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Abstract. In this work, we propose the Shannon wavelets approximation for the numer-
ical solution of a class of integro-differential equations which describe the charged particle
motion for certain configurations of oscillating magnetic fields. We show that using the
Galerkin method and the connection coefficients of the Shannon wavelets, the problem is
transformed to an infinite algebraic system, which can be solved by fixing a finite scale of ap-
proximation. The error analysis of the method is also investigated. Finally, some numerical
experiments are reported to illustrate the accuracy and applicability of the method.
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1. Introduction

Integral and integro-differential equations of Volterra type arise in many modeling

problems in physical fields such as optics, electromagnetics, electrodynamics, sta-

tistical physics, inverse scattering problems [13], [9], [14] and many other practical

applications.

In this paper we consider the following Volterra integro-differential equation

from [8]:

(1.1)











y(2)(t) + a(t)y(t) = g(t) + b(t)
∫ t

0
cos(ωps)y(s) ds,

y(0) = α,

y′(0) = β,

where a(t), b(t) and g(t) are given periodic functions of time and y(t) is an unknown

function to be determined. The existence and uniqueness results for this type of

1 Corresponding author. Tel.: +98 21 732 254 16; fax: +98 21 732 234 16

595



problems have been investigated by many authors. See e.g. [1], [4], [12]. For instance,

using Theorem 4 in [4], we can obtain the existence and uniqueness issues for the

second kind integro-differential equation (1.1).

Throughout this paper, we assume that the conditions on the given functions of

the equation (1.1) are such that the existence and uniqueness results for the solution

of (1.1) are satisfied.

This equation, which describes the charged particle motion for certain configu-

rations of oscillating magnetic fields, may be easily found in the charged particle

dynamics for some field configurations [8].

For clarifying the model, suppose that the three mutually orthogonal magnetic

field components are defined as

(1.2)











Bx = B1 sinωpt,

By = 0,

Bz = B0.

So, the nonrelativistic equations of motion for a particle of mass m and charge q

in this field configuration are

m
d2x

dt2
= q

(

B0
dy

dt

)

,(1.3)

m
d2y

dt2
= q

(

B1 sinωpt
dz

dt
−B0

dx

dt

)

,(1.4)

m
d2z

dt2
= q

(

−B1 sinωpt
dy

dt

)

.(1.5)

Integrating (1.3) and (1.5) and substituting the results into (1.4) yields

d2y

dt2
= − (ω2

c + ω2
f sin2 ωpt)y + ω2

fωp(sinωpt)

∫ t

0

(cosωps)y(s) ds

+ ωf (sinωpt)z
′(0) + ω2

cy(0) + ωcx
′(0),

where ωc = q(B0/m) and ωf = q(B1/m), which corresponds to model (1.1) with the

following periodic functions:

a(t) = ω2
c + ω2

f sin2(ωpt),

b(t) = ω2
fωp sin(ωpt),

g(t) = ωf (sin(ωpt))z
′(0) + ω2

cy(0) + ωcx
′(0).

The numerical solvability of equation (1.1) and other related equations has been

pursued by several authors. Dehghan and Shakeri [8] in 2008 applied the homotopy
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perturbation method for solving equation (1.1). Machado et al. in [10] solved (1.1) by

using Adomian’s method. In [5], Volterra integro-differential equation with periodic

solution was considered, via the mixed collocation method. Akyüz-Daşcioğlu et al. in

[2], [3] presented numerical verification of solutions of systems of integro-differential

equations using Chebyshev series.

In recent years, the Shannon approximation method has been used for problems

whose solutions may have singularities, or infinite domains, or boundary layers. This

method has increasingly been recognized as a powerful tool for attacking problems

in applied physics. In particular, it has become very popular in solving initial and

boundary value problems of ordinary or partial differential equations as well as in-

tegral equations.

Here, we are interested in the numerical Shannon approximation of the integro-

differential equation (1.1). Our discussion is based on the connection coefficients of

the Shannon wavelets which were proposed by Cattani in [6]. Detailed description

and analysis of this technique may be found in [6], [7], [11] and references therein.

The layout of the paper is as follows: In Section 2, we give basic definitions,

assumptions and preliminaries of the Shannon wavelets. In Section 3, we clarify how

the Shannon approximation including the Galerkin method transforms the equation

(1.1) to an explicit system of linear algebraic equations. The error analysis of the

proposed method is given in Section 4. Finally, some numerical results are reported

to clarify the efficiency of the method.

2. A survey and some properties of the Shannon wavelets

First, we recall the definitions and the notation of the Shannon wavelets family

from [11]. The starting point for the definition of the Shannon wavelets family is the

Sinc or Shannon scaling function. The Sinc function is defined on the whole real line

by

Sinc(t) =







sin(πt)

πt
, t 6= 0,

1, t = 0.

The Shannon scaling functions, mother wavelets and their Fourier transforms can

be defined as


































ϕj,k(t) = 2j/2 Sinc(2jt− k) = 2j/2 sin π(2jt−k)
π(2jt−k) , j, k ∈ Z,

ψj,k(t) = 2j/2 sin π(2jt−k−
1
2 )−sin 2π(2jt−k−

1
2 )

π(2jt−k−
1
2 )

, j, k ∈ Z,

ϕ̂j,k(ω) = 2−j/2

2π
e−iωk/2j

χ( ω
2j + 3π), j, k ∈ Z,

ψ̂j,k(ω) = − 2−j/2

2π
e−iω(k+1/2)/2j

[χ( ω
2j−1 ) + χ(− ω

2j−1 )], j, k ∈ Z,
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where the characteristic function χ(ω) is defined as

χ(ω) =

{

1, 2π 6 ω < 4π,

0, otherwise.

Using the definition of the inner product of two functions and the Parseval equality,

it can be easily shown that the following results hold [6]:

(2.1)











〈ψj,k, ψm,h〉 = δjmδhk,

〈ϕ0,k, ϕ0,h〉 = δkh,

〈ϕ0,k, ψj,h〉 = 0, j > 0,

where δjm (δhk) denotes the Kronecker delta.

Orthogonality conditions (2.1) lead to the following theorem which is concerned

with approximation of the function y(t):

Theorem 1 (From [6]). If y(t) ∈ L2(R), then the series

(2.2)

∞
∑

k=−∞

αkϕ0,k(t) +

∞
∑

j=0

∞
∑

k=−∞

βj,kψj,k(t)

converges to y(t), with αk and βj,k being given by:

αk = 〈y, ϕ0,k〉 =
∫

∞

−∞

y(t)ϕ0,k(t) dt,(2.3)

βj,k = 〈y, ψj,k〉 =
∫

∞

−∞

y(t)ψj,k(t) dt.(2.4)

3. Method of the solution

As a consequence of the previous section, in this section we derive formulas for

numerical solvability of integro-differential equation (1.1) based on the connection

coefficients of the Shannon wavelets.

Using a finite truncated series of the above equation, we can define an approxima-

tion function of the exact solution y(t) as follows:

(3.1) y(t) ≃
M
∑

k=−M

αkϕ0,k(t) +

N
∑

j=0

M
∑

k=−M

βj,kψj,k(t).
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Also, expression (2.2) enables us to compute the derivatives of y(t) in terms of the

Shannon wavelets decomposition

(3.2)
dl

dtl
y(t) ≃

M
∑

k=−M

αk
dl

dtl
ϕ0,k(x) +

N
∑

j=0

M
∑

k=−M

βj,k
dl

dtl
ψj,k(x).

According to expression (3.2), the derivatives of y(t) are known when the functions

( dl/ dtl)ϕ0,k(t) and ( dl/ dtl)ψj,k(t) are given. Indeed, due to (3.2), we can compute

the wavelet decomposition of the derivatives from the following relations which are

given in [6]:

(3.3)















dl

dtlϕ0,k(t) =
M
∑

h=−M

λ
(l)
khϕ0,h(t) +

N
∑

j=0

M
∑

h=−M

Λ
(l)j
kh ψj,h(t),

dl

dtlψj,k(t) =
M
∑

h=−M

ξ
(l)j
kh ϕ0,h(t) +

N
∑

j=0

M
∑

h=−M

γ
(l)jj
kh ψj,h(t),

with

(3.4) Λ
(l)j
kh ≡

〈 dl

dtl
ϕo,k, ψj,h

〉

, λ
(l)
kh ≡

〈 dl

dtl
ϕo,k, ϕo,h

〉

,

γ
(l)jj
kh ≡

〈 dl

dtl
ψj,k, ψj,h

〉

, ξ
(l)j
kh ≡

〈 dl

dtl
ψj,k, ϕo,h

〉

,

which are known as the connection coefficients.

In this position, we recall an auxiliary lemma for computing these coefficients and

their properties from [6]:

Lemma 1. The connection coefficients Λ
(l)j
kh and ξ

(l)j
kh are zero. Also, the connec-

tion coefficients λ
(l)
kh and γ

(l)jj
kh of any order are

λ
(l)
kh =



















(−1)k−h il

2π

l
∑

s=1

l!πs

s![i(k − h)]l−s+1
[(−1)s − 1], k 6= h,

ilπl+1

2π(l + 1)
[1 + (−1)l], k = h,

and

γ
(l)jj
kh =



















il2jl

2π

l
∑

s=1

(−1)l l!πs(2s − 1)

s![i(h− k)]l−s+1
[(−1)s − 1], k 6= h,

il2jl
π

l+1

2π(l + 1)
[(2l+1 − 1)(1 + (−1)l)], k = h.
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3.1. Description of the proposed method.

In order to obtain the numerical solution, we apply the previous results for con-

structing the Shannon approximate solution of the Volterra integro-differential equa-

tion (1.1). According to Lemma 1, the equation (3.2) can be rewritten as

(3.5)
dl

dtl
y(t) ≃

M
∑

k=−M

αk

M
∑

h=−M

λ
(l)
khϕ0,h(t) +

N
∑

j=0

M
∑

k=−M

βj,k

M
∑

h=−M

γ
(l)jj
kh ψj,h(t).

By using expression (3.5), we can approximate d2

dt2 y(t) as follows:

(3.6)
d2

dt2
y(t) ≃

M
∑

k=−M

αk

M
∑

h=−M

λ
(2)
khϕ0,h(t) +

N
∑

j=0

M
∑

k=−M

βj,k

M
∑

h=−M

γ
(2)jj
kh ψj,h(t).

Now, by substituting this relation and expression (3.1) into (1.1), we get the

following result:

g(t) ≃
[ M

∑

h=−M

λ
(2)
khϕ0,h(t) + a(t)ϕ0,h(t)− b(t)

∫ t

0

cos(ωps)ϕ0,h(s) ds

] M
∑

k=−M

αk

+

[ M
∑

h=−M

γ
(2)jj
kh ψj,h(t) + a(t)ψj,h(t)− b(t)

∫ t

0

cos(ωps)ψj,h(s) ds

]

×
N

∑

j=0

M
∑

k=−M

βj,k.

Here, we can define the residual vector as follows:

r(2M+1)(N+2) = [Γ1k + Γ2k]
M
∑

k=−M

αk + [∆1k + ∆2k]
N

∑

j=0

M
∑

k=−M

βj,k − g(t),

with

Γ1k =

M
∑

h=−M

λ
(2)
khϕ0,h(t) + a(t)ϕ0,h(t),

Γ2k = − b(t)
∫ t

0

cos(ωps)ϕ0,h(s) ds,

∆1k =
M
∑

h=−M

γ
(2)jj
kh ψj,h(t) + a(t)ψj,h(t),

∆2k = − b(t)
∫ t

0

cos(ωps)ψj,h(s) ds.

600



Also, the following relations can be obtained from the boundary conditions (1.1):

(3.7)
M
∑

k=−M

αkϕ0,k(0) +
N

∑

j=0

M
∑

k=−M

βj,kψj,k(0) = α,

M
∑

k=−M

αk

M
∑

h=−M

λ′khϕ0,h(0) +

N
∑

j=0

M
∑

k=−M

βj,k

M
∑

h=−M

γ′jj
khψj,h(0) = β.

Let us introduce the notation Θ and ν, for j = 0, . . . , N and k = −M, . . . ,M , by

the relations

(3.8)























Θk+M+1 := ϕ0,k,

Θ(2M+1)(j+1)+k+M+1 := ψj,k,

νk+M+1 := αk,

ν(2M+1)(j+1)+k+M+1 := βj,k.

With this notation, we have

(3.9)

M
∑

k=−M

αkϕ0,k(t) +

N
∑

j=0

M
∑

k=−M

βj,kψj,k(t) =

(2M+1)(N+2)
∑

i=1

νiΘi(t).

We can compute νi for i = 1, . . . , (2M + 1)(N + 2), using the Galerkin method

such that

(3.10) 〈r(2M+1)(N+2),Θn〉 = 0, n = 1, . . . , (2M + 1)(N + 2)− 2.

This relation together with the boundary condition (3.7) gives a system of (N+2)×
(2M + 1) algebraic equations for (N +2)(2M + 1) unknown coefficients αk and βj,k.

Determining these coefficients, an approximate solution will be obtained from (3.1)

for the equation (1.1).

The following algorithm summarizes our proposed method:

Algorithm: The construction of the Shannon approximation for the Volterra

integro-differential equation (1.1)

Step 1. Input:

N , M ;

ϕ0,k(t), ψj,k(t), g(t), α, β, ωp, a(t), b(t);

Step 2. Compute:

2.1. γ
(1)
kh , λ

(1)jj
kh , γ

(2)
kh , λ

(2)jj
kh , Γ1k, Γ2k, ∆1k, ∆2k; j = 0, . . . , N ;

k, h = −M, . . . ,M .
2.2. r(2M+1)(N+2).
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Step 3. Set:
{

Θk+M+1 ←− ϕ0,k, Θ(2M+1)(j+1)+k+M+1 ←− ψj,k,

νk+M+1 ←− αk, ν(2M+1)(j+1)+k+M+1 ←− βj,k,

j = 0, . . . , N and k, h = −M, . . . ,M.

Step 4. Compute αk and βj,k from 〈r(2M+1)(N+2),Θj′〉 = 0 and (3.7)

for j = 0, . . . , N and k, h = −M, . . . ,M .

Step 5. Set:

y(t) ≃
M
∑

k=−M

αkϕ0,k(t) +
N

∑

j=0

M
∑

k=−M

βj,kψj,k(t).

4. Error analysis

In this section, a convergence analysis of the numerical scheme for the Volterra

integro-differential equation (1.1) will be provided. The following theorem expresses

the convergence properties of the proposed method, which is a consequence of The-

orem 4.2 from our recent paper [11].

Theorem 2. Assume that ỹ(t) is the approximate solution of the equation (1.1).

If y(2)(t) ∈ L2(R), then the obtained approximate solution of the proposed method

converges to the exact solution, where αk and βj,k are given by (2.3) and (2.4),

respectively.

P r o o f. Note that

ỹ(t) =

∞
∑

k=−∞

〈y, ϕ0,k〉ϕ0,k(t) +

N−1
∑

j=0

∞
∑

k=−∞

〈y, ψj,k〉ψj,k(t)

=

N−1
∑

j=−∞

∞
∑

k=−∞

〈y, ψj,k〉ψj,k(t).

Actually, as stated in [11, p. 2675] the following relation holds

∥

∥

∥

∥

D(l)

[ N−1
∑

j=−∞

∞
∑

k=−∞

〈y, ψj,k〉ψj,k(t)− y(t)
]∥

∥

∥

∥

2

→ 0, as N →∞,

or equivalently

∥

∥

∥

∥

∞
∑

k=−∞

〈y, ϕ0,k〉ϕ(l)
0,k(t) +

N−1
∑

j=−∞

∞
∑

k=−∞

〈y, ψj,k〉ψ(l)
j,k(t)− y(l)(t)

∥

∥

∥

∥

2

→ 0, as N →∞
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Substituting the relations (2.3), (2.4), and (3.3) into the above equation for l = 2,

we get

lim
N→∞

[ ∞
∑

k=−∞

αk

∞
∑

h=−∞

λ
(2)
khϕ0,h(t) +

N−1
∑

j=0

∞
∑

k=−∞

βj,k

∞
∑

h=−∞

γ
(2)jj
kh ψj,h(t)

]

= y(2)(t),

which proves the theorem. �

We emphasize that Theorem 4.2 in [11] gives an error upper bound for |y(t) −
ỹM (t)|. Here, in order to compute an error estimate for the solution of Volterra
integro-differential equation (1.1), we determine an upper bound for |y(2)(t)− ỹ(2)

M (t)|
as follows:

Theorem 3. Let ỹ
(2)
M (t) be the second order derivative of the approximate solu-

tion of equation (1.1). Then there exist constants C1 and C2 independent of N and

M such that

|y(2)(t)− ỹ(2)
M (t)| 6

∣

∣

∣
C1(y(−M − 1) + y(M + 1))

− C2

[3
√

3

π

[

y
(

2−N−1
(

−M − 1

2

))

+ y
(

2−N−1
(

M +
3

2

))]]∣

∣

∣
,

where C1 = Max
{
∣

∣

∣

∑

k

∑

h

λ
(2)
kh

∣

∣

∣

}

, C2 = Max
{
∣

∣

∣

∑

k

∑

h

γ
(2)jj
kh

∣

∣

∣

}

and M , N are corre-

spond to the given values of j and k.

P r o o f. The proof follows immediately from a consequence of Theorem 4.3 in

our recent paper [11], and we refrain from going into details. �

5. Numerical experiments and some comments

In order to illustrate the performance of the Shannon approximation in solving

integro-differential equations (1.1), we consider the following two cases from [8]:

(5.1)























ωp = 1, a(t) = − sin(t), b(t) = sin(t),

g(t) = − sin(t)
(

− 3
10 cos(t)e−t/3 + 9

10e−t/3 sin(t) + cos(t) + t sin(t)− 7
10

)

+ 1
9e−t/3 − sin(t)(e−t/3 + t),

y(0) = 1, y′(0) = 2
3 ,
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with the exact solution y(t) = e−t/3 + t, and

(5.2)























ωp = 2, a(t) = cos(t), b(t) = sin(1
2 t),

g(t) = cos(t)− t sin(t) + cos(t)(t sin(t) + cos(t))− sin(1
2 t)(

2
9 sin(3t)

− 1
6 t cos(3t) + 1

2 t cos(t)),

y(0) = 1, y′(0) = 0,

with the exact solution y(t) = t sin(t) + cos(t).

To investigate the high accurate solution of the present method, the computational

results of (5.1) and (5.2) have been reported in Tables 1 and 2, respectively. Graphs

of the error functions for several values of M and N are also given in Figures 1–4.

N M Maximal Error
2 2 2.16E − 7

4 2 2.58E − 8

5 4 3.37E − 11

8 4 1.56E − 12

9 5 5.16E − 15

Table 1. Numerical results for (5.1)
at t = 1

N M Maximal Error
2 3 3.02E − 9

4 3 3.28E − 10

6 4 1.83E − 14

8 4 2.30E − 15

10 4 2.40E − 18

Table 2. Numerical results for (5.2)
at t = 1

0.0 0.2 0.4 0.6 0.8 1.0
−8.0

−7.5

−7.0

−6.5

−6.0

−5.5

−5.0

t

L
og

1
0
(E

rr
or

)

0.0 0.2 0.4 0.6 0.8 1.0
−12.0

−11.5

−11.0

−10.5

−10.0

t

L
og

1
0
(E

rr
or

)

Fig. 1. Graphs of the Shannon wavelets approximation errors with respect to 0 6 t 6 1 in
the cases (M = N = 2) (left) and (M = 4, N = 5) (right) for Example 1.

Figures 1 and 3 represent the Shannon wavelets approximation errors in the cases

M = N = 2 and M = 4, N = 5 of (5.1) and (5.2) with respect to t in the interval

0 6 t 6 1. The “Maximal Error” refers to the maximal difference between the

approximation and the exact solutions.

These problems were solved in [8] by a method based on He’s homotopy perturba-

tion. In this case, the best result has the error of order O(10−13). The comparison

of our results and the method of [8] indicates that for small values of N and M ,
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Fig. 2. Error behaviour of the method with respect to different values of M and N in
Example 1.

both methods have produced nearly equivalent approximate solutions. However, the

additional numerical experiments show that good numerical results can be achieved

with other values of N and M (e.g. with N = 5 and M = 4). Also, due to some

restrictions of the method in [8], which requires good initial approximations, the

comparative effect of our proposed Shannon wavelets approximations will become

obvious.
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Fig. 3. Graphs of the Shannon wavelets approximation errors with respect to 0 6 t 6 1 in
the cases (M = N = 2) (left) and (M = 4, N = 5) (right) for Example 2.
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Fig. 4. Error behaviour of the method with respect to different values of M and N in
Example 2.
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For the numerical implementation in the case N = M = 1, the following results

will be obtained:

ν1 = α−1 = −0.552305, ν2 = α0 = 0.412517, ν3 = α1 = 0.992934,

ν4 = β0,−1 = −0.202466, ν5 = β0,0 = −0.16766, ν6 = β0,1 = −0.8964427,

ν7 = β1,−1 = 0.761246, ν8 = β1,0 = 0.125023, ν9 = β1,1 = 0.59325.

Substituting these values into expression (3.1), an approximate solution is ob-

tained. The numerical results are given in Table 3.

t Approximate solution Exact solution
0 1.00040 1.00000

0.2 1.13551 1.13551

0.4 1.27518 1.27517

0.6 1.41875 1.41873

0.8 1.56595 1.56593

1 1.716530 1.71653

Table 3. Numerical results of (5.1) for the case N =M = 1

6. Conclusions

In this research, a computational method is applied to a special class of Volterra

integro-differential equations which describe the charged particle motion for certain

configurations of oscillating magnetic fields. We use connection coefficients of the

Shannon wavelets together with the Galerkin method to obtain numerical solutions

for the problem. With the availability of this methodology, it will be possible to

investigate the approximate solution of some applicable integro-differential equations.

Also, the accuracy of the solution can be improved by selecting large values of M

and N .
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