,

(Ty)(t) ≥ t

σ2(T )

∫ τ4

τ3

F2 (s, y
∗(s)) ∆s ≥ q(t)

∫ τ4

τ3

F2 (s, y
∗(s)) ∆s

= q(t)(Ty)
(

σ2(T )
)

= q(t)‖Ty‖.

(2.24)

In summary, then, no matter the value of t0 ∈ [0, σ2(T )]T, if ‖Ty‖ = (Ty)(t0),
then one of (2.21), (2.23), or (2.24) implies that (Ty)(t) ≥ q(t)‖Ty‖, for each
t ∈ [0, σ2(T )]T. And this completes the proof. �

We conclude this section with a statement of Krasnosel’skĭı’s fixed point theo-
rem (see [1]). We shall use this result to prove the existence theorem of Section 3.

Lemma 2.5. Let B be a Banach space and let K ⊆ B be a cone. Assume that

Ω1 and Ω2 are bounded, open sets contained in B such that 0 ∈ Ω1 and Ω1 ⊆ Ω2.

Assume, further, that T : K∩(Ω2\Ω1) → K is a completely continuous operator.

If either

(1) ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2; or

(2) ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2;

then T has at least one fixed point in K ∩ (Ω2 \ Ω1).

3. Main result and examples

We first state our existence result. This result asserts that problem (1.1), sub-
ject to conditions (H1)–(H5), has at least one positive solution for small eigen-
values λ. In order to illustrate that this result is not merely abstract, yielding no
reasonable way to determine the range of eigenvalues generated by the theorem,
we also provide a corollary, which gives a demonstration of how a range for λ

may be reasonably calculated from the initial data. We then conclude with two
examples, which shall demonstrate the use of the result in some representative
situations.

Theorem 3.1. Suppose that conditions (H1)–(H5) hold. In addition, suppose

that

(3.1) µ1

∫ τ2

τ1

1 ∆s+ µ2

∫ τ4

τ3

1 ∆s < 1
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holds. Then there exists a number λ1 ∈ (0, 1] such that for each λ ∈ (0, λ1]
problem (1.1) has at least one positive solution.

Proof: We begin by noting that standard arguments, which we thus omit, in-
dicate that the operator T defined above is completely continuous. In light of
Lemma 2.4, in order to invoke Lemma 2.5 it only remains to show that T is
alternatively a cone contraction and cone expansion on appropriate sets.

To demonstrate this latter claim, we proceed as follows. First we recall that
G(t, s) ≤ G(σ(s), s), for each t ∈ [0, σ(T )]T. Put

(3.2) ϑ0 := µ1

∫ τ2

τ1

1 ∆s+ µ2

∫ τ4

τ3

1 ∆s.

Due to condition (3.1), we may select a number ε1 > 0 sufficiently small such that

(3.3) ϑ0 + ε1 < 1.

Define the numbers η1, η2 > 0 such that

(3.4) η1

∫ τ2

τ1

1 ∆s+ η2

∫ τ4

τ3

1 ∆s ≤ ε1.

Then by condition (H1), we may find a number r1 > 0 such that

(3.5) Fi(t, y) ≤ (ηi + µi) y,

for each y ≤ r1 and each t ∈ [τ2i−1, τ2i]T for i = 1, 2. Define another number, say
ε2 > 0, satisfying

(3.6) ϑ0 + ε1 + ε2 < 1.

Choose the number η3 > 0 such that

(3.7) η3

∫ σ(T )

0

G(σ(s), s) ∆s ≤ ε2.

Then by condition (H4) we find r∗1 > 0, satisfying without loss of generality
r1 > r∗1 , such that

(3.8) |f(t, y)| ≤ η3y,

for each t ∈ [0, σ2(T )]T, whenever 0 < y ≤ r∗1 . Finally, let λ1 ∈ R be the number
defined by
(3.9)

λ1 := min







1, r∗1 (1− ε1 − ε2 − ϑ0)

[

∫ σ(T )

0

G(σ(s), s)u(s) ∆s

]−1

,
r∗1

σ2(T )ξ







,



Positive solution to a nonlocal semipositone BVP on a time scale 519

which is well defined. Select an arbitrary but fixed λ such that 0 < λ ≤ λ1. Define
the set Ωr∗

1
by

(3.10) Ωr∗
1
:= {y ∈ B : ‖y‖ < r∗1} ,

and observe that for each y ∈ K ∩ ∂Ωr∗
1
it holds that

(3.11) λ ≤ r∗1
σ2(T )ξ

=
‖y‖

σ2(T )ξ
,

whence ‖y‖ ≥ λσ2(T )ξ. Consequently, Lemma 2.2 implies that (y − w)(t) ≥ 0,
for each t ∈ [0, σ2(T )]T. Finally, noting that, for each t ∈ [0, σ(T )]T,

(3.12) (y − w)(t) ≤ ‖y‖,

it follows that for each y ∈ K ∩ ∂Ωr∗
1
we estimate

(Ty)(t) ≤ σ2(T )− t

σ2(T )

∫ τ2

τ1

(µ1 + η1) y
∗(s) ∆s+

t

σ2(T )

∫ τ4

τ3

(µ2 + η2) y
∗(s) ∆s

+ λ

∫ σ(T )

0

G(σ(s), s) [f (s, y∗(s)) + u(s)] ∆s

≤
∫ τ2

τ1

(µ1 + η1) y
∗(s) ∆s+

∫ τ4

τ3

(µ2 + η2) y
∗(s) ∆s

+ η3λ

∫ σ(T )

0

G(σ(s), s)y∗(s) ∆s+ λ

∫ σ(T )

0

G(σ(s), s)u(s) ∆s

≤
[

µ1

∫ τ2

τ1

1 ∆s+ µ2

∫ τ4

τ3

1 ∆s

]

‖y‖+
[

η1

∫ τ2

τ1

1 ∆s+ η2

∫ τ4

τ3

1 ∆s

]

‖y‖

+ ε2‖y‖+ λ

∫ σ(T )

0

G(σ(s), s)u(s) ∆s

≤ (ϑ0 + ε1 + ε2) ‖y‖+ (1− ε1 − ε2 − ϑ0) ‖y‖
= ‖y‖,

(3.13)

for each t ∈ [0, σ2(T )]T, whence T is a cone compression on K ∩ ∂Ωr∗
1
.

On the other hand, first we recall that if E ⊂ (0, σ2(T ))T is given, then it holds
that there is γ ∈ (0, 1) such that mint∈E G(t, s) ≥ γG(σ(s), s), for each s — see
[7], [10]. We assume henceforth that E := [α1, α2]T, which fixes the constant γ.
With this number γ henceforth fixed, we proceed as follows. Define the number
q0 by

(3.14) q0 := min
t∈[α1,α2]T

q(t).
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Observe that since the open set (α1, α2)T is assumed to be contained in (0, σ2(T ))T
— cf., condition (H3) —, it follows from the definition of q that q0 > 0. Select a
number η4 > 0 such that

(3.15) η4

∫ σ(T )

0

1

2
λγq0G(σ(s), s) ∆s ≥ 1,

where λ is fixed from the first part of the proof. Condition (H3) then implies the
existence of a number r2 > 0 such that

(3.16) f(t, y) ≥ η4y,

for each t ∈ [α1, α2]T, whenever y ≥ r2. Next note that if ‖y‖ > 2λσ2(T )ξ, then
it follows that

(3.17)
1

2
< 1− λσ2(T )ξ

‖y‖ .

Consequently, in observance of the proof of Lemma 2.2, especially estimate (2.13),
for each y ∈ K satisfying ‖y‖ > 2λσ2(T )ξ it holds that

(y − w)(t) ≥ q(t)
[

‖y‖ − λσ2(T )ξ
]

≥ q0
[

‖y‖ − λσ2(T )ξ
]

= ‖y‖ · q0
[

1− λσ2(T )ξ

‖y‖

]

≥ 1

2
q0‖y‖,

(3.18)

for each t ∈ [α1, α2]T. In addition, observe that if it also holds that ‖y‖ ≥
r2
q0

+ λσ2(T )ξ, then it follows that

(3.19) (y − w)(t) ≥ q0
[

‖y‖ − λσ2(T )ξ
]

≥ r2,

for each t ∈ [α1, α2]T. Consequently, let y ∈ K ∩ ∂Ωr∗
2
, where the number r∗2

defined by

(3.20) r∗2 := max

{

2r∗1 , 2λσ
2(T )ξ,

r2

q0
+ λσ2(T )ξ

}

,
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and the open set Ωr∗
2
is defined as suggested by (3.10). Let t0 ∈ T be selected

such that α1 ≤ t0 ≤ α2. Then for each such y we estimate

(Ty) (t0) ≥ λ

∫ σ(T )

0

G (t0, s) [f (s, y∗(s)) + u(s)] ∆s

≥ λ

∫ α2

α1

γG(σ(s), s) [f(s, (y − w)(s)) + u(s)] ∆s

≥ λ

∫ α2

α1

γG(σ(s), s) [η4 (y(s)− w(s)) + u(s)] ∆s

≥ λ

∫ α2

α1

γG(σ(s), s)η4(y − w)(s) ∆s

≥ λ

∫ α2

α1

η4γG(σ(s), s)q(s)
[

‖y‖ − λσ2(T )ξ
]

∆s

≥ ‖y‖ · η4
[

1

2
λ

∫ α2

α1

γG(σ(s), s)q0 ∆s

]

≥ ‖y‖,

(3.21)

where we use the nonnegativity of F1 and F2 in the first inequality and estimate
(2.13) in the fifth inequality. Consequently, since (3.21) holds for the particular t0
chosen above, we conclude that ‖Ty‖ ≥ ‖y‖, for each y ∈ K∩∂Ωr∗

2
. By Lemma 2.5

we deduce the existence of a function

(3.22) y0 ∈ K ∩
(

Ωr∗
2
\ Ωr∗

1

)

such that y0 is a solution of the modified problem (2.15).
It remains to argue that the original problem (1.1) has a positive solution.

To this end, define the function x : [0, σ2(T )]T → R by x(t) := y0(t) − w(t).
Since ‖y0‖ ≥ r∗1 , it follows from the preceding analysis — in particular, inequality
(3.11) — that x(t) ≥ 0, for each t ∈ [0, σ2(T )]T. Consequently, an invocation of
Lemma 2.3 provides the desired conclusion. And this completes the proof. �

Corollary 3.2. Define ϑ0 as in (3.2) in the proof of Theorem 3.1. Let the num-

bers ε1, ε2, η1, η2, η3 ≥ 0 be defined as follows.

ε1 :=
1

2
(1− ϑ0)

ε2 :=
1

4
(1− ϑ0)

η1 :=
1

4

[
∫ τ2

τ1

1 ∆s+

∫ τ4

τ3

1 ∆s

]−1

(1− ϑ0)

η2 :=
1

4

[
∫ τ2

τ1

1 ∆s+

∫ τ4

τ3

1 ∆s

]−1

(1− ϑ0)
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η3 :=
1

4

[

∫ σ(T )

0

G(σ(s), s) ∆s

]−1

(1− ϑ0)

Finally, define the number r∗1 by

min

{

sup
y∈[0,+∞)

max
t∈[τ1,τ2]T

F1(t, y) ≤ (η1 + µ1) y, sup
y∈[0,+∞)

max
t∈[τ3,τ4]T

F2(t, y)

≤ (η2 + µ2) y, sup
y∈[0,+∞)

max
t∈[0,σ2(T )]

T

|f(t, y)| ≤ η3y

}

.

Then defining the number λ1 as in (3.9) in the proof of Theorem 3.1 it follows

that problem (1.1) has at least one positive solution for each λ ∈ (0, λ1].

Proof: Omitted since it follows from the first half of the proof of Theorem 3.1.
�

Example 3.3. We consider first an example on the time scale T = R. Note that
in this case hypothesis (3.1) reduces to

(3.23) µ1 (τ2 − τ1) + µ2 (τ4 − τ3) < 1.

Consequently, it follows that whenever (3.23) together with hypotheses (H1)–(H5)
hold, problem (1.1) will have at least one positive solution for all λ ∈ (0, λ1] for
some λ1 > 0 sufficiently small.

In fact, remaining on the time scale T = R let us give an explicit illustration
of the use of Corollary 3.2. Let us specifically consider the problem

−y∆∆(t) = λf(t, y(t)), t ∈ (0, 1)

y(0) =

∫ 3
10

1
4

1

10
s[y(s)]2 ds

y (1) =

∫ 3
5

1
2

1

5
[y(s)]3 ds,

(3.24)

where the function f is defined by

f(t, y) :=

{

− 1
2 t

2y3, 0 ≤ y ≤ 1 and t ∈ [0, 1]

t2
[

− 1
2 + (y − 1)2

]

, 1 ≤ y < +∞ and t ∈ [0, 1]
.

Note that we may set

u(t) ≡ 1

2
.
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Furthermore, straightforward calculations demonstrate that the constants in Co-
rollary 3.2 assume the following values.

ε1 =
1

2

ε2 =
1

4

η1 =
5

3

η2 =
5

3

η3 =
3

2

ξ =
1

2
[
∫ 1

0

G(s, s)u(s) ds

]−1

= 12

r∗1 = min

{

√
3,

50

3
,

√

15

2

}

Then (3.9) implies that

λ1 = 1.

Thus, in this example we would conclude that problem (3.24) has a positive
solution whenever λ ∈ (0, 1]. In particular, this implies that the nonlocal BVP

−y∆∆(t) = f(t, y(t)), t ∈ (0, 1)

y(0) =

∫ 3
10

1
4

1

10
s[y(s)]2 ds

y (1) =

∫ 3
5

1
2

1

5
[y(s)]3 ds,

(3.25)

has at least one positive solution — i.e., problem (3.24) in case λ = 1.

Example 3.4. Let us now consider the time scale T = Z. Note that in this case
hypothesis (3.1) reduces to

(3.26) µ1

τ2−1
∑

s=τ1

1 + µ2

τ4−1
∑

s=τ3

1 < 1.

Consequently, it follows that whenever (3.26) together with hypotheses (H1)–(H5)
hold, problem (1.1) will have at least one positive solution for all λ ∈ (0, λ1] for
some λ1 > 0 sufficiently small. Note that to obtain (3.26) we use the fact — see
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[7] — that on time scale T = Z it holds that

∫ b

a

f(t) ∆t =

b−1
∑

t=a

f(t).
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