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Diophantine Approximation and special Liouville

numbers

Johannes Schleischitz

Abstract. This paper introduces some methods to determine the simulta-
neous approximation constants of a class of well approximable numbers
ζ1, ζ2, . . . , ζk. The approach relies on results on the connection between
the set of all s-adic expansions (s ≥ 2) of ζ1, ζ2, . . . , ζk and their asso-
ciated approximation constants. As an application, explicit construction
of real numbers ζ1, ζ2, . . . , ζk with prescribed approximation properties are
deduced and illustrated by Matlab plots.

1 Introduction
1.1 Basic facts and notations

This paper deals with the one parameter simultaneous approximation problem

|x| ≤ Q1+θ

|ζ1x− y1| ≤ Q−
1
k+θ

...

|ζkx− yk| ≤ Q−
1
k+θ,

(1)

where ζ1, ζ2, . . . , ζk are real numbers which we will assume to be linearly indepen-
dent together with 1 and x, y1, y2, . . . , yk are integers to be determined in depen-
dence of the parameter Q > 1 in order to minimize θ. To be more precise, we define
the function ψj(Q) for 1 ≤ j ≤ k+ 1 by setting ψj(Q) the minimum over all θ ∈ R
such that there are j linearly independent vectors (x, y1, y2, . . . , yk) ∈ Zk+1 that
satisfy the system (1). In the sequel we will restrict to approximation vectors with
x > 0, which clearly is no loss of generality as (x, y1, . . . , yk) 7→ (−x,−y1, . . . ,−yk)
does not affect approximation constants. Another equivalent way to view the func-
tions ψj is to consider the lattice Λ = {(x, ζ1x−y1, . . . , ζkx−yk) : x, y1, . . . , yk ∈ Z}
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and the convex body (in fact the parallelepiped) K(Q) defined as the set of points
(z1, z2, . . . , zk+1) ∈ Rk+1 with

|z1| ≤ Q (2)

|zi| ≤ Q−
1
k , 2 ≤ i ≤ k + 1 , (3)

and to define λj(Q) as the j-th successive minimum of Λ with respect to K(Q).
This j-th minimum is defined as the infimum over all λ > 0 for which the R-span
of λK(Q) ∩ Λ has dimension at least j, or equivalently λK(Q) contains j linearly
independent points of Λ.

With respect to these successive minima λj , the functions ψj(Q) can also be
determined by

Qψj(Q) = λj(Q) .

One has the inequalities

− 1 ≤ ψ1(Q) ≤ ψ2(Q) ≤ · · · ≤ ψk+1(Q) ≤ 1

k
(4)

as we will show later, and Dirichlet’s Theorem states

ψ1(Q) < 0 for all Q > 1 . (5)

Minkowski’s second convex body theorem yields for any convex body K with vol-
ume V (K) and any lattice Λ

2k+1

(k + 1)!

det(Λ)

V (K)
≤ λ1λ2 · · ·λk+1 ≤ 2k+1 det(Λ)

V (K)
,

see [1], so that in our special case, as V (K(Q)) = 1 for every Q, we have

c1(Λ) ≤ λ1(Q)λ2(Q) · · ·λk+1(Q) ≤ c2(Λ)

uniformly in the parameter Q. With q := log(Q) and taking logarithms, this yields

q

∣∣∣∣k+1∑
i=1

ψi(Q)

∣∣∣∣ ≤ C(Λ) , (6)

with some constant C(Λ) not depending on Q.
Another important property of the joint behaviour of the functions ψj is that

for any given 1 ≤ s ≤ k there are arbitrarily large values Q = Q(s) such that

ψs(Q) = ψs+1(Q) (7)

provided that 1, ζ1, ζ2, . . . , ζk are linearly independent over Q, see Theorem 1.1
in [5]. To quantify the behaviour of ψj(Q) Summerer and Schmidt introduced the
quantities

ψ
i

:= lim inf
Q→∞

ψi(Q) , ψi := lim sup
Q→∞

ψi(Q) ,
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and gave the estimates

ψ
j
≥ j − k − 1

kj
, 1 ≤ j ≤ k + 1 (8)

ψj ≥
j − k
k(j + 1)

, 1 ≤ j ≤ k , (9)

where (9) requires 1, ζ1, ζ2, . . . , ζk to be linearly independent over Q again. Each
of these bounds will be shown to be best possible in Corollary 3. Moreover, (7)
implies

ψ
i+1
≤ ψi , 1 ≤ i ≤ k . (10)

In order to study the dynamical behaviour of the functions ψj(Q) it will be conve-
nient to work with functions

Lj(q) = qψj(Q)

as these functions are piecewise linear with slopes among {−1, 1k}. Therefore we
have (4). Definition (6) is equivalent to∣∣∣∣k+1∑

i=1

Li(q)

∣∣∣∣ ≤ C(Λ) . (11)

We also introduce the classical approximation constants ωj , ω̂j defined by Jarńık,
Bugeaud in addition to ψ

j
, ψj . For fixed ζ1, ζ2, . . . , ζk and for every X > 0 define

the functions ωj(X) as the supremum over all real numbers ν (in fact the maximum)
such that the system

|x| ≤ X , |ζix− yi| ≤ X−ν , 1 ≤ i ≤ k , (12)

has j linearly independent solutions (x, y1, . . . , yk) ∈ Zk+1. The approximation
constants ωj , ω̂j are now defined as

ωj = lim sup
X→∞

ωj(X) , ω̂j = lim inf
X→∞

ωj(X) .

We will put ω := ω1, ω̂ := ω̂1 and denote by Ω = (ω, ω2, . . . , ωk+1, ω̂, . . . , ω̂k+1) ∈
R2k+2 the vector of classical approximation constants (relative to ζ1, ζ2, . . . , ζk).
Very similarly to the proof of Theorem 1.4 in [5], which treats the special case
j = 1, one obtains

(1 + ωj)(1 + ψ
j
) = (1 + ω̂j)(1 + ψj) =

k + 1

k
, 1 ≤ j ≤ k + 1 . (13)

One just needs to replace “a solution” by “j linearly independent solutions” at
any place it occurs in the proof. Combining (13) with (8), (9) for 1, ζ1, ζ2, . . . , ζk
linearly independent over Q we obtain the bounds

1

k
≤ ω ≤ ∞ , (14)

1

k
≤ ω2 ≤ 1 , (15)

0 ≤ ωj ≤
1

j − 1
, 3 ≤ j ≤ k + 1 (16)
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for the constants ωj as well as

1

k
≤ ω̂ ≤ 1 , (17)

0 ≤ ω̂j ≤
1

j
, 2 ≤ j ≤ k , (18)

0 ≤ ω̂k+1 ≤
1

k
(19)

for the constants ω̂j . Each considered individually, these bounds again are best
possible.

1.2 Outline of the results

In the present paper, we will put our focus on simultaneous approximation of num-
bers that allow good individual as well as simultaneous approximation. Liouville
numbers, that is real numbers ζ for which the inequality∣∣∣∣ζ − p

q

∣∣∣∣ ≤ 1

qη

has infinitely many rational solutions p
q for arbitrarily large η ∈ R, will be suitable

examples since they all satisfy ω = ∞, where ω = ω1 is defined by (12) in the
one-dimensional case.

In section 2, Propositions 1, 2, we establish a connection between the s-adic
expansions (s ≥ 2) of the components ζj of (ζ1, ζ2, . . . , ζk) and the approximation
constants ω, ω̂. These results are then applied to the case where all ζj admit good
approximations in one fixed base s independent of j. After these considerations
for suitable arbitrary (ζ1, ζ2, . . . , ζk) we put our focus on Liouville numbers, using
heavily the fact that ω =∞ in this case. Theorem 1 will allow to compute all clas-
sical approximation constants ωj , ω̂j for a special type of Liouville numbers and
the resulting Corollary 2 will lead us to the construction of vectors (ζ1, ζ2, . . . , ζk)
with prescribed approximation constants ωj , ω̂j that are subject to certain restric-
tions. As consequences of these results we will be able to give an explicit example
of a vector ζ1, ζ2, . . . , ζk that shows a conjecture by Wolfgang Schmidt concerning
successive minima of a lattice to be true. A non-constructive proof was given by
Moshchevitin in a non-constructive way. Moreover we will construct cases where all
functions ψj simultaneously take all possible values of their spectrum for arbitrarily
large Q.

Inspired by methods used to deal with Liouville numbers, we then generalize
Theorem 1 to a wider class of vectors (ζ1, ζ2, . . . , ζk) for which ω < ∞. This will
be the subject of Theorems 2,3 and lead to many more explicit constructions of
special cases of the Schmidt Conjecture.

In the last section we will first discuss the special case where ψ
j+1

= ψj for

1 ≤ j ≤ k and give a constructive existence proof for the degenerate case ψ
1

= −1
in arbitrary dimension. Throughout the paper we will illustrate the derived results
by Matlab plots of the functions Lj for the special cases we consider to visualize
derived results. These plots shall also lead to some insight into the dynamical
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behaviour of these functions in general. One should mention at this point that the
plots often seem curved although the functions are piecewise linear, which is due
to the non sufficient digital resolution, i.e. by zooming in one can see that they are
indeed piecewise linear.

2 Results for Approximation constants
2.1 Estimates for ω, ω̂

In the sequel let s ≥ 2 be an integer and ζi ∈ (0, 1) for 1 ≤ i ≤ k. For each
1 ≤ i ≤ k the non vanishing digits of the s-adic expansions of such ζi and 1 − ζi
define two sequences (a

i,(s)
n )n≥1 and (a

′i,(s)
n )n≥1 by

ζi =
∑
n≥1

α
(s)
n,is
−ai,(s)n , a

i,(s)
1 < a

i,(s)
2 < . . . , 0 < αn,i ≤ s− 1 (20)

1− ζi =
∑
n≥1

β
′(s)
n,i s

−a′i,(s)n , a
′(s)
1 < a

′(s)
2 < . . . , 0 < β′n,i ≤ s− 1 . (21)

We call the sequence a
′(s)
n,i the dual expansion of ζi in base s. Set (b

(s)
n )n≥1 the

monotonically ordered sequence of all (a
i,(s)
n,i )n≥1 and similarly (b

′(s)
n )n≥1 the mono-

tonically ordered sequence of all (a
′i,(s)
n )n≥1. The following Theorem expresses the

simultaneous approximation constant ω of ζ1, ζ2, . . . , ζk in terms of the s-adic pre-
sentations of ζi (s = 2, 3, 4, . . .) by using these two ordered sequences. The proof
is introductory to the rest of the work and for this purpose quite detailed.

Proposition 1. We have

ω ≥ max

{
lim sup

‖(s,n)‖∞→∞

b
(s)
n+1 − b

(s)
n − 1

b
(s)
n

, lim sup
‖(s,n)‖∞→∞

b
′(s)
n+1 − b

′(s)
n − 1

b
′(s)
n

}
, (22)

and

ω ≤ max

{
lim sup

‖(s,n)‖∞→∞

b
(s)
n+1 − b

(s)
n

b
(s)
n

, lim sup
‖(s,n)‖∞→∞

b
′(s)
n+1 − b

′(s)
n

b
′(s)
n

}
. (23)

where ‖(A,B)‖∞ := max{|A|, |B|} (or any other norm since they are all equivalent
in R2).

Proof. We first prove (22). By definition of (b
(s)
n )n≥1 as the mixed ordered sequence

of the sequences (an)n≥1, all numbers ζ1, ζ2, . . . , ζk will have zeros at the positions

b
(s)
n + 1, b

(s)
n + 2, . . . , b

(s)
n+1 − 1 behind the comma in base s for any s ≥ 2. Since

multiplication of ζj by sb
(s)
n only shifts the comma b

(s)
n positions to the right, this

means, for any 1 ≤ j ≤ k all sb
(s)
n ζj start with bn+1− bn−1 zeroes in base s behind

the comma. For this reason any pair (s, n) satisfies

‖sbn(s)ζj‖ =
∣∣sb(s)n ζj − bsb

(s)
n ζjc

∣∣ ≤ s−(b(s)n+1−b
(s)
n −1)



44 Johannes Schleischitz

for any 1 ≤ j ≤ k, where ‖·‖ denotes the smallest distance of a real number to an
integer. Analogously, for all 1− ζj and all pairs (s, n) we have

‖sb
′(s)
n ζj‖ = ‖sb

′(s)
n (1− ζj)‖ ≤ |dsb

′(s)
n ζje − sb

′(s)
n ζj | ≤ s−(b

′(s)
n+1−b

′(s)
n −1).

We conclude that for any pair (s, n)

max
1≤j≤k

‖xζj‖ ≤ max
{
s−(b

(s)
n+1−b

(s)
n −1), s−(b

′(s)
n+1−b

′(s)
n −1)} , (24)

with
x = sb

(s)
n or x = sb

′(s)
n .

Surely, sbn →∞ or sb
′
n →∞ is equivalent to ‖(s, n)‖∞ →∞, and we claim that

(22) follows directly from the definition of the approximation constant ω. To see

this we take a sequence of pairs (n, s) with ‖(s, n)‖∞ → ∞, for which
b
(s)
n+1−b

(s)
n −1

b
(s)
n

or
b
′(s)
n+1−b

′(s)
n −1

b
′(s)
n

tend to the lim sup-values on the right hand side of (22). Putting

Xσ(n,s) := xσ(n,s) := sb
(s)
n or X ′σ(n,s) := xσ(n,s) := sb

′(s)
n , where σ is an arbitrary

bijection N × N → N, we obtain a sequence of X-values and x-values that leads
via (24) to an approximation constant ω in (12) at least as large as both lim sup-
values.

To prove (23), we first show the following assertion: It suffices to prove, that
for any sufficiently large real parameter X there is a s0 = s0(X), such that

b
(s0)
2 − b(s0)1

b
(s0)
1

≥ ν or
b
′(s0)
2 − b′(s0)1

b
′(s0)
1

≥ ν , (25)

where ν = ν(s) is the largest exponent for which

max
1≤j≤k

‖ζjs‖ = s−ν (26)

holds for all s ≤ X.
For any sequence (Xi)i≥1 let (νi)i≥1 be the largest exponent, for which (26)

holds with νi in place of ν for all s ≤ Xi. The existence of s0 = s0(X) with (25)
for any X implies the existence of a sequence (βi)i≥1 with βi ≥ νi for all i with

βi of the shape
b
(s0)
2 −b(s0)

1

b
(s0)
1

hence of the shape of the expressions involved in (23)

in the case n = 1. By definition of ω we may choose the sequence (Xi)i≥1 such
that limi→∞ νi = lim supi→∞ νi = ω. Furthermore we can assume without loss
of generality that (Xi)i≥1 satisfies si = Xi for any i, as the exponent ν in the
definition of ω in (12) for a fixed x decreases with growing X. Combining all these
observations we get lim supi→∞ βi ≥ ω where βi fits in the lim sup term of (23) if
we set (si, ni) = (si, 1), where si plays the role of s0 above, for X = Xi.

It remains to prove that for such sequences we have

lim
i→∞
‖(si, ni)‖∞ = lim

i→∞
‖(si, 1)‖∞ = lim sup

i→∞
si =∞ .
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This, however, is easy to see. As si = Xi the definition of si guarantees that
the number si = si(Xi) minimizes max1≤j≤k‖ζjsi‖ among all si ≤ Xi. On the
other hand clearly lim infs→∞max1≤j≤k‖ζj‖ = 0 for any Q-linearly independent
ζ1, . . . , ζk and so by definition of (si)i≥1 we also have limi→∞max1≤j≤k‖ζjsi‖ = 0.
Consequently the sequence (si)i≥1 cannot be bounded as only finitely many (strictly
positive) values max1≤j≤k‖ζjsi‖ would appear, which proves

lim sup
i→∞

si =∞ .

To complete the proof we have to find a value s0 = s0(X) for which (25) holds.

Note first, that for sufficiently large X and s = s0(X) we have a
j,(s)
1 = a

′j,(s)
1 = 1.

Indeed for s ≥ 1
mini‖ζi‖ and i0 the index, for which the minimum is attained, we

have {sζi0} /∈ {[0, 1s ] ∪ [ s−1s , 1)}, so the first digit after the comma in base s is

neither 0 nor (s− 1). So we can assume X to be large enough to ensure a
j,(s)
1 = 1

for all 1 ≤ j ≤ k and hence b
(s)
1 = 1 as well. It is now easy to see that putting

s0 := s is an appropriate choice, since (26) says that all sζj respectively s(1 − ζj)
start with bνc digits zero in base s behind the comma. This yields

a
j,(s)
2 − aj,(s)1

a
j,(s)
1

= a
j,(s)
2 − 1 ≥ bνc+ 1 ≥ ν

for all 1 ≤ j ≤ k, therefore

b
(s)
2 − b

(s)
1

b
(s)
1

=
minj a

j,(s)
2 − aj,(s)1

a
j,(s)
1

≥ ν ,

respectively the same facts for a′·,(s). , b′(s). . �

We easily deduce the following Corollary:

Corollary 1. We have

ω ≥ max

{
sup
s

lim sup
n≥1

b
(s)
n+1 − b

(s)
n − 1

b
(s)
n

, sup
s

lim sup
n≥1

b
′(s)
n+1 − b

′(s)
n − 1

b
′(s)
n

}
.

Similarly, we can give a lower bound for ω̂ with respect to the s-adic representation
of a real number.

Proposition 2. For any ζ ∈ R we have

ω̂ ≥ max

{
sup
s

lim inf
n≥1

max
1≤j≤n

b
(s)
j+1 − b

(s)
j − 1

b
(s)
n+1

, sup
s

lim inf
n≥1

max
1≤j≤n

b
′(s)
j+1 − b

′(s)
j − 1

b
′(s)
n+1

}
.

Proof. By definition of the supremum it is sufficient to prove

ω̂ ≥ As := max

{
lim inf
n≥1

max
1≤j≤n

b
(s)
j+1 − b

(s)
j − 1

b
(s)
n+1

, lim inf
n≥1

max
1≤j≤n

b
′(s)
j+1 − b

′(s)
j − 1

b
′(s)
n+1

}
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for any base s separately. So let s be fixed and put b
(s)
n = bn. By definition of ω̂ for

arbitrary ε > 0 and sufficiently large X = X(ε) we have to find an approximation
vector (x, y1, . . . , yk) ∈ Zk+1 with x ≤ X and

max
1≤j≤k

|ζjx− yj | ≤ X−As+ε. (27)

For ε > 0 and large X let n0 be defined by sbn0 ≤ X < sbn0+1 respectively

sb
′
n0 ≤ X < sb

′
n0+1 . Put x := sbj respectively x := sb

′
j where j is the index, such

that the inner maximum from the definition of As is attained for the given n0. By
definition of (bn)n≥1 as the mixed sequence the first bj+1− bj − 1 positions behind
the comma of each ζts

bj , 1 ≤ t ≤ k, respectively (1− ζt)sbj , 1 ≤ t ≤ k, are zeros in
base s. We infer that putting yt := bζtxc for all 1 ≤ t ≤ k respectively yt := dζtxe
for all 1 ≤ t ≤ k we have

max
1≤t≤k

‖ζtx‖ = max
1≤t≤k

|ζtx− yt| ≤ sbj−bj+1+1 ≤ X
bj−bj+1+1

bn0+1 (28)

resp. max
1≤t≤k

‖ζtx‖ = max
1≤t≤k

|(1− ζt)x− yt| ≤ sb
′
j−b
′
j+1+1 ≤ X

b′j−b′j+1+1

b
n′0+1 . (29)

For the left hand side inequalities compare the proof of Proposition 3, the right

hand side inequalities follow from X < sbn0+1 and X < sb
′
n0+1 respectively. As

(28), (29) holds for every large X, we may let n tend to ∞ to conclude that (27)
has a solution for all sufficiently large X. Hence the exponent of X in (28) and
(29) respectively is larger than As − ε. �

Now we turn to simultaneous approximation of vectors (ζ1, ζ2, . . . , ζk) with good
approximation in one fixed simultaneous base s ≥ 2, and we skip the dual expan-
sion. We want to use Corollary 1 and Proposition 2 to give estimates for the
simultaneous approximation constants ω, ω̂. With respect to the notation above,

meaning that the s-adic digits of ζi are given by (a
(s)
n,i)n≥1 as in (20) and the ordered

mixed sequence by (b
(s)
n )n≥1, we get

Lemma 1. For any s ≥ 2 we have

min
i

lim inf
n≥1

(
a
i,(s)
n+1

a
i,(s)
n

)1/k

≤ lim sup
n≥1

b
(s)
n+1

b
(s)
n

≤ min
i

lim sup
n≥1

a
i,(s)
n+1

a
i,(s)
n

.

Proof. The right hand inequality is trivial. For the left hand inequality keep s fixed

and put C := mini lim infn≥1
a
i,(s)
n+1

a
i,(s)
n

and choose n0 large enough, such that for all i

and all n ≥ n0 we have
ain+1

ain
≥ C − ε

(s has been dropped in the notation). For arbitrary bn, n ≥ n0, there exist m, i0
with ai0m = bn by definition of (bn)n≥1. The interval [am, (C − ε)am] contains at
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most k numbers bi, since it contains at most one element of every sequence (ain)n≥1
for 1 ≤ i ≤ k. By the pigeon hole principle there are two numbers bj , bj+1 in the

interval [ai0m, a
i0
m+1] whose quotient

bj+1

bj
is at least (C − ε)1/k. The lemma follows

with ε→ 0. �

In combination with Corollary 1 we observe

ω ≥ min
i

lim inf
n≥1

(
a
i,(s)
n+1

a
i,(s)
n

)1/k

− 1, ∀s ≥ 2 .

Getting lower bounds for ω̂ by just considering the sequences a
i,(s)
n+1 is more com-

plicated and to some extent impossible as we will see in Corollary 3. In fact even
if

lim
n→∞

a
i,(s)
n+1

a
i,(s)
n

=∞ , 1 ≤ i ≤ k ,

we can have ω̂ = 1/k, which is the weakest lower bound for ω̂ by (17). We only

mention that if we construct sequences a
i,(s)
n+1 for which limn→∞

b
(s)
n+1

b
(s)
n

=∞, Propo-

sition 2 yields

ω̂ ≥ lim inf
n≥1

b
(s)
n+1 − b

(s)
n

b
(s)
n+1

= 1− 1

lim infn≥1
b
(s)
n+1

b
(s)
n

= 1 ,

and consequently ω̂ = 1 in view of (17).

2.2 The case ω = ∞
In the following theorem, we compute the classical approximation constants ωj , ω̂j
for a special type of Liouville numbers ζ1, ζ2, . . . , ζk, whose best approximation
vectors (x, y1, y2, . . . , yk) to (ζ1, ζ2, . . . , ζk) are easy to guess. The main arguments
of the compilation will be carried out in the proofs of the following theorems.

Theorem 1. Let k be a positive integer and for 1 ≤ j ≤ k let ζj =
∑
n≥1

1
qn,j

,

where
q1,1 < q1,2 < · · · < q1,k < q2,1 < q2,2 < · · · < q2,k < q3,1 < · · · (30)

are natural numbers, such that

qn,j | qn,j+1 for 1 ≤ j ≤ k − 1 and qn,k | qn+1,1 for all n ≥ 1 (31)

and such that

lim
n→∞

log(qn+1,1)− log(qn,k)

log(qn+1,k)
= η1 , (32)

lim
n→∞

log(qn+1,i)− log(qn+1,i−1)

log(qn+1,k)
= ηi , 2 ≤ i ≤ k , (33)

lim
n→∞

log(qn+1,1)

log(qn,k)
= ηk+1 =∞ , (34)
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where η = (η1, η2, · · · , ηk+1) ∈ Rk × R satisfy

η1 + η2 + · · ·+ ηk = 1 (35)

ηk+1 > ηk ≥ ηk−1 ≥ . . . ≥ η1 > 0 (36)

ηk+1 =∞ . (37)

Then the classical approximation constants relative to the vector ζ = (ζ1, ζ2, . . . , ζk)
are given by

ω1 = ηk+1 =∞ =: ℘1(η)

ω2 = max

{
ηk

ηk + ηk−1 + · · ·+ η1
,

ηk−1
ηk−1 + ηk−2 + · · ·+ η1

, . . . ,
η1
η1

}
=: ℘2(η)

ω3 = max

{
ηk−1

ηk + ηk−1 + · · ·+ η1
,

ηk−2
ηk−1 + ηk−2 + · · ·+ η1

, . . . ,
η1

η2 + η1

}
=: ℘3(η)

...

ωk+1 =
η1

ηk + ηk−1 + · · ·+ η1
=: ℘k+1(η).

and

ω̂1 = min

{
ηk

ηk + ηk−1 + · · ·+ η1
,

ηk−1
ηk−1 + ηk−2 + · · ·+ η1

, . . . ,
η1
η1

}
=: ℘̂1(η)

ω̂j = 0, 2 ≤ j ≤ k + 1.

Proof. We start with the constants ωj and intend to prove the inequalities ωj ≥
℘j(η) and ωj ≤ ℘j(η) separately for 1 ≤ j ≤ k + 1.

(1) ωj ≥ ℘j(η):
Let ℘j,l be the l-th quotient of the maximum labelled ℘j(η). We give a detailed
proof of ωj ≥ ℘j,1 = ηk+2−j and then mention how to generalize the proof to derive
all the other inequalities ωj ≥ ℘j,l for l 6= 1.

To prove ωj ≥ ℘j,1, we will construct j sequences of approximation vectors(
x(1,i), y

(1,i)
1 , . . . , y

(1,i)
k

)
i≥1,

(
x(2,i), y

(2,i)
1 , . . . y

(2,i)
k

)
i≥1, . . . ,

(
x(j,i), y

(j,i)
1 , . . . , y

(j,i)
k

)
i≥1

which are linearly independent for each fixed i ∈ N and such that ωj = ηk+2−j
follows for i→∞. Indeed for p in a j-element subset of {1, 2, . . . , k} and any ε > 0
we claim for i sufficiently large

max
1≤t≤k

− log(|ζtx(p,i) − y(p,i)t |)
log(x(p,i))

≥ ηk+2−j − ε .

In analogy to the definition of (bsn)n≥1 in subsection 2.1 let (bn)n≥1 be the combined
sequence of the logarithms of the integers qn,j in increasing order, which means for
any nonnegative integer M and N ∈ {1, 2, . . . , k} we have bkM+N = log(qM,N ).

By (34) we have lim sup bn+1

bn
= ∞ and thus by putting the first approximation
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vector (qn,i, bζ1qn,ic, . . . , bζkqn,ic) with arbitrary i we may let n tend to infinity, to
obtain ω =∞: indeed applying (31) we derive that all the remainder terms

‖ζjqn,i‖ =
∑

l:qn,l>qn,i

1

ql,j
qn,i ≤ 2

qn,i
qn,i+1

are small due to (32)–(34). In order to estimate ωj for j ≥ 2 we construct a sequence
of parameters X and approximation vectors (x, y1, . . . , yk) with x ≤ X explicitly.
For the fixed choiceX(n) := qn,k we will get ωj ≥ ℘j,1. To see this let x(1,n) := X(n)

and y
(1,n)
t := bx(1,n)ζtc for 1 ≤ t ≤ k. Define the second approximation vector by

taking x(2,n) = qn,k−1 and again y
(2,n)
t := bx(2,n)ζtc. By means of (32), (33), (34)

and the definition of ℘2(η) we claim that for each C < ηk+2−2 = ηk∣∣ζtx(2,n) − y(2,n)t

∣∣ ≤ (x(1,n))−C = (X(n))−C (38)

holds for n = n(C) large enough. This follows from

∣∣ζtx(2,n) − y(2,n)t

∣∣ =
∣∣qn,k−1ζt − bqn,k−1ζtc∣∣ =

∞∑
i=n+1

qn,k−1
qi,t

, 1 ≤ t ≤ k − 1 ,

∣∣ζkx(2,n) − y(2,n)k

∣∣ =
∣∣qn,k−1ζk − bqn,k−1ζkc∣∣ =

qn,k−1
qn,k

+

∞∑
i=n+1

qn,k−1
qi,k

in view of the definition of ζt and our assumption (31). In every case all the values

of ζtx
(2,n) − y(2,n)t for 1 ≤ t ≤ k are bounded by

qn,k−1

qn,k
(1 + o(1)). Using (32), (33),

(34) this leads to (38).
Similarly, defining the j-th approximation vector for 2 ≤ j ≤ k by x(j,n) =

qn,k+1−j and for j = k+1 by x(k+1,n) = qn−1,k and then putting y
(j,n)
t := bx(j,n)ζtc

yields the corresponding inequalities.
We now check that these vectors are linearly independent as required. To do

this we prove that all the matrices Bn =
(
Bn(i, j)

)
1≤i,j≤k+1

obtained by writing

the h-th approximation vector (x(h,n), y
(h,n)
1 , . . . , y

(h,n)
k ) in the h-th row, i.e.

Bn =



qn,k qn,k
n∑
i=1

q−1i,1 qn,k
n∑
i=1

q−1n,2 . . . qn,k
n∑
i=1

q−1i,k

qn,k−1 qn,k−1
n∑
i=1

q−1i,1 qn,k−1
n∑
i=1

q−1n,2 . . . qn,k−1
n−1∑
i=1

q−1i,k

...
...

...
...

...

qn,1 qn,1
n∑
i=1

q−1i,1 qn,1
n−1∑
i=1

q−1n,k−1 . . . qn,1
n−1∑
i=1

q−1i,k

qn−1,k qn−1,k
n−1∑
j=1

q−1j−1,1 qn−1,k
n−1∑
j=1

q−1j−1,2 . . . qn−1,k
n−1∑
j=1

q−1j−1,k


are nonsingular. Observe that if we subtract Bn(h,1)

Bn(h+1,1) times the (h + 1)-th row

from the h-th row of the matrix Bn, all entries in the new h-th line will be zero
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apart from a one in position (h, k+ 2−h). Starting with this process at h = 1 and
repeating it until h = k we end up with the matrix

Cn =



0 0 . . . 0 1
0 . . . 0 1 0
...

...
...

...
...

0 1 0 . . . 0

qn−1,k qn−1,k
n−1∑
j=1

q−1j−1,1 qn−1,k
n−1∑
j=1

q−1j−1,2 . . . qn−1,k
n−1∑
j=1

q−1j−1,k


,

which is easily seen to have absolute value of the determinant equal to qn−1,k 6= 0.
Therefore also det(Bn) = qn−1,k 6= 0, as required.

To obtain all the other inequalities ωj ≥ ℘j,i for 2 ≤ i, where the upper bound
of i depends on j, we proceed analogously. In the definition of x(1,n) we replace

qn,k by qn,k+1−i and again for 1 ≤ t ≤ k we define y
(1,n)
t = bx(1,n)ζtc for the

first approximation vector. We define all the others by taking x(2,t) = qn,k+1−2,

x(3,n) = qk+1−3,n, . . . and again y
(i,n)
t = bx(i,n)ζtc for 1 ≤ t ≤ k and 2 ≤ i ≤ k + 1.

This construction yields the desired lower bounds (or 0 which is omitted in ℘(η))
as above again by (32), (33), (34).

ωj ≤ ℘j(η):
We have to show that for 1 ≤ j ≤ k + 1 the approximation vectors(

x(j,n), y
(j,n)
1 , . . . , y

(j,n)
k

)
constructed in the first step of the proof are somehow best possible. We split the
proof of this assertion in 3 steps. To simplify notation let (cn)n≥1 = (ebn)n≥1 be
the ordered mixed sequence (q1,1, q1,2, . . . , q1,k, q2,1, . . .).

First step: For an arbitrary approximation vector (x, y1, . . . , yk) let h be the
index determined by ch ≤ x < ch+1 and let g be the largest integer such that the
index g − 1 satisfies cg−1 | x. Since x < ch+1 and consequently ch+1 - x we clearly
have g ≤ h+ 1. When X →∞ so does h and we claim that for h→∞

max
1≤t≤k

|ζtx− yt| ≥
cg−1
cg
− o

(
cg−1
cg

)
, g > h+ 1− k (39)

max
1≤t≤k

|ζtx− yt| ≥
1

ch+2−k
− o

(
1

ch+2−k

)
, g ≤ h+ 1− k . (40)

Furthermore in the case g ≤ h+ 1− k (i.e. the assumption of (40)), the inequality
x < 1

2ch+1c
−1
h+1−k contradicts that

max
1≤t≤k

|ζtx− yt| <
1

2

1

ch+1−k
− o

(
1

ch+1−k

)
(41)

holds for h→∞.
Second step: Let X be a real parameter from the definition of the approximation

constants ωj and m = m(X) be the index such that cm ≤ X < cm+1

4 . Then for
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1 ≤ j ≤ k + 1 a set of j vectors (x(i), y
(i)
1 , . . . , y

(i)
k ), 1 ≤ i ≤ j, satisfying the

inequalities

x(i) ≤ X , 1 ≤ i ≤ j , (42)

max
1≤t≤k

|x(i)ζt − y(i)t | ≤
1

2
, 1 ≤ i ≤ j , (43)

can only be linearly independent if at least one x(i) is not divisible by cm+2−j .
Third step: We intend to show by combining the first two steps and using

(32)–(34), that for arbitrary X the choice of approximation vectors in the proof
of ωj ≥ ℘j(η) is somehow optimal, i.e. the approximation constants of this case
cannot be improved.

Proof of first step: We first make the assumption ch+1 ∈ (qn,k)n≥1, and will
explain at the end how to extend this easily to the case where ch+1 belongs to
another sequence. This assumption is equivalent to ch+1 = qn1,k for some n1 ∈ N
and it follows that ch = qn1,k−1. By (31) we have cl | x for all l ≤ g − 1 and cl - x
for all l ≥ g, in particular cg - x. Recall g ≤ h+ 1. To prove the assertions we now
consider the corresponding cases separately:

Case 1: cg > qn1−1,k. Note that since qn1−1,k = ch+1−k this is equivalent to
g ≥ h + 2 − k or cg ≥ ch+2−k. We can write x = x1 + x2 with 0 < x1 < cg and
cg | x2, since by our definition of g we have x1 6= 0. Denote by g the congruence
class of g in the residue system {1, 2, . . . , k} mod k. Note, that cg is the smallest
value cg with g in the residue class g, or equivalently ζg =

∑
l≥0 c

−1
g+kl, which we

will make use of. We claim that

‖x1ζg‖ ≥ c−1g cg−1 −
∑
l≥1

c−1g+lkcg−1 ≥ c
−1
g cg−1 − 2ch+1c

−1
h+2 (44)

{x2ζg} = ‖x2ζg‖ =
∥∥x2∑

l≥1

c−1g+kl
∥∥ ≤ 2ch+1c

−1
h+2, (45)

where ‖·‖ denotes the closest distance to an integer an {·} the fractional part of
a real number. Inequality (44) relies on the fact that 0 < x1

cg
< 1 and cg−1 | x1,

which is seen to be true because cg−1 | x, cg−1 | cg and cg | x2 by definition, so
putting these together we get cg−1 | x−x2, but x−x2 = x1. Combination of these
two facts and recalling that exactly g+ k, g+ 2k, . . . are the indices greater than g
belonging to the residue class g shows that x1ζg is of the form

x1ζg =
x1
cg

+ x1
∑
l≥1

c−1g+lk =
Kcg−1
cg

+ x1
∑
l≥1

c−1g+lk ≥ K
cg−1
cg

+ x1
∑
l≥1

c−1g+lk

with K ∈ {1, 2, . . . , cg
cg−1
− 1} (note cg−1 | cg). The assertion now follows by a

combination of x1 < cg ≤ ch+1,∑
l≥1

c−1g+lk < c−1g+k

(
1 +

1

2
+

1

4
+ · · ·

)
= 2c−1g+k, (46)

and c−1g+k ≤ c
−1
h+2, which is true by the assumption of case 1.
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Inequality (45) follows from the fact that for any s ≤ g by virtue of (31) we
have cs | x2 which holds in particular for those cs with s in the residue class g.
So all quantities x2c

−1
s with s ≤ g are integers. Thus the sum of quantities of

order smaller than x2c
−1
g+k in x2ζg =

∑
l≥0 x2c

−1
g+kl, i.e. x2

∑
l≥1 c

−1
g+kl, has the same

fractional part as the entire sum. Now on the one hand we have x2 ≤ x ≤ ch+1, and
on the other hand cg+k ≥ ch+2 by the assumption of case 1. Together with (46)
these assertions yield (45).

Summing (44) and (45) and noting that by (34) we have ch+1c
−1
h+2 = o(c−1g cg−1),

so that we can use the triangle inequality on the fractional parts, we further have

‖xζg‖ ≥ c−1g cg−1 − 4ch+1c
−1
h+2.

By (36), (37) and (34) the expression c−1m cm−1 is monotonically decreasing in m
and the error term 4ch+1c

−1
h+2 is obviously o(chc

−1
h+1) by (34). Hence for h→∞ we

obtain
cg−1
cg
− o

(
ch
ch+1

)
≤ ‖ζgx‖ ≤ max

1≤t≤k
‖ζtx‖.

This establishes (39) in this case as ch
ch+1

≤ cg−1

cg
by (36) and (32)–(34).

If ch+1 belongs to another sequence (qn,i)n≥1, which means ch+1 = qn1,i with
i 6= 1, we look at the case cg ≥ qn1−1,i and again obtain

‖x1ζg‖ ≥ c−1g cg−1 −
∑
l≥1

c−1g+lkcg−1 ≥ c
−1
g cg−1 − 2ch+1c

−1
g+k

{x2ζg} = ‖x2ζg‖ =
∥∥x2∑

l≥1

c−1g+kl
∥∥ ≤ 2ch+1c

−1
g+k,

as in the proof of the special case (without using ch+2 ≤ cg+k as above from which
we derived the weaker but sufficient conditions (44), (45)). However, by (32)–(34)
we again have ch+1c

−1
g+k = o(c−1g ) as h→∞ (or equivalently g →∞ as g ≥ h+2−k)

and the rest of the argumentation is almost as above. Thus (39) holds in any case.
Case 2: cg ≤ qn1−1,k. In this case it is more convenient to work directly with

the values q.,. instead of c.. As in case 1 let x = x1 + x2 with 0 < x1 < qn1,1 and
qn1,1 | x2. Again qn1−1,k | qn1,1 and the definition of g ensures x1 6= 0. Analogously
to the proof of (44), (45) in case 1 we deduce

‖x1ζ1‖ ≥
1

qn1,1
− 2qn1,kq

−1
n1+1,1

0 ≤ x2ζ1 ≤ 2qn1,kq
−1
n1+1,1.

Using again the triangle inequality and (37), we again deduce

‖xζ1‖ ≥
1

qn1,1
− 4

qn1,k

qn1+1,1
=

1

qn1,1
− 4

ch+1

ch+2
.

But by (32)–(34) again ch+1

ch+2
= o(c−1h+2−k) = o(c−1n1,1

) for h→∞ so that finally

1

qn1,k
− o(c−1h+2−k) ≤ ‖ζ1x‖ ≤ max

1≤t≤k
‖ζtx‖ .
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But qn1,1 = ch+2−k, so we have (40) in this case. If ch+1 belongs to another
sequence (qn,i)n≥1, i 6= k, we can apply very similar estimates with respect to
ζi+1 = ζi+1 instead of ζ1. So our assumption is no loss of generality in this case
either. Thus (40) holds in any case.

We still have to prove that x < 1
2ch+1c

−1
h+1−k contradicts (41). For simplicity

we again discuss the case ch+1 ∈ (qn,k)n≥1 first. Write x = x1 + x2 with 0 <
x1 < qn1−1,k and qn1−1,k | x2. Note that again we have x1 6= 0 by the assumption
g ≤ h+ 1− k, so cg ≤ ch+1−k = qn1−1,k, and the definition of g. Assume we have
x < 1

2ch+1c
−1
h+1−k = 1

2qn1,kq
−1
n1−1,k. The fractional part of x2ζk is

∑
l≤0 x2c

−1
h+1+lk

as higher order summands are integers by definition of x2. We split this expression
in

{x2ζk} = ‖x2ζk‖ =
∑
l≥0

x2c
−1
h+1+kl = x2c

−1
h+1 +

∑
l≥1

x2c
−1
h+1+kl

and using x2 ≤ x we infer

‖x2ζk‖ ≤
1

2
c−1h+1−k +

∑
l≥1

ch+1c
−1
h+1−kc

−1
h+1+kl , (47)

which is obviously 1
2c
−1
h+1−k + o(c−1h+1−k) as h→∞ by (34).

On the other hand, by definition of x1 and ch+1−k = qn1−1,k - x1 as g ≤ h+1−k
by assumption and a very similar argument as in case 1 we have∥∥∥∥x1( 1

q1,k
+

1

q2,k
+ · · ·+ 1

qn1−1,k

)∥∥∥∥ ≥ 1

qn1−1,k
.

On the other hand by x1 < qn1−1,k the sum of the remainder terms of ζkx1, i.e.
x1
∑
l≥0

1
qn1+l,k

, is bounded above by 2
qn1−1,k

qn1,k
with very similar estimates as in

(46). So

‖x1ζk‖ ≥
1

qn1−1,k
− 2

qn1−1,k

qn1,k
(48)

by a very similar argument as in case 1. As n1 →∞, we have

qn1−1,k

qn1,k
= o

(
1

qn1−1,k

)
= c−1h+1−k − o(c

−1
h+1−k)

(note that h→∞ if n1 →∞) and thus by (48)

‖x1ζk‖ ≥ c−1h+1−k − o(c
−1
h+1−k) (49)

Using triangular inequality on (47), (49) thus gives

max
1≤t≤k

‖ζtx‖ ≥ ‖ζkx‖ ≥
1

2
c−1h+1−k − o(c

−1
h+1−k).

Our last assertion is proved in this case and the assumption ch ∈ (qn,k)n≥1 can
obviously be dropped again.

Proof of second step: Without loss of generality assume that cm ∈ (qn,k)n≥1,
the proof for the other cases is essentially the same. This means cm = qm1,k for
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some m1 ∈ N and consequently cm+1 = qm1+1,1. Suppose cm−j+2 divides x(i)

for all 1 ≤ i ≤ j. On the one hand, by our assumption the (j − 1) numbers
cm−j+2, cm−j+3, . . . , cm belong to the sequences qn,k, qn,k−1, . . . , qn,k−j+2. On the
other hand, cu | cu+1 for all u ≥ 1 combined with cm−j+2 | x(i) for all 1 ≤ i ≤ j
implies that for all s ≤ m−j+2 the number cs divides x(i). From these two facts we
conclude that for g /∈ {k, k − 1, . . . , k + 2− j}, i.e. g ∈ G := {1, 2, . . . , k + 1− j},
the partial sum x(i)

∑m1

r=1
1
qr,g

of ζgx
(i) is an integer, since every summand x(i)

qr,g
is.

As terms of order lower than m1 in ζgx
(i) for g ∈ G \ {1} obviously add up to a

quantity smaller than 1
2 , for 1 ≤ i ≤ j and g ∈ G \ {1} we have

‖ζgx(i)‖ = ζgx
(i) − bζgx(i)c =

∞∑
r=m1+1

1

qr,g
<

1

2
, (50)

and combined with (43) eventually

y(i)g = bζgx(i)c = x(i)
m1∑
r=1

1

qr,g
. (51)

In view of our assumption X < cm+1

4 =
qm1+1,1

4 the results (50), (51) are also valid
for g = 1. To sum up, for all g ∈ G we have (51), which obviously yields

x(a)

x(b)
=
y
(a)
g

y
(b)
g

, g ∈ G, 1 ≤ a, b ≤ j .

Thus in the matrix, whose i-th row is the i-th approximation vector

(x(i), y
(i)
1 , . . . , y

(i)
k ) ∈ Zk+1 , 1 ≤ i ≤ j ,

the first |G| = k − j + 3 columns together have rank 1. The rank of the whole
matrix therefore cannot exceed 1 + [(k+ 1)− (k− j + 3)] = j − 1 < j. This means
the j rows are linearly dependent, a contradiction. So cm−j+2 cannot divide all the
numbers x(i), as stated.

Proof of third step: We will prove for arbitrary j, that ωj(X) is for X →
∞ asymptotically bounded above by one of the fractions (depending on log(X))
involved in the definition of ℘j(η), by which we mean that for any ε > 0 and
X = X(ε) large enough we have ωj(X) < ℘j(η)+ε. Since ωj = lim supX→∞ ωj(X),
ε→ 0 shows the required result.

So let X be arbitrary but fixed and let h be the index determined by ch ≤ X <
ch+1. We first prove that without loss of generality we may restrict to the case
where X lies an interval of the shape [ch,

ch+1

4 ).
This is the case because the logarithm to the base X = ch+1

4 of

Dx := max
1≤t≤k

|ζtx− yt|, x := (x, y1, . . . , yk)

for vectors x with |x| ≤ X = ch+1

4 is asymptotically the same as to the base ch+1.
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Indeed we have

logch+1
(Dx) =

log(Dx)

log(ch+1)
, log ch+1

4
(Dx) =

log(Dx)

log( ch+1

4 )
,

lim
h→∞

log(ch+1)

log( ch+1

4 )
= lim
ch→∞

log(ch+1)

log( ch+1

4 )
= lim
ch→∞

log(ch+1)

log(ch+1)− log(4)
= 1 ,

and hence

lim
h→∞

logch+1
(Dx)

log ch+1
4

(Dx)
= 1 . (52)

On the other hand, since we can restrict to x belonging to some ωj with j ≥ 2, all
expressions logch+1

(Dx) are bounded above by 2ω2 ≤ 2 (see (15)) for h sufficiently
large. Together with (52) and since this holds for every vector x for which x ≤ X,
the definition of the quantities ωj immediately implies that they remain unaffected
by this change of base.

So let h = h(X) be the index determined by ch ≤ X < ch+1

4 . By the second
step of the proof (putting m = h) at least one of the j linearly independent approx-
imation vectors (x, y1, y2, . . . , yk) ∈ Zk+1 has to satisfy the condition ch−j+2 - x.
Consider one of the j approximation vectors with this property. This means if we
let g − 1 be the largest index with cg−1 | x as in step 1, we have g − 1 ≤ h− j + 1,
i.e. g ≤ h − j + 2. Further let i be the index, for which ch = qN,i belongs to the
sequence (qn,i)n≥1. At this point one should mention that we will repeatedly use
step 1 in the following, neglecting the o-terms in the estimates (39), (40), (41) as
they do not affect the asymptotic behaviour we aim to prove.

First we treat the case cg−1 ≥ qN−1,i (case 1 step 1). Note, that cm−1

cm
is

monotonically decreasing as m increases by (32)–(34) and (36), which we already
used before. Thus by g ≤ h− j + 2 and (39) we have

max
1≤t≤k

|xζt − yt| ≤
ch−j+1

ch−j+2
− o

(
ch−j+1

ch−j+2

)
for h→∞ . (53)

So X ≥ ch implies

− logX max
1≤t≤k

|xζt − yt| ≤ −
log(

ch−j+1

ch−j+2
)

log(ch)
=

log(ch−j+2)− log(ch−j+1)

log(ch)
.

It is now easy to see by (32)–(34) that for h in a fixed residue class h of the
residue system {1, 2, . . . , k} mod k, the right hand side tends to one of the fractions
(depending on h) in the definition of ωj(η) or to zero as h → ∞ or equivalently
X → ∞. Clearly, each expression in ℘j(η) is induced by some h in that way as
well. This shows, that indeed we have ωj(X) < ℘j + ε for any ε > 0 and X = X(ε)
large enough.

In the remaining case cg−1 < qN−1,i (case 2 step 1) by (40) and as ch+1 in (40)
corresponds to qN,i, max1≤t≤k |xζt − yt| is essentially bounded below by 1

qN−1,i+1

(omitting the lower order terms and i in the residue system {1, 2, . . . , k} mod k).
We distinguish three cases now.
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If we have i /∈ {k − 1, k}, approximation relative to base X is bad, as in this

case we have limN→∞
log(qN−1,i+1)

log(qN,i)
= 0 as a consequence of (34), so again by X ≥

ch = qN,i, the expression

− logX max
1≤t≤k

|xζt − yt| ≤ − logch max
1≤t≤k

|xζt − yt| ≤
log(qN−1,i+1)

log(ch)
=

log(qN−1,i+1)

log(qN,i)

tends to 0 as X →∞, and we are done again.
In the case i = k, or equivalently qN,k ≤ X < qN+1,1, due to cg−1 < qN−1,i =

qN−1,k we know again by (40) that max1≤t≤k |xζt − yt| ≤ 1
qN,1

and so X ≥ qN,k
implies

− logX max
1≤t≤k

|xζt − yt| ≤ − logqN,k
max
1≤t≤k

|xζt − yt| ≤
log(qN,1)

log(qN,k)
.

Hence by (34), for h→∞ we have the asyptotic

log(qN,1)

log(qN,k)
∼

log(qN,1)− log(qN−1,k)

log(qN,k)
.

The right hand side, however, converges to η1 = ℘k+1(η) for N →∞ by (32). This
shows that ωj(X) ≤ ℘k+1(η) + ε for any ε > 0 and X = X(ε) large enough and
together with ℘k+1 ≤ ℘j(η) for 1 ≤ j ≤ k + 1 we get ωj ≤ ℘j(η) as desired.

We divide the remaining case i = k−1, which means qN,k−1 ≤ X < qN,k, again
into two cases. If x < 1

2
qN,k

qN−1,k
, it follows that max1≤t≤k |xζt − yt| is essentially

bounded below by 1
2

1
qN−1,k

in view of (41). This gives the estimate

− logX max
1≤t≤k

|xζt − yt| ≤
log( 1

2qN−1,k)

log(qN,k−1)
≤ log(qN−1,k)− log(2)

log(qN,1)
,

which tends to 0 for X →∞ by (34).

Otherwise x ≥ 1
2

qN,k

qN−1,k
, which clearly implies limN→∞

log(x)
log(qN,k)

= 1 by (34). In

particular for every ε > 0 we have log(x) > (1 + ε) log(qN,k) for N = N(ε) suffi-
ciently large. Note X ≥ x and that X →∞ is equivalent to N →∞. Combination
of these facts together with the fact that max1≤t≤k |xζt−yt| is essentially bounded
below by 1

qN,1
by (40) yields the inequality

− logX max
1≤t≤k

|xζt − yt| ≤
log(qN,1 + o(log(qN,1)))

log(qN,k(1 + ε))

for any ε > 0 and N = N(ε) sufficiently large. However, the right hand side is of

the form
log(qN,1)
log(qN,k)

+o
(

log(qN,1)
log(qN,k)

)
as N →∞ and ε→ 0, which tends to η1 = ℘k+1(η)

for N → ∞ as in the case i = k above and so it is no improvement either. This
shows step three.

Now it only remains to determine the approximation constants ω̂j . However,
for j ≥ 2 they are easily seen to be zero as a consequence of ω =∞. Indeed in this
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case we have ψ
1

= −1 by (13) and if for some ε > 0 we had ψ2 = 1
k − ε, we would

obtain

k+1∑
j=1

ψj(q) = ψ1(q) + ψ2(q) +

k+1∑
j=3

ψj(q)

≤ (−1 +
ε

3
) + (

1

k
− ε+

ε

3
) + (k − 1)

1

k
< − ε

3

for a sequence of arbitrary large values q, a contradiction to (6). So (13) again
yields ωj = 0 for 2 ≤ j ≤ k + 1.

It remains to determine ω̂. Let X be a real number of the form X = b ch+1

4 −1c,
so that in particular we have ch ≤ X < ch+1.

Putting j = 1 in (53) and noting X = ch+1

4 − 1 ≥ ch+1

5 in the case g ≥ h+ 2− k
we obtain

− logX max
1≤t≤k

|xζt − yt| ≤ − log ch+1
5

max
1≤t≤k

|xζt − yt| ≤
log(ch+1)− log(ch)

log(ch+1)− log(5)
. (54)

If we now fix a residue class h for the values of h in the residue system {1, 2, . . . , k}
mod k, the right hand side of (54) tends to one of the fractions in the definition
of ℘̂(η) as h → ∞. In fact, as h runs through the residue system {1, 2, . . . , k}
mod k this induces a bijection between the residue classes h of the residue system
{1, 2, . . . , k} mod k and the expressions of ω̂.

In the case g ≤ h + 1 − k as max1≤t≤k |xζt − yt| is essentially bounded below
by 1

qN−1,i+1
again, we have the upper estimate

− logX max
1≤t≤k

|xζt − yt| ≤ − log ch+1
5

max
1≤t≤k

|xζt − yt| ≤
log(qN,h)

log(qN+1,h+1)− log(5)
.

The right hand side, however, is smaller than the corresponding value in (54) for
every h, so the case g ≤ h + 1 − k does never give any improvement. Thus,
by its definition, the quantity ω̂ can be estimated above by the minimum of the
expressions of ℘̂(η), which simply is ℘̂(η).

On the other hand, fixing a residue classes h for h in the residue system
{1, 2, . . . , k} mod k again and putting x := ch and yt := bζtchc for 1 ≤ t ≤ k,
we obtain a bijection between the resulting values

lim
h∈h,h→∞

− logX max
1≤t≤k

|xζt − yt| = lim
h∈h,X→∞

− logX max
1≤t≤k

|xζt − yt|

as h runs through {1, 2, . . . , k} and the expressions involved in the definition of
℘̂1(η). Hence ω̂ is at least as large as the minimum of these expressions, which
again is ω̂. �

Note, that in the special case k = 2 we have η1 +η2 = 1, and the approximation
constants of ζ in Theorem 1 become

ω =∞ , ω2 = 1 , ω3 = η1 ,

ω̂ = η2 , ω̂2 = 0 , ω̂3 = 0 .
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Particularly, we see that ω̂ + ω3 = 1, which is easily seen by straightforward com-
putation with repeated use of (13) to be equivalent to Jarńık’s identity in the form
ψ1 + 2ψ1ψ3

+ ψ
3

= 0, see Theorem 1.5 in [5].

So far we have not asked for the numbers ζ1, ζ2, . . . , ζk to be Q-linearly indepen-
dent together with 1, which is the usual assumption. For this purpose, we apply
Theorem 1 in the special case ζj =

∑
n≥1 2−an,j with suitable sequences (an,j)n≥1

for 1 ≤ j ≤ k.

Corollary 2. For 1 ≤ j ≤ k let (an,j)n≥1 be sequences with the properties

a1,1 < a1,2 < . . . < a1,k < a2,1 < a2,2 < . . . a2,k < a3,1 < . . . (55)

and for η ∈ Rk × R as in Theorem 1 put

lim
n→∞

an+1,1 − an,k
an+1,k

= η1 (56)

lim
n→∞

an,i − an,i−1
an,k

= ηi, 2 ≤ i ≤ k. (57)

lim
n→∞

an+1,1

an,k
= ηk+1 =∞ (58)

and ζj =
∑
n≥1 2−an,j for 1 ≤ j ≤ k. Then the corresponding approximation

constants are given as in Theorem 1.

Proof. Clearly, if we put qn,j = 2an,j , all conditions of Theorem 1 are satisfied. �

Now one can easily prove that there are uncountably many vectors ζ ∈ Rk, such
that additionally 1, ζ1, ζ2, . . . , ζk are linearly independent over Q. The arguments
of the proof of the following Proposition 3 are suitable to prove the existence of
vectors (ζ1, ζ2, . . . , ζk) for which 1, ζ1, ζ2, . . . , ζk are linearly independent subject
to certain approximation properties if this existence was established without the
linear independence condition.

Proposition 3. One can choose sequences (an,j)n≥1 in Corollary 2 such that

{1, ζ1, . . . , ζk}

is linearly independent over Q.

Proof. Note that in the case k = 1 (32)–(34) simply yield limn→∞
an+1

an
= ∞

and it follows from Liouville’s Theorem that the corresponding number of the
form ζ =

∑
n≥1 2−an is transcendental, in particular {1, ζ} is linearly independent

over Q. In the case k ≥ 2 consider the numbers a1,j = j for 1 ≤ j ≤ k and define
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the sequences (an,j)n≥1 by the recurrence relations

an+1,1 =

⌊
1

η1
n · an,k(η1)

⌋
(59)

an+1,2 =

⌊
1

η1
n · an,k(η1 + η2)

⌋
(60)

...

an+1,k =

⌊
1

η1
n · an,k(η1 + η2 + · · ·+ ηk)

⌋
. (61)

One checks that (59)–(61) imply (32)–(34). Now we prove that we can change
(59)–(61) slightly such that {1, ζ1, . . . , ζk} is linearly independent over Q.

Let (bn)n≥1 be the ordered combined set of all an,j defined as above. Note
that we can obviously “disturb” the system (59)–(61) a little by adding one to the
elements of the form ba where a ∈ A with A an arbitrary subset of N, without
violating (59)–(61). Noting that (59)–(61) imply limn→∞

an+1,1

an,1
= ∞, by the

considerations of the case k = 1 we know {1, ζ1} is a Q-linearly independent set,
where ζ1 is generated by the sequence (an,1)n≥1 defined above, ie ζ1 =

∑
n≥1 a

−1
n,1.

If we now consider the set of all sequences A2 = {(a′n,2)n≥1} which arise from
(an,2)n≥1 as above by adding 1 to ba with a ∈ A2 for an arbitrary subset A2 of
N, we see that A2 is uncountable. So there must be a number ζ ′2 generated by an
a′n,2 ∈ A2 with the property that {1, ζ1, ζ ′2} are linearly independent over Q, since
the Q-span of {1, ζ1} is only countable. Now we proceed analoguously with sets
Aj for 3 ≤ j ≤ k and finally get a Q-linearly independent set {1, ζ1, ζ ′2, . . . , ζ ′k}. As
mentioned above, the set {ζ1, ζ ′2, . . . ζ ′k} fulfills all the requirements. �

Remark 1. Since algebraic numbers have countable cardinality one can readily
generalize the proof above to show that we can even ask ζ to be algebraically
independent.

We now give some applications of the above theorem. Note that (4), (5) and
(8) imply that for all ε > 0 and sufficiently large Q = Q(ε) > 0 we have the bounds

−1 ≤ ψ1(Q) ≤ 0

j − k − 1

kj
− ε ≤ ψj(Q) ≤ 1

k
, 2 ≤ j ≤ k + 1.

In the first Corollary we construct ζ1, ζ2, . . . , ζk for which each ψj(Q) takes each of

the values inside of the corresponding intervals I1 := (−1, 0), Ij :=
(
j−k−1
kj , 1k

)
for

arbitrarily large Q simultaneously for all 1 ≤ j ≤ k + 1. So roughly speaking in
this case all ψj take their possible range of values for arbitrarily large (Q,∞). In
particular the bounds in (8) are best possible.
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Corollary 3. There exist ζ1, ζ2, . . . , ζk for which the set {1, ζ1, ζ2, . . . , ζk} is Q lin-
early independent and such that

ωj =
1

j − 1
, 1 ≤ j ≤ k + 1 ,

ω̂ =
1

k ,

ω̂j = 0 , 2 ≤ j ≤ k + 1 .

Proof. Note that by means of proposition 3 for every η ∈ Rk+1 subject to the
restrictions of Theorem 1 we can construct ζ = (ζ1, ζ2, . . . , ζk) together with 1
linearly independent over Q such that Theorem 1 holds. Putting η2 = η3 = · · · =
ηk+1 = 1

k in Theorem 1 immediately gives all the stated equalities for this ζ. �

Now we want to give our first explicit construction of special cases of Schmidt’s
conjecture, which was proved by Moshchevitin in a nonconstructive way in [3].
The conjecture states, that for each integer pair (k, i) with k ≥ 2, 1 ≤ i ≤ k − 1
there exists a vector ζ ∈ Rk with {1, ζ} linearly independent over Q such that
limq→∞ λi(q) = 0 and limq→∞ λi+2 =∞. Note that we cannot have limq→∞ λi(q) =
0, limq→∞ λi+1(q) =∞ for any i because of the assumption of linear independence
because of (7), see also the introduction in [3]. We now give a generalisation of this
fact in the special case i = 1 for arbitrary k ≥ 2.

Corollary 4. Let k ≥ 2 and 3 ≤ r ≤ k + 1 be integers. Then there exists ζ ∈ Rk
with {1, ζ} linearly independent over Q such that

ψ1 < 0 ,

ψ
j
< 0 < ψj , 2 ≤ j ≤ r − 1 ,

ψ
j
> 0 , r ≤ j ≤ k + 1 .

The case r = 3 clearly implies Schmidt’s conjecture for i = r − 2 = 1.

Proof. We may assume k ≥ 3, because for k = 2 the Corollary only states that
ψ1 < 0 and ψ

3
> 0 is possible, which only requires ψ1 < 0 by (6) and for any choice

of η = (η1, η2) 6= (1/2, 1/2) the construction of Theorem 1 gives an example. We
apply Theorem 1 with η defined by

η1 =
αk−1

1 + α+ · · ·+ αk−1
, (62)

ηj
ηj+1

= α, 1 ≤ j ≤ k − 1. (63)

The parameter α ∈ {0, 1} will be chosen later in dependence of (r, k). First note
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that by (13) our inequalities translate to

ω̂ >
1

k
, (64)

ω̂j <
1

k
< ωj , 2 ≤ j ≤ r − 1 , (65)

ωj <
1

k
, r ≤ j ≤ k + 1 . (66)

Now note, that the left hand side of (65) trivially holds by Theorem 1. With (62),
(63) the quantity ℘̂(η) of Theorem 1 becomes

ω̂ = min

{
1,

1

1 + α
, . . . ,

1

1 + α+ · · ·+ αk−1

}
=

1

1 + α+ · · ·+ αk−1
.

Moreover the assumption α < 1 implies that (64) holds. To obtain the remaining
inequalities it is obviously sufficient to prove ωr <

1
k < ωr−1 for some α, which by

(62), (63) and Theorem 1 is equivalent to

αr−2

1 + α+ · · ·+ αr−2
<

1

k
<

αr−3

1 + α+ · · ·+ αr−3
, (67)

since the last term in ℘j(η) is easily seen to be the largest in ℘j in our special case
of constant ratios. For r = 3 this reduces to α

α+1 <
1
k , which is obviously true if

we choose any α ∈ (0, 1k ), so we can assume r ≥ 4. Defining the functions

Φu : α 7−→ αu

1 + α+ · · ·+ αu

shows that (67) in the cases left to consider is equivalent to φu+1(α) < 1
k < φu(α)

for 1 ≤ u ≤ k − 2. It is easy to check that all these φu are continuous, φu(α) >
φu+1(α) and φu(0) = 0, φu(1) = 1

u+1 >
1
k . Further more from

Φ′u(α) =
uαu−1(1 + α+ · · ·+ αu)− αu(1 + 2α+ · · ·+ uαu−1)

(1 + α+ · · ·+ αu)2

=
α2u−2 + 2α2u−3 + · · ·+ (u− 1)αu + uαu−1

(1 + α+ · · ·+ αu)2
> 0

we deduce that they are monotonically increasing in α. Combination of these
properties implies that for fixed u there exists some t ∈ (0, 1) such that φu(t) = 1

k
by intermediate value theorem. It further follows from these considerations on the
one hand φu(α) > 1

k for α > t, and on the other hand the existence of an interval
α ∈ (t0, t1) with t0 < t < t1 such that φu+1(α) < 1

k . Thus, for all α ∈ (t, t1) we
have φu+1(α) < 1

k < φu(α). �

2.3 The case ω < ∞
We now aim to give similar results for vectors ζ = (ζ1, ζ2, . . . , ζk) whose compo-
nents ζj have one-dimensional approximation constant ω <∞. Hence in particular
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the simultaneous approximation constant ω is finite too, as by definition it cannot
exceed the minimum of the one-dimensional constants. As in Theorem 1 each ζj
will be the sum of the reciprocals of integers qn,j that satisfy (30), (31), but the
conditions (32)–(37) will be altered in ways to obtain a symmetric situation in
all ζj , which will be more convenient for the purposes of section 3. We start with
proving the following

Theorem 2. For 1 ≤ j ≤ k let ζj =
∑
n≥1

1
qn,j

where (qn,j)n≥1 are sequences of

integers for which (30), (31) are satisfied and that for

(bn)n≥1 =
(
log(q1,1), log(q2,1), . . . , log(qk,1), log(q1,2), . . .

)
the inequality

lim inf
n→∞

bn+1

bn
> 2

is satisfied. Then the first (k− 1) approximation constants relative to ζ1, ζ2, . . . , ζk
are given by

ω = lim sup
n→∞

bn+1 − bn
bn

, ω̂ = lim inf
n→∞

bn − bn−1
bn

,

ω2 = lim sup
n→∞

bn − bn−1
bn

, ω̂2 = lim inf
n→∞

bn−1 − bn−2
bn

,

ω3 = lim sup
n→∞

bn−1 − bn−2
bn

, ω̂3 = lim inf
n→∞

bn−2 − bn−3
bn

,

...
...

ωk−1 = lim sup
n→∞

bn−k+3 − bn−k+2

bn
, ω̂k−1 = lim inf

n→∞

bn−k+2 − bn−k+1

bn
.

Further more we have the inequlities

ωk ≥ lim sup
n→∞

bn−k+2 − bn−k+1

bn
, ω̂k ≥ lim inf

n→∞

bn−k+1 − bn−k
bn

,

ωk+1 ≥ lim sup
n→∞

bn−k+1 − bn−k
bn

, ω̂k+1 ≥ lim inf
n→∞

bn−k − bn−k−1
bn

.

Proof. Denote the right hand side expressions by ℘j respectively ℘̂j . We prove the
inequalities ωj ≥ ℘j , ω̂j ≥ ℘̂j for 1 ≤ j ≤ k + 1 and then ωj ≤ ℘j , ω̂j ≤ ℘̂j for
1 ≤ j ≤ k − 1. This obviously yields the assertions of the Theorem.

Throughout the proof, for arbitrary X let the integer h be determined as the
index for which ch ≤ X < ch+1. Obviously X →∞ is equivalent to h→∞, which
will often be used implicitly. We first prove ωj ≥ ℘j for 1 ≤ j ≤ k + 1.

Assume j arbitrary but fixed. Observe that for every h if we put x(i) = ch+1−i,

y
(i)
t = bζtx(i)c for 1 ≤ t ≤ k and 1 ≤ i ≤ j, we obtain

max
1≤i≤j

max
1≤t≤k

|ζtx(j) − y(j)t | = |ζt0x
(j) − y(j)t0 | =

ch+1−j

ch+2−j
+ o

(
ch+1−j

ch+2−j

)
(68)
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as h → ∞ with t0 := h + 2 − j, as explained in the proof of Theorem 1. Choose
an integer sequence (hr)r≥1 of values for h in (68) such that with (Xr)r≥1 :=
(xr)r≥1 := (chr )r≥1 we have

lim
r→∞

− logXr

chr+1−j

chr+2−j
= lim sup

h→∞
− logch

ch+1−j

ch+2−j

= lim sup
h→∞

log(ch+2−j)− log(ch+1−j)

log(ch)
,

(69)

which is possible by definition of the lim sup. Leaving out the linearly independence

condition, the so constructed vectors
(
x(i), y

(i)
1 , . . . , y

(i)
k

)
, 1 ≤ i ≤ j, lead to the

values ℘j as lower bounds for ωj in view of (68). However, the missing linearly
independence condition is now obtained exactly as in Theorem 1.

To prove ω̂j ≥ ℘̂j , consider any sequence (hr)r≥1 and the same approximation
vectors as in the proof of ωj ≥ ℘j but take logarithms to base ch+1 > X instead
of base ch. This yields a lower estimate for ωj(X) for X ∈ [chr , chr+1). As this is
valid for any sequence (hr)r≥1 we obtain the lower bounds ℘̂j = lim infX→∞ ωj(X)
for ω̂j by definition of lim inf, as we claimed. So far we have established the lower
bounds ℘j (respectively ℘̂j) for ωj (respectively ω̂j) for 1 ≤ j ≤ k + 1.

For the upper bounds note first that with basically the same arguments as in
the proof of step 3 in Theorem 1 we can restrict to the case ch ≤ X ≤ 1

4ch+1.
Further step 1 and step 2 of ℘j(η) ≤ ωj in the proof of Theorem 1 remain valid in
the present situation. Indeed, the estimates (39), (40) are already valid under the

assumtion bn+1

bn
> 2, which is weaker than (34) used in Theorem 1. The proof of

step 2 is analoguous.
Now for every fixed X we divide all approximation vectors (x, y1, . . . , yk) with

x ≤ X into two categories. Let g be the largest integer such that cg−1 | x for an
approximation vector (x, y1, . . . , yk) as in step 1 of Theorem 1. The distinction of
vectors with g > h+1−k, which we will call vectors of category 1, and g ≤ h+1−k,
which we will call vectors of category 2, now leads to 2 cases.

Case 1: If for fixed X with ch ≤ X < 1
4ch+1 we have g > h + 1 − k for an

approximation vector (i.e. it belongs to category 1), (39) implies that

ωj(X) ≤ − logch
ch+1−j

ch+2−j
=

log(ch+2−j)− log(ch+1−j)

log(ch)
, 1 ≤ j ≤ k + 1. (70)

So we have that for every X the quantity ℘j is an upper bound for ω1
j (X), by

which we mean the supremum over all real numbers ν such that (12) has j linearly
independent vector solutions all of which are of the first category. Hence if we
define ω1

j = lim supX→∞ ω1
j (X), we get

ω1
j ≤ ℘j , 1 ≤ j ≤ k + 1. (71)

In order to give a connection between the approximation constants ω̂j and approx-
imation vectors of category 1, we define ω̂1

j := lim infX→∞ ω1
j (X). We start with

an arbitrary sequence (Xr)r≥1 with corresponding subsequence (chr
)r≥1 of (ch)h≥1

and define a sequence (X ′r)r≥1 by putting X ′r := 1
5chr+1. In view of (39) and
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observing that the fractions cm
cm+1

are monotonically decreasing by our assumption
bn+1

bn
> 2, we get the upper estimate for the approximation constants ω1

j (X ′r)

ω1
j (X ′r) ≤ − log 1

5Xr+1

(
chr+2−j

chr+1−j

)
=

log(chr+2−j)− log(chr+1−j)

log(chr+1)− log(5)
(72)

for 1 ≤ j ≤ k + 1. If we specify a sequence (Xr)r≥1 for which the corresponding
sequence (hr)r≥1 has the property

lim
r→∞

− loghr

chr+1−j

chr+2−j
= lim inf

h→∞
− logch

ch+1−j

ch+2−j

= lim inf
h→∞

log(ch+2−j)− log(ch+1−j)

log(ch)
,

(73)

which is possible again by definition of lim inf, we put n = h+1 in the definition of
℘̂j so that the right hand side of (72) tends to ℘̂j as r →∞. Thus limr→∞ ω1

j (Xr)
exists and is bounded above by ℘̂j . In particular

ω̂1
j ≤ ℘̂j , 1 ≤ j ≤ k + 1. (74)

Case 2: In the other case g ≤ h+ 1− k (i.e. the vector belongs to category 2),
consider first an arbitrary sequence (Xr)r≥1 that tends monotonically to infinity
and the corresponding subsequence (chr

)r≥1 of (ch)h≥1 determined by chr
≤ Xr <

chr+1
. Recall that without loss of generality we can assume chr

≤ Xr <
1
4chr+1, as

this does not affect the approximation constants. By (40) we have

max
1≤t≤k

|ζtx− yt| ≥
1

chr+2−k
− o

(
1

chr+2−k

)
. (75)

Furthermore define ω2
j (X) as the supremum of all ν, such that (12) has j linearly

independent vector solutions with at least one vector of category 2, for every fixed
X > 0, and define w2

j := lim supX→∞ w2
j (X). Taking logarithms to the bases

chr
< Xr for r →∞, (75) implies that for 1 ≤ j ≤ k + 1 the expression ω2

j (Xr) is
bounded above by

− logXr

(
chr+2−k

chr+3−k

)
≤ − logchr

(
chr+2−k

chr+3−k

)
=

log(chr+3−k)− log(chr+2−k)

log(chr )
. (76)

Note that the bound in (76) is valid for any sequence (Xr)r≥1 and the corresponding
sequence (chr

)r≥1. Hence on the one hand we have

A := lim sup
h→∞

log(ch+3−k)− log(ch+2−k)

log(ch)
≥ lim sup

X→∞
ω2
j (X) = ω2

j (77)

simply by the definition of lim sup. Observe A = ℘k−1 (where n in the definition
of ℘k−1 corresponds to h in the definition of A ) and hence

ω2
j ≤ ℘k−1, 1 ≤ j ≤ k + 1. (78)
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On the other hand, for any sequence (Xr)r≥1 by (75) and our assumption bn+1

bn
=

log(cn+1)
log(cn)

> 2, for r sufficiently large and 1 ≤ j ≤ k − 1 we have

ω2
j (Xr) ≤ − logXr

(
1

chr+2−k
− o

(
1

chr+2−k

))
< − logXr

(
chr+2−k

chr+3−k

)
≤ ω1

k−1(Xr),

(79)

where the right inequality is a consequence of the constructions ωj ≥ ℘j , ω̂j ≥ ℘̂j
in the case j = k − 1 (see (68), (69)). Since this holds for any sequence (Xr)r≥1,
we have

ω̂2
j := lim inf

X→∞
ω2
j (X) ≤ lim inf

X→∞
ω1
k−1(X) = ω̂1

k−1 ≤ ω̂1
j , 1 ≤ j ≤ k − 1. (80)

We now combine the results above for the quantities ωsj , ω̂
s
j , s ∈ {1, 2} to derive

the required upper bounds. As every approximation vector is either of category 1
or category 2 for fixed X > 0, the definitions of ωsj , s ∈ {1, 2}, imply ωj(X) =

max{ω1
j (X), ω2

j (X)} for every X > 0. Observe that for any functions f, g : R+ 7→ R
we have

max

{
lim sup
X→∞

f(X), lim sup
X→∞

g(X)

}
= lim sup

X→∞
max {f(X), g(X)} .

Applying this on f(X) = ω1
j (X), g(X) = ω2

j (X) implies that ωj , which is by

definition lim supX→∞ ωj(X), equals the maximum of ω1
j = lim supX→∞ ω1

j (X)

and ω2
j = lim supX→∞ ω2

j (X). By (71), (78) for 1 ≤ j ≤ k − 1 this maximum is
max{℘j , ℘k−1} = ℘j , which proves the upper bounds for ωj , 1 ≤ j ≤ k − 1.

It remains to check the upper estimates for the constants ω̂j . In view of ωj(X) =
max{ω1

j (X), ω2
j (X)}, (74) and (80), we obtain

ω̂j = lim inf
X→∞

max
s=1,2

{ωsj (X)} = lim inf
X→∞

ω1
j (X) = ω̂1

j ≤ ℘̂j

for 1 ≤ j ≤ k − 1. �

Remark 2. It is rather clear from the proof that Theorem 2 remains valid for
C =∞ too. We will need this later in Theorem 4.

Corollary 5. Let the assumptions of Theorem 2 be satisfied and assume further the
existence of the limit of the quotients bn+1

bn
, i.e.

lim
n→∞

bn+1

bn
=: C ≥ 2 .

Then the first (k − 1) approximation constants are given by

ω = C − 1
...

ω2 =
C − 1

C
= ω̂ ωk−1 =

C − 1

Ck−2
= ω̂k−2

ω3 =
C − 1

C2
= ω̂2

C − 1

Ck−1
= ω̂k−1 .
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For the remaining approximation constants we have the inequalities

ωk ≥
C − 1

Ck−1

ωk+1 ≥ ω̂k ≥
C − 1

Ck

ω̂k+1 ≥
C − 1

Ck+1
.

Proof. For every h ≥ 1 we have

lim
n→∞

bn+h
bn

= lim
n→∞

bn+h
bn+h−1

bn+h−1
bn+h−2

· · · bn+1

bn
= Ch

and hence Theorem 2 yields the claimed result. �

Remark 3. The bounds for ωk, ω̂k, ωk+1, ω̂k+1 could be improved further to

C − 1

Ck−1
≤ ωk ≤ max

{
C

Ck − 1
,
C − 1

Ck−1

}
ω̂k =

C − 1

Ck − 1

ωk+1 =
1

Ck−1

min

{
1

Ck − 1
,
C − 1

Ck

}
≤ ω̂k+1 ≤

1

Ck − 1

by a rather long and technical proof that we will not present here. In particular in
the case C ≥ βk > 2, where βk is the largest real root of Pk(x) = xk+1−2xk−x+1,
we have

ωk =
C − 1

Ck−1

ω̂k =
C − 1

Ck − 1

ωk+1 =
1

Ck−1

ω̂k+1 =
1

Ck − 1
.

Let us call the assumptions of Theorem 2 without the growth condition of bn+1

bn
the basic assumptions of Theorem 2 in the sequel. We can generalize the idea of
the proof of Theorem 2 to get

Theorem 3. Given the basic assumptions of Theorem 2, we consider some fixed
d ∈ {1, 2, . . . , k−1} and define κd to be the largest real root of Pd(x) := xd−xd−1−1.
Then if

1. bn+1

bn
> κd, for all n ≥ 1,
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2. the sequence (dn)n≥1 := (bn+1 − bn)n≥1 is monotonically increasing

are satisfied, the first (k − d) approximation constants are given by

ω = lim sup
n→∞

bn+1 − bn
bn

, ω̂ = lim inf
n→∞

bn − bn−1
bn

,

ω2 = lim sup
n→∞

bn − bn−1
bn

, ω̂2 = lim inf
n→∞

bn−1 − bn−2
bn

,

ω3 = lim sup
n→∞

bn−1 − bn−2
bn

, ω̂3 = lim inf
n→∞

bn−2 − bn−3
bn

,

...
...

ωk−d = lim sup
n→∞

bn−k+d+2 − bn−k+d+1

bn
, ω̂k−d = lim inf

n→∞

bn−k+d+1 − bn−k+d
bn

.

Furthermore we have the inequalities

ωk−d+1 ≥ lim sup
n→∞

bn−k+d+1 − bn−k+d
bn

, ω̂k−d+1 ≥ lim inf
n→∞

bn−k+d+1 − bn−k+d
bn

,

...
...

ωk+1 ≥ lim sup
n→∞

bn−k+1 − bn−k
bn

, ω̂k+1 ≥ lim inf
n→∞

bn−k − bn−k−1
bn

.

Proof. We proceed as in the proof of Theorem 2 using the fact that dn is increasing
in place of the equivalent fact that cm

cm+1
is monotonically decreasing, which we

deduced from the stronger assumptions in Theorem 2 (where it was infered from
the stronger assumptions in Theorem 2) up to equation (76). Instead of (76), by

our weaker assumption bn+1

bn
> κd instead of bn+1

bn
> 2 > κd, we obtain the weaker

upper bound

ω2
j (Xr) ≤ − logXr

(
1

chr+d+1−k

)
< − logXr

(
chr+d+1−k

chr+d+2−k

)
≤ ω1

k−d(Xr),

which yields ℘k−d as an upper bound for ωj instead of ℘k−1. We proceed analo-
gously again till (79), instead of which we obtain

ω2
j (Xr) ≤ − logXr

(
1

chr+d+1−k

)
< − logXr

(
chr+d+1−k

chr+d+2−k

)
≤ ω1

k−d(Xr).

This gives ℘̂k−d as an upper bound for ω̂j instead of ℘̂k−1. The remainder of the
proof is essentially the same as in Theorem 2. �

Remark 4. We clearly have limd→∞ κd = 1. On the other hand 1 + 1
d < κd < 2

which can esily be derived using the well known monotonic convergence of (1+ 1
n )n

to the Euler number e ≈ 2.71.

Again, we easily deduce the following
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Corollary 6. Let the basic assumptions of Theorem 2 and condition 1 from Theorem
3 be satisfied. Let us further assume

lim
n→∞

bn+1

bn
= C ≥ κd.

Then the first (k − d) approximation constants are given by

ω = C − 1
...

ω2 =
C − 1

C
= ω̂ ωk−d =

C − 1

Ck−d−1
= ω̂k−d−1

ω3 =
C − 1

C2
= ω̂2

C − 1

Ck−d
= ω̂k−d .

Further more we have the inequalities

ωk−d+1 ≥
C − 1

Ck−d

ωk−d+2 ≥ ω̂k−d+1 ≥
C − 1

Ck−d+1

...

ωk+1 ≥ ω̂k ≥
C − 1

Ck

ω̂k+1 ≥
C − 1

Ck+1
.

Let us illustrate the results of Corollary 5 and Corollary 6 in the case k = 3, C = 2.
In the first plot we put

ζ ′1 = 2−1 + 2−15, ζ ′2 = 2−3 + 2−31, ζ ′3 = 2−7

which (for numerical purposes) are the initial terms of

ζ1 =
∑
n≥0

2−2
3n+1+1, ζ2 =

∑
n≥0

2−2
3n+2+1, ζ3 =

∑
n≥1

2−2
3n+1,

which clearly satisfy the conditions of Corollary 5 with C = 2. Notice the special
behaviour of Lk = L3, Lk+1 = L4 in comparison to the first (k − 1) = 2 functions
which behave as predicted in Corollary 5.

The assumptions of Corollary 6 are weaker in the sense that either C < 2 or
the quotients bn+1

bn
converge to C = 2 without being strictly larger than 2 for every

sufficiently large n. To illustrate this latter case we may put

ζ ′1 = 2−2 + 2−9, ζ ′2 = 2−3 + 2−17, ζ ′3 = 2−5 + 2−33.

which are the initial terms of

ζ1 =
∑
n≥0

2−a3n+1 , ζ2 =
∑
n≥0

2−a3n+2 , ζ3 =
∑
n≥1

2−a3n
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Figure 1: k = 3, C = 2; illustrates Corollary 5

with a1 = 2 and an+1 = 2an − 1 for all n ≥ 1, which fulfills the conditions of
Corollary 6 with d = 2. Indeed, we will see a different behaviour of L2 compared
to the previous picture. Only Lk−d = L1 has the predicted shape. We can apply
Corollary 6 to construct many more cases of Schmidt’s conjecture explicitely. For
simplicity of the proof we first deduce another easy Corollary from Corollary 6.

Corollary 7. For k ≥ 2 let 1 ≤ d ≤ k − 1 be an arbitrary integer. For any C > κd
there exists a sequence of positive integers (bn)n≥1 such that bn+1

bn
> C for all n

and limn→∞
bn+1

bn
= C. If (an,j)n≥1 for 1 ≤ j ≤ k are k sequences satisfying (55)

such that (bn)n≥1 is their ordered mixed sequence, then for ζj =
∑
n≥1 2−an,j the

result of Corollary 6 is valid.
Furthermore we can choose the sequence (bn)n≥1 such that 1, ζ1, . . . , ζk are

Q-linearly independent.

Proof. The sequence (bn)n≥1 defined by b1 = S and bn+1 = dCbne with S suffi-
ciently large that b2 > b1 clearly satisfies the stated properties. Putting qn,j = 2an,j

we see that the assumptions of Corollary 6 are satisfied, since it clearly makes no
difference if we take the logarithm to base 2 instead of e as the quotients bn+1

bn
don’t

change. By a variation of (bn)n≥1 as in the proof of Corollary 3 we can guarantee
the linear independence. �
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Figure 2: k = 3, C = 2; illustrates Corollary 6

Corollary 8. With the notation of Corollary 7 there exists a constant R(k) such
that the following holds:

• R(k) > k
log(k) for k sufficiently large.

• For fixed 3 ≤ T ≤ R(k) there is some C0 = C0(T ), such that there exists

a sequence (bn)n≥1 of positive integers satisfying limn→∞
bn+1

bn
= C0 such

that the corresponding vector (ζ1, . . . , ζk) constructed via Corollary 7 with
C = C0 has approximation constants that satisfy

ψT−2 < 0 and ψ
T
> 0. (81)

A possible choice of R(k) is R(k) := k−1+(k−2)
log
(
k

1
k−2−1

)
log(k) . This provides

explicit examples for Schmidt’s Conjecture.

Proof. Let k be an arbitrary but fixed integer. In view of (13) for a given 3 ≤
T ≤ R(k) we need to find C0 = C0(T ) such that a vector (ζ1, ζ2, . . . , ζk) that arises
from Corollary 7 with C = C0 satisfies ω̂T−2 >

1
k > ωT to obtain (81). We will

implicitly identify such a vector (ζ1, ζ2, . . . , ζk) with the resulting value C from the

limit of the quotients bn+1

bn
in Corollary 7. This is well defined as the approximation

constants we consider don’t depend on the choice of the exact vector but depend
only on C by Corollary 7. As was shown there the set of such vectors (ζ1, ζ2, . . . , ζk)
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is nonempty for every C > κd > 1 and we can assume (ζ1, . . . , ζk) together with 1
to be Q-linearly independent.

For any positive integer u define the function Ψu(x) = x−1
xu . Each function Ψ. is

easily seen to be continuous and Ψu increases on [1, u
u−1 ] and decreases on [ u

u−1 ,∞)
with limit 0 as x→∞.

We use the notation of Theorem 3, in particular κd is the largest real root of
Pd(x) = xd − xd−1 − 1. We first prove that we can choose C0 = C0(T ) such that
(81) holds for a given T that has the property

ΨT−1(κk−T ) >
1

k
(82)

with the constructions of Corollary 7 and the particular choice C = C0.
Put u = T −1. If (82) is valid, the facts about the functions Ψu show that there

is x > κk−T such that ΨT−1(x) = 1
k and ΨT−1 already decreases at x. Furthermore

there is an interval C0 ∈ (x, x+ δ) such that ΨT−1(C0) < 1
k < ΨT−2(C0). Since

C0 > x ≥ κk−T we can apply Corollary 7 with d := k − T,C := C0 and obtain

ωT = ΨT−1(C0) <
1

k
< C0

1

k
= C0ΨT−1(C0) = ΨT−2(C0) < ω̂T−2 ,

as intended.
Now assume k is fixed, 1 ≤ T ≤ k + 1 and that for C0 := κk−T

C0 − 1

Ck−10 − Ck−20

>
1

k
(83)

holds. By definition of C0 = κk−T we have CT−10 = Ck−10 −Ck−20 and (83) further
implies

ψT−1(C0) =
C0 − 1

CT−10

=
C0 − 1

Ck−10 − Ck−20

>
1

k

for such T , i.e. (82). Combining what we have shown so far, (81) can be obtained
for T and C0(T ) = κk−T , provided (83) holds. We now show that (83) is true for
3 ≤ T ≤ R(k).

In view of C0 > 1, inequality (83) is equivalent to κk−T = C0 ≤ k
1

k−2 . Since
Pk−T , whose largest root is κk−T > 1, increases on the interval [1,∞), this is

equivalent to Pk−T (k
1

k−2 ) ≥ 0, i.e.

k
k−T
k−2 − k

k−T−1
k−2 − 1 > 0 .

Basic rearrangements show this is equivalent to

T ≤ k − 1 + (k − 2)
log
(
k

1
k−2 − 1

)
log(k)

=: R(k) .

To finish up the proof we are left to show that R(k) > k
log(k) holds for k sufficiently

large. To see this we claim that for sufficiently large k we have

R(k) >
k

2

[
1 +

log(k
1

k−2 − 1)

log(k)

]
>
k

2

[
1 +

log(k
1
k − 1)

log(k)

]
>

k

log(k)
.
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Figure 3: ψ
j+1

= ψj , special case

For k ≥ 4 only the right most inequality is non trivial. It is equivalent to k(k
1
k−1) >

e2 or k
1
k > e2

k + 1. However, this is easily seen to be true by k
1
k > 1 + M

k for
k ≥ k0(M) for arbitrary M , which follows from the monotonic convergence of
limk→∞(1 + M

k )k = eM for every M . Putting M > e2 arbitrary proves the claim.
�

Remark 5. We have limk→∞
R(k)
k = 0, but the convergence is very slow, in partic-

ular we have seen it is slower than 1
log(k) .

3 The case ψ
j+1

= ψj

In this section we want to treat the case of ζ1, ζ2, . . . , ζk that define functions ψj
with the property

ψ
j+1

= ψj , 1 ≤ j ≤ k. (84)

We will exclude the generic case where all approximation constants ψ
j
, ψj are zero,

and call the cases where ψ
1

= −1 the degenerate cases. Note, that the numbers
Corollary 5 deals with lead to functions ψj that satisfy the equalities of (84) for
1 ≤ j ≤ k − 2, but not for j ∈ {k − 1, k} in the case C <∞ (see the bounds given
in the remark following Corollary 5). A special case of (84), for which an idealized
picture is shown below, is of particular interest. If (x(i))i≥1 denotes the sequence
of the first coordinates of approximation vectors (x, y1, . . . , yk), then we consider
the special case where there is a sequence of (x(i))i≥1 with (ideally) constant value

of log(x(i+1))
log(x(i))

such that

max
1≤j≤k

|ζjx(i) − yj | ∼ (x(i))−ω.
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This sequence causes the second minimum to attain the value ω2, and so on. Thus
in particular we have

lim
i→∞

log(x(i+1))

log(x(i))
=

ωj
ωj+1

, 1 ≤ j ≤ k (85)

lim
i→∞

−
log
(
max1≤t≤k|x(i)ζt − y(i)t |

)
log(x(i))

= ω. (86)

Let the equistence of a sequence (x(i))i≥1 such that (85), (86) holds and additionally

for i ≥ i0 every k+1 consecutive approximation vectors (x(j), y
(j)
1 , . . . , y

(j)
k ) belong-

ing to x(i), x(i+1), . . . , x(i+k) (i.e. j ∈ {i, i+ 1, . . . , i+ k}) are linearly independent
be our definition of the special case mentioned above.

Roy shows, that numbers he defines as extremal numbers ζ in the introduction
of [4] satisfy the property of the special case of (84) for k = 2 and ζ1 = ζ, ζ2 = ζ2

and yield ωj = γj−1 for 1 ≤ j ≤ 3 and ω̂3 = γ3 with γ :=
√
5−1
2 . We are interested

in other particular cases of the special case of (84).
It follows in general by (85), (86) that all the values ψ

.
, ψ. are determined by

the value ψ
1

(or equivalently ω). This holds for the degenerate case in partic-
ular. However, we will show in Theorem 4 that this phenomenon holds for all
(ζ1, ζ2, . . . , ζk) in the degenerate case of (84). By virtue of Corollary 5 we can
easily provide concrete examples for the degenerate case. Before we do so, for the
sake of completeness we give a general result about the degenerate case of (84).

Proposition 4. Assume the approximation functions arising from ζ1, . . . , ζk satisfy
ψ
1

= −1 and (84). Then they already satisfy

ψ
1

= −1 (87)

ψ1 =
1− k

2k
= ψ

2
(88)

ψj =
1

k
= ψ

j+1
, 2 ≤ j ≤ k, (89)

ψk+1 =
1

k
, (90)

and hence in particular fall under the special case.

Proof. First note that in general if ψ
1

= −1 we have ψj = 1
k for 2 ≤ j ≤ k + 1

by means of (6), see the proof of Theorem 1. Consequently by (84) we have (89)
and (90).

For (88) note first that 1−k
2k is always a lower bound as established in (8), (9).

So by (10) it suffices to prove ψ1 ≤ 1−k
2k .

Suppose we had ψ1 >
1−k
2k . This means for some sequence (qn)n≥1 tending to

infinity we have ψ1(qn) > V for some V > 1−k
2k . Putting V0 := 2(V − 1−k

2k ) > 0 and
using ψ2(qn) ≥ ψ1(qn) we have

lim
n→∞

k+1∑
j=1

ψj(qn) > 2V + (k − 1)

[
1

k
− V0

2(k − 1)

]
=
V0
2
> 0,
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a contradiction to (6) since limn→∞ qn =∞. �

Theorem 4. For any k ≥ 2 there exist real numbers ζ1, ζ2, . . . , ζk as in Corollary 5
with C =∞ together with 1 linearly independent over Q that satisfy the degenerate
case of (84) and hence (87)–(90) by Proposition 4.

Proof. Using (13) we obtain the equivalent system

ω =∞ (91)

ω̂ = 1 = ω2 (92)

ω̂j = 0 = ωj+1, 2 ≤ j ≤ k (93)

ω̂k+1 = 0 . (94)

In the case k ≥ 3, we can just apply Corollary 5 with C = ∞ because then we
obviously have

lim
C→∞

C − 1

C
= 1, lim

C→∞

C − 1

Cj
= 0, j ≥ 2,

which gives (91)–(94). However, in the case k = 2 and C = ∞ we can also
apply Corollary 5 with a slightly more sophisticated argumentation. Of course we
directly infer (91) and the left equation in (92) follows as for k ≥ 3. From (91) we
can immediately deduce ω̂j = 0 for j = 2, 3 as in the proof of Theorem 1, which is
a rephrasing of the left hand side of (93) and (94). By the left equation in (92) and
Jarńık’s identity ω3 + ω̂ = 1 (see comments between the end of proof of Theorem 1
and Corollary 2) we get ω3 = 0, i.e. the right hand side of (93). For the missing
right hand equation of (92) note that ω2 ≥ ω̂ is always true by (10) and on the
other hand ω2 ≤ 1 by (15), so by the left hand equality in (92) we infer the right
hand equality of (92). �

This allows to show that the bounds in (14)–(19) are best possible if considered
independently by using only three types of vectors (ζ1, ζ2, . . . , ζk) depending on the
dimension k. These types are:

• a set of together with 1 Q-linearly independent algebraic numbers ζ1, ζ2, . . . , ζk
(leading to the generic case)

• ζ1, ζ2, . . . , ζk as in Corollary 5 with C = ∞, for example ζj =
∑
n≥1

1
(nk+j)!

for 1 ≤ j ≤ k

• ζ1, ζ2, . . . , ζk as in Corollary 3

Corollary 9. The bounds (14)–(19) are all (each for itself) optimal among (ζ1, . . . , ζk)
that are Q-linearly independent together with 1.

Proof. In Corollary 3 we have seen, that the upper bounds in (14), (15), (16) as
well as the lower bounds in (17), (18), (19) cannot be improved.

In Theorem 4 we’ve just seen, that the left hand side of (16) and the right hand
side of (17) are optimal.



Diophantine Approximation and special Liouville numbers 75

However, all the other bounds are 1/k and it is well known that all constants
ωj , ω̂j are equal to 1/k in the generic case. To give concrete examples, an im-
plication of Schmidt’s subspace theorem says, that for all Q-linearly independent
algebraic numbers all approximation constants take the value 1/k (which follows
already from ω = 1/k by (13) and (6)). So the lower bounds of (14), (15) such as
the upper bounds of (18), (19) cannot be improved either, and the list is complete.

�

Let ζ1, ζ2, . . . , ζk be real numbers that lead to a special case of (84), i.e. (85),
(86) hold. It follows directly from (85), (86) that all the constants ωj , ω̂j only
depend on ω. It is easy to check that more precisely we have

(1 + ω)k+1

ω
=

(1 + ω̂k+1)k+1

ω̂k+1
(95)

ωj = ω1− j−1
k+1 ω̂

j−1
k+1

k+1 , 1 ≤ j ≤ k + 1. (96)

Using this we now prove a lower bound for ω̂ in dependence of ω.

Proposition 5. In the special case of (84) for k ≥ 2 we have

ω

ω + 1
< ω̂ ≤ 1.

Proof. The right hand side inequality is just (17).
Suppose for some k ≥ 2 we had ω̂ ≤ ω

ω+1 . Putting j = 2 in (96) (note ω2 = ω̂
by definition) we have

ω̂k+1 ≤
[(

ω

ω + 1

)
ω−

k
k+1

]k+1

=
ω

(ω + 1)k+1
. (97)

Denote

fk(x) :=
(x+ 1)k+1

x
, k ≥ 1 .

Differentiating shows that fk decreases on x ∈ (0, 1k ) and increases on x ∈ ( 1
k ,∞),

so its global minimum on (0,∞) is at x = 1
k . Combining this with ω̂k+1 <

1
k ,

(95) and (97) we obtain

fk(ω) = fk(ω̂k+1) ≥ fk
(

1

fk(ω)

)
, k ≥ 1.

Putting z := 1
fk(ω)

this gives 1
z ≥ fk(z), which is false, as 1

z is an expression in the

binomial expansion of fk(z). �

Remark 6. One can prove that for k ≥ 2 we have limω→∞ ω + 1− ω
ω̂ = 0.

Observe, that in Corollary 6 with arbitrary C we always have ω̂ = ω
ω+1 . Propo-

sition 5 shows that given ω the resulting special case of (84) leads to a larger value
of ω̂. It may be conjectured that among all ζ1, ζ2, . . . , ζk linearly independent to-
gether with 1 with prescribed ω = ω0, the quantity ω̂ is maximised for the special
case of (84) with the value ω = ω0.
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Remark 7. Observe that the inequality ω̂2

1−ω̂ ≤ ω always holds as established by
Jarńık, see Theorem 1 page 331 in [2]. So together with Proposition 5 in the special
case of (84) we have

ω̂2

1− ω̂
≤ ω ≤ ω̂

1− ω̂
.
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