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KYB ERNET IK A — VO LUME 4 9 ( 2 0 1 3 ) , NUMBER 4 , PAGES 6 0 1 – 6 1 8

ANALYSIS OF STRUCTURAL PROPERTIES OF PETRI
NETS BASED ON PRODUCT INCIDENCE MATRIX

Guangyou Ji and Mingzhe Wang

This paper presents some structural properties of a generalized Petri net (PN) with an algo-
rithm to determine the (partial) conservativeness and (partial) consistency of the net. A product
incidence matrix A = CCT or Ã = CT C is defined and used to further improve the relations
among PNs, linear inequalities and matrix analysis. Thus, based on Cramer’s Rule, a new
approach for the study of the solution of a linear system is given in terms of certain sub-
determinants of the coefficient matrix and an efficient algorithm is proposed to compute these
sub-determinants. The paper extends the common necessary and/or sufficient conditions for
conservativeness and consistency in previous papers and some examples are designed to explain
the conclusions finally.

Keywords: Petri net, structural property, linear inequality, product incidence matrix

Classification: 93C65, 93A15

1. INTRODUCTION

A Petri net (PN) is a mathematical model which aims to analyze the performance of
manufacturing systems, communication networks, business management, web services,
and so on (see [10, 12, 13] for further details). The analysis of a PN model aims to inves-
tigate its structural and behavioral properties. But with the increase of the scale of the
systems, some computational difficulties would arise, which may prevent us from getting
a clear view of the influence of various factors on the dynamic behavior of the systems.
Many researchers are thus motivated to investigate better methods and techniques for
analyzing structural properties such as boundness, (partial) conservativeness, (partial)
repetitiveness and (partial) consistency (see [7, 10]). The reachability graph or cover-
ability graph method was proposed in [8], which followed the order of the PN model, and
required the enumeration of all the reachable markings of the net. Unfortunately, this
method suffered from the state space explosion problem. Thus, the reduction technique,
which can preserve certain structural properties of the PNs, was introduced to analyze
some large PN models. However, if these PNs can not represent the required properties,
it would be very difficult to find and correct the design mistakes with this method (see
[2, 3, 21]). A more efficient method to explore structural properties of PN models is the
algebraic method, which can analyze the properties directly based on the incidence ma-
trices of PNs without self-loop. The algebraic method based on the incidence matrix for
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structural analysis presents advantages over other approaches such as the reachability
graph or the reduction method. First, it can avoid the state space explosion problem
and be carried out on a computer. Second, some useful information about the dynamic
behavior can be obtained by using structural analysis (see [1, 5, 17, 19]).

Up to the present, there is no one common analytical method for a general PN,
whereas the linear-algebra-based method for structural analysis is remarkably successful
in analyzing some subclasses of pure PNs such as choice-free PNs, forward (or backward)-
conflict-free, and forward (or backward)-concurrent-free PNs (see [18, 19]). In [14], the
authors have further perfected the linear-algebra method for the structural analysis of
general PNs. Some structural properties of general PNs have been shown, which im-
proves the link between PNs and the linear-algebra techniques. Firstly, some conditions
are given to detect the structural boundedness and repetitiveness of PNs by eigenvalues
analysis of their incidence matrices, which must be a square matrix. Unfortunately, the
incidence matrices of most PNs are not square, and thus the eigenvalues of their incidence
matrices do not exist. To overcome the limitation, we consider the product incidence
matrix A = CCT or Ã = CT C, where C is the incidence matrix of a PN. By inves-
tigating the product incidence matrix, the relations are further improved among PNs,
linear inequalities and matrix analysis. Secondly, the algebraic tests are given which
are suitable for digital computation for property analysis of PNs. The tests have to be
carried out by using either elementary scalar products or sub-determinants of the inci-
dence matrix. Based on the Cramer′s Rule (see [6]), we will continue to investigate the
structural properties of general PNs by computing determinants of special sub-matrices
of the incidence matrix. Some examples are given to explain our conclusions.

In this paper, new algebraic methods based on product incidence matrices for struc-
tural analysis of PN models are proposed. This is rarely found in previous papers of PN
theory. Besides, a new method is proposed for computing P(T)-invariants and check-
ing the conservativeness, consistency of PNs based on special sub-determinants of the
incidence matrix of the net. So far, the Fourier-Motzkin (FM) algorithm is the most
generally used method for computing invariants, the biggest disadvantage of which is
that the number of invariants in a given net may grow exponentially (see [7, 15, 16, 20]).
Our methods are implemented on a computer by MATLAB and LINDO, which makes
the structural analysis of general PN models easier.

The rest of the paper is organized as follows. Some basic concepts and notations about
matrix theory and PN are introduced in Section 2. Some propositions are obtained and
proved about conservativeness, consistency of a general PN by analyzing the product
incidence matrices in Section 3. Linear inequalities are generated by the linear combi-
nations of some sub-determinants of the incidence matrix and the properties of general
PNs are tested by the alternating signs of these linear inequalities in Section 4. Several
examples are given to illustrate the results in Section 5. Finally, Section 6 concludes
this paper.
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2. PRELIMINARIES AND BASIC DEFINITIONS

2.1. Matrix

In this paper, m and n are fixed positive integers (unless otherwise specified). The set
of nonnegative integers and real numbers is denoted by N and R, respectively. Given
matrices A = (aij) and B = (bij) in Rn×n. A is said to be nonnegative (or positive),
denoted as A ≥ 0 (or A > 0), if aij ≥ 0 (or aij > 0), ∀i, j ∈ Hn = {1, 2, . . . , n}. Define
A ≥ B for A−B ≥ 0, if aij ≥ bij , for ∀i, j ∈ Hn. Also, a column vector x = (xi)T in Rn

is said to be nonnegative (or positive), denoted as x ≥ 0 (or x > 0), if xi ≥ 0(or x > 0),
for ∀i ∈ Hn. AT is the transpose of a matrix A. The determinant of a matrix A will be
denoted by det(A). A matrix A = (aij) is said to be reducible if there exists a non-void
set F ⊂ Hn, such that aij = 0 for i ∈ F and j ∈ Hn − F . A matrix A is irreducible if it
is not reducible (see [4]).

Definition 2.1. (see Hefferon [6])
(1) The number det(Aij) is called the (i, j)th minor of A, where Aij is the matrix of
order n− 1 obtained by deleting the ith row and jth column of A.
(2) The (i, j) cofactor of A, denoted Mij , is the number (−1)i+jdet(Aij). The adjugate
matrix of A is defined by adj(A) = (Mij)T .

Definition 2.2. (see Fiedler and Pták [4]) We shall denote by Z the class of all real
square matrices whose off-diagonal elements are all non-positive (i. e. A matrix A is said
to be in Z if and only if all off-diagonal entries of A are non-positive, for a given matrix
A ∈ Rn×n).

Proposition 2.3. (see Fiedler and Pták [4]) If A ∈ Z is irreducible and singular, and
all real eigenvalues of A are nonnegative, then there exists a vector x > 0 such that
Ax = 0.

Fact 2.4. (see Hefferon [6]) Given any real matrix C = (cij)m×n, then the following
facts are salient:
(1) ker(CT ) = ker(CCT ) = {x ∈ Rm | CT x = 0};
(2) ker(C) = ker(CT C) = {x ∈ Rn | Cx = 0}.

Note that the two facts explain the solution spaces of the equations CCT x = 0 and
CT Cx = 0 is equivalent to the solution spaces of the equations CT x = 0 and Cx = 0,
respectively.

2.2. Petri nets

In this section, we recall the definitions and properties of a general PN (see [10, 11]). A
PN structure is defined by a 4-tuple Σ = (P, T, Pre, Post), where P = {p1, p2, . . . , pm} is
a finite set of places represented by circles, T = {t1, t2, . . . , tn} is a finite set of transitions
represented by bars; Pre : P × T → N is the input functions identifying the relation
from the places to the transitions; Post : P ×T → N is the output functions identifying
the relation from the transitions to the places. The incidence matrix C of a PN is an
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m × n matrix defined as C = Post − Pre, where C(i, j) = Post(pi, tj) − Pre(pi, tj)
describes the change in the number of tokens in place pi when transition tj fires. In the
whole paper, it is assumed that a PN is pure, i. e. it has no self-loop, which satisfies
Pre(p, t)Post(p, t) = 0, ∀p ∈ P and ∀t ∈ T . A PN Σ is k-bounded if the number of
tokens in each place does not exceed a finite number k for any reachable marking. A PN
Σ is structurally bounded if there exists an m-vector x ∈ Nm, x > 0 such that CT x ≤ 0.
A PN Σ is said to be (partially) conservative if there exists an m-vector x ∈ Nm, x > 0
(x ≥6= 0) such that CT x = 0. A vector x ≥6= 0 is called P-invariant, if it satisfies
CT x = 0.

A PN Σ is (partially) repetitive if there exists an n-vector y ∈ Nn, y > 0 (y ≥6= 0)
such that Cy ≥ 0. A PN Σ is said to be (partially) consistent if there exists an n-vector
y ∈ Nn, y > 0 (y ≥6= 0) such that Cy = 0. A vector y ≥6= 0 is called T-invariant, if it
satisfies Cy = 0 (see [10]).

3. RESULTS ON THE PRODUCT INCIDENCE MATRIX

In [10], necessary and/or sufficient conditions are provided for some important structural
properties of a PN, such as structural boundedness, conservativeness, repetitiveness and
consistency. They only depend on the topological structures of PNs and are independent
of the initial marking. Therefore, the structural properties of a pure PN can be com-
pletely described by the incidence matrix C and its associated equations or inequalities.
There have been many well-known methods based on incidence matrix for structural
properties (see [7]). In this section, some structural properties will be derived by com-
puting a product incidence matrix A = CCT = (aij) ∈ Rm×m (i. e. it represents the
relation between places) or Ã = CT C = (ãij) ∈ Rn×n (i. e. it represents the relation
between transitions), where Cm×n is the incidence matrix of the Petri net Σ. Some
results are presented on the conservativeness and consistency by using the product inci-
dence matrix. According to [9], a PN Σ is well structured if it is both conservative and
consistent. We will give, in the following, a characterization for a well-structured PN.

Proposition 3.1. Let C ∈ Rm×n be the incidence matrix of a PN Σ. If the following
conditions hold:
(1) The product incidence matrix A = CCT is singular;
(2) In the adjugate matrix adj(A) = (Mij)T , i, j ∈ Hm, there is at least one column or
row, whose elements are either all positive or all negative (i. e. there exists at least one
j, such that Mij > 0 or Mij < 0, for ∀i ∈ Hm).

Then the PN Σ is conservative.

P r o o f . According to Laplace′s expansion (see [6]) for the determinant of a square
matrix A ∈ Rm×m, we have A ·adj(A) = adj(A) ·A = det(A) ·Em, where Em is an m×m
identity matrix. Since the matrix A is singular, then det(A) = 0. So A · adj(A) = 0,
i. e. A · (Mij)T = 0. Thus, each column of the adjugate matrix adj(A) is denoted as
xi = (Mi1,Mi2, . . . ,Mim)T , i ∈ Hm, then we have Axi = 0, i ∈ Hm. Without loss of
generality, we suppose every element of the ith column are either positive or negative,
i. e. for i ∈ Hm, Mij > 0 or Mij < 0, ∀j ∈ Hm. There are two cases to be considered:
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Case 1): For some i ∈ Hm, Mij > 0, ∀j ∈ Hm, there exists a positive vector u = xi >
0 such that Au = 0, that is CCT u = 0. By Fact 2.4(1), we have CT u = 0. Therefore,
the PN Σ is conservative.

Case 2): For some i ∈ Hm, Mij < 0, ∀j ∈ Hm, there exists a positive vector u =
−xi > 0 such that Au = 0, that is CCT u = 0. By Fact 2.4(1), we have CT u = 0.
Therefore, the PN Σ is conservative. �

Remark 3.2.

• The singularity assumption about A is required, since otherwise Ax = 0 would
have only the trivial solution x = 0 (see Proposition 3.10 and Proposition 3.11).

• In Proposition 3.1, if 3.1(2) is replaced with 3.1(2′): In the adjugate matrix
adj(A) = (Mij)T , there is at least one column or row, whose elements are either
all non-positive or all non-negative. Then the PN Σ is partially conservative.

Proposition 3.3. Let C ∈ Rm×n be the incidence matrix of a PN Σ. If the following
conditions hold:

(1) The product incidence matrix Ã = CT C is singular;

(2) In the adjugate matrix adj(Ã) = (M̃ij)T , i, j ∈ Hn, there is at least one column or
row, whose elements are either all positive or all negative (i. e. there exists at least one
j, such that M̃ij > 0 or M̃ij < 0, for ∀i ∈ Hn).

Then the PN Σ is consistent.

P r o o f . This is obtained by the above method and by Fact 2.4(2). �

Remark 3.4.

• In Proposition 3.3, if 3.3(2) is replaced with 3.3(2′): In the adjugate matrix
adj(Ã) = (M̃ij)T , there is at least one column or row, whose elements are either
all non-positive or all non-negative. Then the PN Σ is partially consistent.

• Furthermore, it is noted that the above propositions hold in the case of the rank of
the incidence matrix C is m−1 or n−1. According to the definition of an adjugate
matrix, it is well known that the adjugate matrix of the product incidence matrix
A = CCT or Ã = CT C is zero matrix, when the rank of incidence matrix C is less
than m− 1 or n− 1.

• Since the product incidence matrices A = CCT and Ã = CT C are symmetric,
their adjugate matrices are also symmetric. Thus the complexity of the cofactors
of A = CCT or Ã = CT C to be computed is less than m(m + 1)/2 or n(n + 1)/2,
respectively. Hence, comparing to that of [14], the computational complexity of
these results is reduced.

Based on the above conclusions, we obtain the following important theorem.
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Theorem 3.5. Let C be the incidence matrix of a PN Σ. The PN is well structured,
if the following conditions hold:

(1) If the two matrices A = CCT and Ã = CT C are singular;

(2) In the adjugate matrices adj(A) and adj(Ã), both have at least one column or
row, whose elements are either all positive or all negative.

P r o o f . Since both Proposition 3.1 and Proposition 3.3 are satisfied, the conclusion
holds. �

Example 3.6. (see Murata [10]) The PN Σ shown in Fig.1 represents deterministic
parallel activities. Activities are represented by t2 and t3. They begin after the firing of
transition t1 and end after the firing of transition t4. Its incidence matrix C is

C =


1 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 −1
−1 0 0 1

 .

Then, we have Ã = CT C =


3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3

,

adj(Ã) = adj(CT C) =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 .

Hence, the first column of adj(Ã) is

x1 =
(

M11,M12,M13,M14

)T =
(

8, 8, 8, 8
)T

> 0.

From Proposition 3.3, the PN Σ is consistent.

t1

p1

t3p2 p4

t4

t2 p3

p5

Fig. 1. A PN representing parallel activities

We will show the eigenvalue method for analyzing conservativeness and consistency
of a PN based on the following fact.
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Fact 3.7. (see Murata [10]) If C ∈ Rm×n is any real non-zero matrix, then all the
eigenvalues of the symmetric matrices A = CCT and Ã = CT C are nonnegative real
numbers.

Proposition 3.8. If A = CCT ∈ Z is irreducible and singular, then the PN Σ is
conservative.

P r o o f . According to Fact 3.7 and Proposition 2.3, there exists x > 0 such that Ax =
CCT x = 0. By Fact 2.4(1), we have CT x = 0. Hence, the PN Σ is conservative. �

Proposition 3.9. If Ã = CT C ∈ Z is irreducible and singular, then the PN Σ is
consistent.

P r o o f . According to Fact 3.7 and Proposition 2.3, there exists x > 0 such that Ãx =
CT Cx = 0. By Fact 2.4(2), we have Cx = 0. Hence, the PN Σ is consistent. �

Proposition 3.10. If A = CCT ∈ Z and Ã = CT C ∈ Z is irreducible and singular,
then the PN Σ is well structured.

P r o o f . Because the conditions of Proposition 3.6 and Proposition 3.7 are satisfied,
the conclusion holds. �

Example 3.11. Let a PN Σ be as shown in Figure 2. Its product incidence matrix
CT C is

CT C =



2 0 0 −1 0 −1 0 0
0 3 0 −1 0 0 −1 −1
0 0 4 0 −1 0 −1 −2
−1 −1 0 4 0 −1 −1 0
0 0 −1 0 2 0 0 −1
−1 0 0 −1 0 2 0 0
0 −1 −1 −1 0 0 3 0
0 −1 −2 0 −1 0 0 4


.

It is easy to know that Ã = CT C ∈ Z is irreducible and singular, then the PN Σ is
consistent by Proposition 3.9.

Proposition 3.12. If A = CCT is nonsingular, then PN Σ is not conservative.

P r o o f . If A = CCT is nonsingular, no eigenvalue of A can be zero. The only solution
of equation Ay = CCT y = 0 is y = 0, that is, the only solution of equation CT y = 0 is
y = 0 by Fact 2.4(1). The PN Σ is not conservative. �

Proposition 3.13. If Ã = CT C is nonsingular, then PN Σ is not consistent.

P r o o f . The proof is similar to that of Proposition 3.12. �

It means that non-conservation and non-consistency of a PN can be determined by the
rank of its incidence matrix Cm×n, that is, rank(C) = m, then PN is not conservative,
or rank(C) = n, then PN is not consistent.
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p5

t6

p3 t3

p6

p2

t1

p1
p4

t4

p8

t2

t7 p10 t8

p9

t5
p11

p7

 Fig. 2. An augmented marked graph 

4. ANALYSIS OF STRUCTURAL PROPERTIES

Rachid and Abdellah adopted determinants of special sub-matrices of the incidence
matrix to describe necessary and/or sufficient conditions for structural boundedness,
repetitiveness, conservativeness, and consistency for some general PNs. However, the
rank of the incidence matrices of these PNs must be equal to m− 1 or n− 1 (see [14]).
Thus, if the required conditions are not satisfied, it is hard to test sub-determinants
alternating in sign when the scale of the system increases. In this section, based on the
methods of [14] and the Cramer′s Rule (see [6]), we will continue to analyze structural
properties of general PNs without self-loops.

Given a matrix Cm×n whose rank is r, denoted as rank(Cm×n) = r, then there exists
r rows which are linearly independent. Without loss of generality, suppose that the first
r rows of C are linearly independent (it is always possible to permute rows of C such
that this condition is met). Denoted as

Ĉ =


c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

...
...

cr1 cr2 . . . crn

 . (1)

Let u = n− r, denote Cj+1,j+2,...,j+u as a square matrix of order n− u = r obtained
from Ĉ by deleting its j+1, j+2, . . . , j+uth columns, where j ∈ {0, 1, . . . , r}. According
to the knowledge of linear algebra and Cramer′s Rule (see [6]), we have the following
Lemma and Corollary.

Lemma 4.1. Given a linear system Cx = 0 and rank(Cm×n) = r, then the solution
space S = {x ∈ Rn | Cx = 0} can be expressed by

S = {x = (x1, x2, . . . , xn)n | xi = (−1)i−1[ρ1det(Ci,j+2,j+3,...,j+u)

+ρ2det(Ci,j+1,j+3,...,j+u) + . . . + ρudet(Ci,j+1,j+2,...,j+u−1)], ∀i ∈ Hn} (2)

where ρ1, ρ2, . . . , ρu are proper constants and independent of i, and n− u = r.
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P r o o f . It can be easily proved by the Cramer′s Rule and the algebra technique. �

Note that:

(i) det(Cj1,...,ji,...,jk,...,ju)=0, if ji = jk, for some ji, jk∈{j + 1, j + 2, . . . , j + u}, i 6= k.
Otherwise det(Cj1,...,ji,...,jk,...,ju) = (−1)τ(j1j2...ju)det(Cj+1,j+2,...,j+u), if ji 6= jk, for
∀i, k ∈ {1, 2, . . . , u}, i 6= k, where τ(j1j2 . . . ju) is the reversal number of the sequence
j1, j2, . . . , ju.

(ii) Owing to rank(Cm×n) = r = n − u, there exists at least one det(Cj+1,j+2,...,j+u)
such that det(Cj+1,j+2,...,j+u) 6= 0. A matrix Dn×u denoted as

det(C1,j+2,...,j+u) det(C1,j+1,...,j+u) . . . det(C1,j+1,...,j+u−1)
...

...
...

...
det(Ci,j+2,...,j+u) det(Ci,j+1,...,j+u) . . . det(Ci,j+,...,j+u−1)

...
...

...
...

det(Cn,j+2,...,j+u) det(Cn,j+1,...,j+u) . . . det(Cn,j+1,...,j+u−1)

 .

Thus x = diag(1,−1, . . . , (−1)i−1, . . . , (−1)n−1) · Dn×u · (ρ1, ρ2, . . . , ρu)T is a general
solution of the linear system Cx = 0.

Corollary 4.2. Given a linear system Cx = 0 and rank(Cm×n) = r = n − 2 (i. e.
u = 2), then S = {x ∈ Rn | Cx = 0} can be expressed by

S = {x = (x1, x2, . . . , xn)n | xi = (−1)i−1[ρ1det(Ci,k) + ρ2det(Ci,l)], ∀i ∈ Hn, k < l}

where ρ1 and ρ2 are proper constants and independent of i.

Example 4.3. Let us consider the linear system:
x1 − x2 + x3 − 2x5 = 0
x2 − x3 + x4 − 3x5 = 0

−x1 − x4 + 5x5 = 0.

Its coefficient matrix is

C =

 1 −1 1 0 −2
0 1 −1 1 −3
−1 0 0 −1 5

 ,

and rank(C) = 2 = 5− 3, then we have Ĉ =
(

1 −1 1 0 −2
0 1 −1 1 −3

)
.

Observing the matrix Ĉ, we get det(C345) =
∣∣∣∣1 −1
0 1

∣∣∣∣ = 1 6= 0, i. e. C345 is a 2 × 2

matrix obtained from Ĉ by deleting its 3,4,5th columns, so we can choose j = 2. Thus,
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any solution of the linear system can be expressed as:

x1 = ρ1det(C145) + ρ2det(C135) + ρ3det(C134)
x2 = −[ρ1det(C245) + ρ2det(C235) + ρ3det(C234)]
x3 = ρ1det(C345) + ρ2det(C335) + ρ3det(C334)
x4 = −[ρ1det(C445) + ρ2det(C435) + ρ3det(C434)]
x5 = ρ1det(C545) + ρ2det(C535) + ρ3det(C534).

So, we have D5×3 =


0 −1 5
−1 1 −3
1 0 0
0 −1 0
0 0 1

.

Thus, x = diag(1,−1, 1,−1, 1) ·D5×3 · (ρ1, ρ2, ρ3)T is a general solution of the linear
system.

By the Appendix′s algorithm, we can obtain a positive solution x = (4, 3, 1, 1, 1)T by
choosing the constants ρ1 = ρ2 = ρ3 = 1 (see Example 5.1.).

Some interesting results arise from the above Lemma and Corollary for conservative-
ness and consistency of PNs which will be shown next.

Theorem 4.4. Let r be the rank of the incidence matrix Cm×n of a PN, and let Ĉ and
Cj+1,j+2,...,j+u, j ∈ {0, 1, . . . , r} be as defined above. If r = m− u, 1 ≤ u < m, then the
PN is conservative if and only if there exist non-zero constants ρ1, ρ2, . . . , ρu such that

[ρ1det(Ci,j+2,...,j+u) + ρ2det(Ci,j+1,...,j+u) + . . . + ρudet(Ci,j+1,...,j+u−1)]

×[ρ1det(Ci+1,j+2,...,j+u) + ρ2det(Ci+1,j+1,...,j+u) + . . . + ρudet(Ci+1,j+1,...,j+u−1)] < 0,

∀i ∈ Hm−1. (3)

P r o o f . Necessity: If the PN is conservative, then according to the definition of the
conservativeness, there exists an integer vector x > 0 of order m such that CT x = 0.
This implies:

m∑
i=1

cijxi = 0, ∀j ∈ Hn. (4)

Since the rank of C is r = m−u, by Lemma 4.1, the solution of these equations takes
the form of (2),

xi = (−1)i−1{ρ1det(Ci,j+2,j+3,...,j+u) + ρ2det(Ci,j+1,j+3,...,j+u) + . . .

. . . + ρudet(Ci,j+1,j+2,...,j+u−1)}.

Since xi > 0 for ∀i ∈ Hm, we have the inequality xixi+1 > 0. It implies

(−1)2i−1[ρ1det(Ci,j+2,...,j+u) + ρ2det(Ci,j+1,...,j+u) + . . . + ρudet(Ci,j+1,...,j+u−1)]

×[ρ1det(Ci+1,j+2,...,j+u) + ρ2det(Ci+1,j+1,...,j+u) + . . . + ρudet(Ci+1,j+1,...,j+u−1)] > 0.
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Therefore, (3) holds.

Sufficiency: From (3), we have

[ρ1det(Ci,j+2,...,j+u) + ρ2det(Ci,j+1,...,j+u) + . . . + ρudet(Ci,j+1,...,j+u−1)] 6= 0.

Let

yi =| ρ1det(Ci,j+2,...,j+u) + ρ2det(Ci,j+1,...,j+u) + . . . + ρudet(Ci,j+1,...,j+u−1) |

∀i ∈ Hm. (5)

Because all entries of C are integers, all the determinants det(Cj1,j2,...,ju) are integers
for all 1 ≤ j1, j2, . . . , ju ≤ m. Evidently, each yi is an integer and yi > 0 for ∀i ∈ Hm.
We will show that yi is a solution of (4).

By (2) and (4), they satisfy

m∑
i=1

cij{(−1)i−1[ρ1det(Ci,j+2,j+3,...,j+u) + ρ2det(Ci,j+1,j+3,...,j+u) + . . .

. . . + ρudet(Ci,j+1,j+2,...,j+u−1)]} = 0 (6)

or equivalently

c1j{ρ1det(C1,j+2,...,j+u) + ρ2det(C1,j+1,...,j+u) + . . . + ρudet(C1,j+1,...,j+u−1)}

−c2j{ρ1det(C2,j+2,...,j+u) + ρ2det(C2,j+1,...,j+u) + . . . + ρudet(C2,j+1,...,j+u−1)}+ . . .

±cmj{ρ1det(Cm,j+2,...,j+u) + ρ2det(Cm,j+1,...,j+u) + . . . + ρudet(Cm,j+1,...,j+u−1)} = 0.
(7)

From (3), there are the following cases:

Case 1): If

[ρ1det(Ci,j+2,...,j+u) + ρ2det(Ci,j+1,...,j+u) + . . . + ρudet(Ci,j+1,...,j+u−1)] > 0

and [ρ1det(Ci+1,j+2,...,j+u)+ρ2det(Ci+1,j+1,...,j+u)+ . . .+ρudet(Ci+1,j+1,...,j+u−1)] < 0,
∀i ∈ Hm−1, in this case, it is clear that

[ρ1det(C1,j+2,...,j+u) + ρ2det(C1,j+1,...,j+u) + . . . + ρudet(C1,j+1,...,j+u−1)] > 0,

therefore

[ρ1det(Ci,j+2,...,j+u) + ρ2det(Ci,j+1,...,j+u) + . . . + ρudet(Ci,j+1,...,j+u−1)] > 0,

if i is odd, and

[ρ1det(Ci,j+2,...,j+u) + ρ2det(Ci,j+1,...,j+u) + . . . + ρudet(Ci,j+1,...,j+u−1)] < 0,

if i is even.



612 G. JI AND M. WANG

So equations (6) or (7) imply

m∑
i=1

cij{(−1)i−1[ρ1det(Ci,j+2,j+3,...,j+u) + ρ2det(Ci,j+1,j+3,...,j+u) + . . .

. . . + ρudet(Ci,j+1,j+2,...,j+u−1)]} = 0.

Hence it is proved that (5) is a solution of (4). In other words there exists a positive
integer vector y = (y1, y2, . . . , ym)T , such that CT y = 0. Hence, the PN is conservative.

Case 2): If

[ρ1det(Ci,j+2,...,j+u) + ρ2det(Ci,j+1,...,j+u) + . . . + ρudet(Ci,j+1,...,j+u−1)] < 0

and

[ρ1det(Ci,j+2,...,j+u)+ρ2det(Ci,j+1,...,j+u)+. . .+ρudet(Ci,j+1,...,j+u−1)] > 0,∀i ∈ Hm−1,

in the same way, it is clear that

[ρ1det(C1,j+2,...,j+u) + ρ2det(C1,j+1,...,j+u) + . . . + ρudet(C1,j+1,...,j+u−1)] < 0.

Therefore

[ρ1det(Ci,j+2,...,j+u) + ρ2det(Ci,j+1,...,j+u) + . . . + ρudet(Ci,j+1,...,j+u−1)] < 0,

if i is odd, and

[ρ1det(Ci,j+2,...,j+u) + ρ2det(Ci,j+1,...,j+u) + . . . + ρudet(Ci,j+1,...,j+u−1)] > 0,

if i is even. The rest of the proof is similar to the above, except that we must multiply
(6) or (7) by −1 in order to obtain (5). The proof is completed. �

Since rank(C) = rank(CT ), the same arguments as in Theorem 4.4 can be used to
prove the following corollaries on consistency. We consider the case: the rank of the
incidence matrix C of the PN be r = n− u.

Corollary 4.5. Let r be the rank of the incidence matrix C of a PN, and let ĈT and
CT

j+1,j+2,...,j+u, j ∈ {0, 1, . . . , r} be as defined above. If r = n − u, 1 ≤ u < n then the
PN is consistent if and only if there exist non-zero constants: ρ1, ρ2, . . . , ρu, such that:

[ρ1det(CT
i,j+2,...,j+u) + ρ2det(CT

i,j+1,...,j+u) + . . . + ρudet(CT
i,j+1,...,j+u−1)]

×[ρ1det(CT
i+1,j+2,...,j+u) + ρ2det(CT

i+1,j+1,...,j+u) + . . . + ρudet(CT
i+1,j+1,...,j+u−1)] < 0

∀i ∈ Hn−1. (8)

P r o o f . The proof is similar to Theorem 4.1. �

Corollary 4.6. If it satisfies (3), then the PN is structurally bounded.
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P r o o f . The proof is similar to Theorem 1 of [14]. �

Corollary 4.7. If it satisfied (8), then the PN is repetitive.

P r o o f . The proof is similar to Theorem 2 of [14]. �

In order to explain the significance and validity of our results, we give the two im-
portant remarks given as follows.

Remark 4.8. If u = 1, Theorem 4.4 and Corollary 4.5 are Proposition 1 and Corollary 1
of [14], respectively. For the integrality of this paper, we will list them.

Proposition 4.9. (Proposition 1 of [14]) Let r = m − 1 be the rank of the incidence
matrix C of a PN, and let Ĉ and Ci be defined as above when u = 1. Then the necessary
and sufficient condition for the PN to be conservative is that the following condition is
fulfilled:

det(Ci)det(Ci+1) < 0,∀i ∈ Hm−1. (9)

Corollary 4.10. (Corollary 1 of [14]) Let r = n−1 be the rank of the incidence matrix
C of a PN, and let ĈT and CT

i be defined as above when u = 1. Then the necessary
and sufficient condition for the PN to be conservative is that the following condition is
fulfilled:

det(CT
i )det(CT

i+1) < 0,∀i ∈ Hn−1. (10)

Note that Proposition 4.9 and Corollary 4.10 cover an important and a large class of
PNs, for which the rank assumption holds such as the connected marked graph. Indeed,
it is widely known that, for a connected marked graph with m nodes, the rank of the
incidence matrix C is m− 1 (see [10]).

Remark 4.11. If u = 2, we obtain the two propositions, as follows:

Proposition 4.12. Let r = m− 2 be the rank of the incidence matrix C of a PN, and
let Ĉ and Cij be as defined above. Then the PN is conservative if and only if there
exists two non-zero constants ρ1 and ρ2 such that:

[ρ1det(Ci,k) + ρ2det(Ci,l)][ρ1det(Ci+1,k) + ρ2det(Ci+1,l)] < 0,∀i ∈ Hm−1, k, l ∈ Hm.
(11)

Corollary 4.13. Let r = n− 2 be the rank of the incidence matrix C of a PN, and let
ĈT and CT

ij be as defined above. Then the PN is consistent if and only if there exist
two nonzero constants ρ1 and ρ2 such that:

[ρ1det(CT
i,k)+ρ2det(CT

i,l)][ρ1det(CT
i+1,k)+ρ2det(CT

i+1,l)] < 0,∀i ∈ Hn−1, k, l ∈ Hm. (12)

Note that the value of every determinant det(Ci,k) of sub-matrix Ci,k (i. e. j1 = i,
j2 = k) can be computed and obtained by Matlab tools. The corresponding algorithm
can be found in the Appendix.

Remark 4.14. All the results still hold, if C is replaced by product incidence matrix
CCT or CT C in this section. The methods and techniques of the proofs are the same,
except for computational complexity.
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5. ILLUSTRATIVE EXAMPLE

In this section, we give two examples to illustrate our results.

Example 5.1. A simple resource allocation system is shown in Figure 3. Its incidence
matrix C is

C =


1 0 −1
−1 1 0
1 −1 0
0 1 −1
−2 −3 5

 .

Then the PN is conservative and CT x = 0 holds for x = (4, 3, 1, 1, 1)T , see Example 4.3.

t1 p3

p2

p5

t2 p4 t3

p1

2
3

5

 Fig. 3. A resource allocation system 

Example 5.2. A system of simple sequential processes with multiple resources is shown
in Figure 4. Its incidence matrix:

CT =



−1 0 1 0 0 0 0 0 −1 0 0
0 0 −1 1 0 0 0 0 0 −1 0
0 0 0 −1 1 0 0 0 1 0 0
1 0 0 0 −1 0 0 0 0 1 0
0 1 0 0 0 −1 0 0 1 0 0
0 0 0 0 0 1 −1 0 −1 1 0
0 0 0 0 0 0 1 −1 0 0 0
0 −1 0 0 0 0 0 1 0 −1 −1


.

Hence, rank(C) = 6 = 8 − 2. By the Appendix′s algorithm and de(C45) = 1 6= 0, we
have D8×2 =(

det(C15) det(C25) det(C35) det(C45) det(C55) det(C65) det(C75) det(C85)
det(C14) det(C24) det(C34) det(C44) det(C54) det(C64) det(C74) det(C84)

)T

that is,

D8×2 =
(
−1 1 −1 1 0 0 0 0
0 0 0 0 −1 1 −1 1

)T

.

By Corollary 4.13, and taking ρ1 = ρ2 = −1, k = 4, l = 5, the PN is consistent and
Cy = 0 holds for y = (1, 1, 1, 1, 1, 1, 1, 1)T given by Corollary 4.2.
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p1

p3

t2

p4

t3

p5

p9

p10

t5

p6

t6

p7

p8

t4 t8

t1

p2

t7

p11

Fig. 4. A system of simple sequential processes with multiple resources. 

6. CONCLUSION

A new technique is proposed in this paper to investigate the structural (partial) con-
servativeness and (partial) consistency of general Petri nets. First, by checking the
reducibility and singularity of the product incidence matrix A = CCT and Ã = CT C
and computing the adjugate matrix of the product incidence matrix, a sufficient con-
dition is obtained to determine the well-structured of a Petri net. The matrix Cm×n

denotes the incidence matrix of a Petri net, and whether it is a square matrix or not
makes no difference to the results. In this way, the restrictions that the incidence matrix
must be a square matrix in Ref. [14] can be avoided. The second step is to select some
relevant rows of the incidence matrix which are linearly independent to build a matrix Ĉ
by the rank of the incidence matrix, i. e. rank(C) = r. An algorithm is given to compute
all proper minors of the matrix and a set of combinations of certain sub-determinants
of the incidence matrix of the net can be obtained. By the signs of these combinations,
we can easily determine the conservativeness and consistency of the net. These com-
putations can be easily realized with MATLAB and LINDO software and the proposed
technique can be well applied to general PNs.

APPENDIX

An algorithm is given to compute the determinants of the all sub-matrices Cj+1,j+2,...,j+u,
j ∈ {0, 1, . . . , r}. The idea of the algorithm is simple. First, it searches r = m− u rows
of the incidence matrix C which are linearly independent by elementary transforma-
tion. Second, every det(Cj+1,j+2,...,j+u), j ∈ {0, 1, . . . , r} are computed from big to
small in the light of the lower index of Cj+1,j+2,...,j+u. If det(Cj+1,j+2,...,j+u) 6= 0, for
some j ∈ {0, 1, . . . , r}, then all the values of the determinants det(Cj+1,j+2,...,j+u) are
computed, for ∀i ∈ Hm, j1, j2, . . . , ju ∈ {j + 1, j + 2, . . . , j + u}. Therefore, we obtain
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a matrix Dn×u. Finally, we solve an ILPP, the values of the constants ρ1, ρ2, . . . , ρu

are obtained. Thus, we can confirm the conservativeness (or consistency) of the PN by
Theorem 4.4 (or Corollary 4.5). The general idea can be summarized as follows:

Algorithm

Input: incidence matrix C.

Output: all the signs of βi, ∀i ∈ Hm−1.

Step1: Confirming u = m− r by computing the rank r of the incidence matrix C.

Step2: Choosing r rows of C, which are linearly independent, denoted as Ĉ.

Step3: Computing det(Ci,j1,j2,...,ju−1), for ∀i ∈ Hm−1, jk ∈ {j + 1, j + 2, . . . , j + u},
k = 1, . . . , u− 1, if det(Cj+1,j+2,...,j+u) 6= 0 for some j ∈ {0, 1, . . . , r}.

Step4: Obtaining a matrix Dn×u, then we solve the ILPP:

Min {11×u · (ρ1, ρ2, . . . , ρu)T }, s.t.

diag(1,−1, . . . , (−1)i−1, 1, . . . , (−1)n−1) ·Dn×u · (ρ1, ρ2, . . . , ρu)T ≥ 1n×1

.Step5: Checking if the values of

βi = [ρ1det(Ci,j+2,j+3,...,j+u) + ρ2det(Ci,j+1,j+3,...,j+u) + . . .

. . . + ρudet(Ci,j+1,j+2,...,j+u−1)]
×[ρ1det(Ci+1,j+2,j+3,...,j+u) + ρ2det(Ci+1,j+1,j+3,...,j+u) + . . .

. . . + ρudet(Ci+1,j+1,j+2,...,j+u−1)]

are negative or not for ∀i ∈ Hm−1, j ∈ {0, 1, . . . , r}. If they are congruously
negative, then the PN is conservative. Otherwise, the PN is not conservative. It
is similar to the consistency of a PN.

To evaluate the computational complexity of the Step 4, we know the computational
difficulty of an integer linear programming problems are determined by the number of
integer variables and the structure of the problem. It is easy to infer that the unknowns
are θ = u for the ILPP, which is a very simple optimization problem and is fast to solve
using LINDO. Moreover, the computational complexity of the Step 3 is rested with the
rank r of the incidence matrix of a PN and u = n− r or u = m− r, i. e. the number of
all determinants computed is ur.
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