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OPTIMAL DESIGN OF THE COOLING PLUNGER CAVITY

PETR SALAC, Liberec

(Received May 5, 2011)

Abstract. An axisymmetric system of mould, glass piece, plunger and plunger cavity
is considered. The state problem is given as a stationary head conduction process. The
system includes the glass piece representing the heat source and is cooled inside the plunger
cavity by flowing water and outside by the environment of the mould. The design variable
is taken to be the shape of the inner surface of the plunger cavity.

The cost functional is the second power of the norm in the weighted space L2 of difference
of trace of temperature from given constant, which is evaluated on the outward boundary
of the plunger.

Existence and uniqueness of the state problem solution and existence of a solution of the
optimization problem are proved.

Keywords: shape optimization, heat-conducting fluid, energy transfer
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1. INTRODUCTION

This work concerns the optimal design of the shape of the plunger cavity which
controls the cooling process of the glass piece during the manufacturing process. The
goal of optimization is to find such a shape of the inner plunger cavity which allows
us to control down the plunger temperature in such a way to achieve a constant
distribution of temperature across the surface of the moulding device at the moment
of separation of the plunger from the moulded piece.

The mathematical model is a strong idealization of the non-stationary periodical
problem of heat conduction. We study the problem of stationary conduction of heat
for mean values of this periodical process with cooling by stationary flowing water.

This work was supported by the Research plan No. MSM 4674788501 funded by Ministry
of Education, Youth and Sports of the Czech Republic.

405



In view of the fact that the system of mould, glass piece, plunger and plunger
cavity is considered to be axisymmetric we assume planar stationary flow of water in
planes involving the z axis. Now it is suitable to formulate the problem in cylindrical
coordinates 7, ¢, z. We assume that the heat conduction and the flow pattern do not
depend on the angle ¢ so we get a two-dimensional problem in the weighted Sobolev
space.

The cost functional is defined as the second power of the norm in the weighted L?
space of the difference of the trace of temperature and the given constant evaluated
on the outward boundary of the plunger.

In Section 1 we define a weak formulation of the state problem in cylindrical
coordinates with reduced angle coordinate and prove the existence of its unique
solution. Further we formulate the problem of the optimal design for the plunger
cavity shape and prove the existence of solution.

2. FORMULATION OF THE PROBLEM

To formulate the state problem we start from the abstract formulation introduced
by authors Haslinger and Neittaanmaki [1].

We rotate the system to the horizontal position to be able to describe the optimized
plunger cavity surface by a function of one variable.

We define

{O for z € [0, z§],

(1) Fi(a) =

f$(z) for z € [x§,1],

where 2§ € [Smin, 1] (Smin > 0 is a fixed constant given by the minimal thickness of
the plunger wall), f5 € CO1([x5,1]), f5(x5) = 0 and 0 < f§(x) < f1(2) — Smin,
|fs'(x)] < Cp for x € ]a§,1], where f; is a fixed given increasing function which
represents the outward shape of the plunger. Further we assume that a < f§(x) — s9
for z € [x§, 1], where a > O represents the radius of the supply tube and s > 0 is
the minimal admissible split width between the inner wall of the plunger cavity and
the supply tube, z§ € |xo, 1] is the depth of insertion of the tube.

Remark. The condition |f§'(z)| < Cp yields a non-smooth shape of the real

3D plunger. It can be omitted and replaced by a small rotation of the system in
negative sense in the proof of existence of a solution of the optimal design problem.
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Figure 1. Scheme of plunger with optimized part of boundary.

Further we define the set of admissible functions as

o1 0 for x € [0, x5
Usa = { F5(x) € CO1((0,1]); F5(w) =
fS(x) forx e [z5,1
25 € [Smin, 1], smin >0, f5 € CO([5,1]), f5(25) =0,
0< f5(@) < fi(@) = smin; |f5' ()] < Cp for @ € Ja5, 1],

f1 given, a < f5(x) — so for x € [25,1], a > 0, s2 >0, z5 € |z, 1]}7

B
B

where the function Fy describes the technological constraint for the inner cavity
surface.

We consider the region 2§, which depends on the design function Fi (z), and which
is defined by the formula

Q% = {(z,7) € R*; Fy(z) <r < fi(z) for x € [0,1]}.

Denote by © the set of all admissible regions %, C R? with Lipschitz boundaries.

We define the convergence on the set O.

We say that a sequence 2, € © converges to a region {lp; € © if, and only if, the
sequence of functions "Fy () converges uniformly to the function F§(x) in [0, 1].

Let us consider the union of four planar regions 2 = Qp, U Qg UQEZ, Uy, which
represents the planar cross section of the system mould, glass piece, plunger and
the cooling canal of the plunger. Region Qf, represents the plunger, region Qg the
cooled glass piece, region ¢, the cooling canal inside the plunger, where cooling
water flows, and region {2y, represents the mould.

Furthermore, we denote by Iy the boundary between the plunger 2§, and the
moulded piece Qg and by I's the boundary between the plunger Qf, and the plunger
cavity 2¢,. We denote by I's part of the boundary connecting the system mould, the
moulded piece and the plunger with presser, by I'y part of the axis of symmetry (see
Figure 2), by I5 part of the boundary formed by the tube. T is the notation for part
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of the boundary between the moulded piece Qg and the mould Qy, and I7 is the
outward boundary of the mould, which is surrounded by the external environment.
T'in denotes part of the boundary, where cooling water comes into the cooling canal
of the plunger, and I'yy; part of the boundary where water exits.

Onmo (Mould)

Q% (Plunger)

Q. (Cavity) Tout

— '“i\\\\\k\\\\\\k *

Iy

Figure 2. Scheme of the system mould, glass piece, plunger, cavity of plunger and supply
tube.

In the three dimensional region G¢, which is created by rotation of (¢, around
the z axis, we assume an axisymmetric incompressible potential flow of water, which
is axisymmetric with the = axis. We split the boundary 0G¢,, into the union of four
parts as

(1.2) 0GE, =T3P uTsP uriP yrsd

out»

where T3P, T3P, T80 and I'L, denote respectively parts of boundary of 0G§,, created
by rotation of I'y, I's, I'in, and I'oys, around the z axis.

The potential ® is given as a solution of the Neumann problem

(1.3) AD =0 inGS,,
00 .
(14) % =g on 8Gca,

where g € L*(0GE,), representing the normal component of the velocity at the
entrance to and the exit of the plunger cavity, is in the form

0 on T3P U T3P,
(15) 9= hi/rélo on FIIID’
hgglto on Fout7
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hin, is the normal velocity at the entrance I';P (A%, < 0) and h°% is the normal
velocity at the exit T'3D.. Further, we assume
(16) Lo ads=0

I Urga

The variational formulation for the potential function has the following form:
We look for the function ® € H!(GE,) such that

0P 5‘30 o 1/ e
(17) | oamgmav= [ apds veel'(G).
.

in out

The velocity field of the flowing water u = (u1, u2, u3) in the cavity G¢, is given as
(1.8) u = grad®.

Theorem 1.1 (Existence and uniqueness of the velocity field). Under the as-
sumption (1.6) there exists a unique velocity field of the form (1.8) satisfying the
estimate of the Euclid norm in the form

(1.9) Hulllz2(ae,) < ellbveollzeary + 1A%l 22 rap,))-

out

Proof. According to Theorem 35.1 (see [3] page 423) there exists a unique weak
solution ® € H'(GE,) of the Neumann problem (1.7), which satisfies the condition

(1.10) / odV =0
Géa
and
(1.11) @] (ce,,) < cllgllzzaae,,)-

Further, from (1.8) we get

2 2 2
(1.12) [Vt + g+, o | < I®lmice,
which together with
(1.13) lgllz2oce,) = [PVeioll L2rsry + 1h3db |l 22 ron,)
gives (1.9). O
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The energy equation for the stationary flow u with steady temperature in three
dimensions has the form

k 1
(1.14) cograd - u — —AY = —2u|D(u)|* + ¢,
o o
where ¢, is the specific heat upon constant volume, ¢ the absolute temperature, k the
coeflicient of thermal conductivity, o the density of the flowing liquid, i the dynamic

viscosity,

Ou; ~ Ou; )

1
= (d..)3 . = =
(1.15) D(u) = (dij); j=1:  dij 2 (5‘xj * 0x;

the strain velocity tensor and ¢ the density of the heat sources. We assume that
the cooling medium is water, which has dynamic viscosity 0.833 - 1073 < pu <
1.231 - 1073 [Nsm~?| at temperatures considered. It allows us to neglect the term
representing the energy of the inner friction of water. So we assume the energy
equation in the form

(1.16) cygradd - u — gAﬁz q.

We put u =0 in G, Ga1 and G, (the regions created by rotation of Q%,, Qa1
and Qyp, around the x axis) because there is no flowing liquid inside. Further we
consider ¢ = 0 in G§;, G&, and Gumo (there are no heat sources inside). Denote
G = G%UGa UGE, UGumo. We divide the searched function ¢ representing the
distribution of temperature in the system into the sum of four functions as

¥ =99+ % + 92 + V3,

where

) G; in Gl
(1.17) 9 = fori=0,1,2,3
0 in G\Gl

(Go = G%), G1 = Gay, G2 = GEy, Gz = Guio).
Further, we denote by 19i|p?n the trace of solution J; on the boundary I‘?D for i, j
if T3P is a boundary of Gi. ‘
We assume the following boundary conditions:
At the entrance the cooling water has constant temperature 15°C, i.e. 288 K, thus
in

192|F;D =288 on F‘SD
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The output distribution of temperature is given by the function h¢,, € C(T'3D,), thus

out

__pe 3D
192'1"23 - hout on Fout'

We assume that the supply tube is isolated, thus
0Y2
—— =0 onT3P.
on >
The boundary condition on T3P is given as

Oilrgp = hs  on 3P i=0,1,3,

where hs € C(T3P) is the steady-state temperature at the place of connection with
the glass press.

The heat-transfer through T3P (i.e. between the plunger and water) is modeled
as the boundary condition for contact of two bodies, where “the body” representing
water has a convective term (see [4]), thus
(1.18) (—ko%) - (—k2%>+ on T3P,
where 9/0n denotes the derivative with respect to the outward normal with respect
to the region Gg,, or Gg,, “+” standing for the limit in the direction of the normal
to the boundary from outside and “—” from inside of G¥%,.

The heat-transfer through the boundary T3P (i.e. between the mould and envi-
ronment) is modeled as a boundary condition of the third kind for contact between
body and environment (see [4]), thus

(1.19) ( 9%

- kga—n> = a(193|F73D - 194) on F73D,
where 9/0n denotes the derivative with respect to the outward normal with respect
to the region G, “—” the limit in the direction of the normal to the boundary from
inside of G, @ > 0 denotes the coefficient of heat-transfer between the mould and
environment, 193|F73D the trace of Y3 on the boundary of the region Gy, and 94 > 0
the temperature of environment. We use the transit condition for contact between
two bodies, where one of them changes its state of matter because of the influence
of solidification (see [4]), to describe the heat-transfer through the boundary I'jP
between the glass piece and the plunger. Thus

(1.20) (kl %Y - (%%)7 =p onI}P,

where 3; > 0, 31 € C(O1(T$P) represents the flux density of the modified mass
of the body, 9/0n denotes the derivative with respect to the outward normal with
respect to the region G, or Ggi, “4” the limit in the direction of the normal to the
boundary from outside and “—” from inside of G§,.
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Analogously we describe the heat-transfer through the boundary TP between the
glass and the mould. Thus

(1.21) (k1 %%Y (ks iﬁf)i =0 onIgP,

where 35 > 0, B € CO1(TEP) represents the flux density of the modified mass
of the body, 9/0n denotes the derivative with respect to the outward normal with
respect to the region Gy, or Ggr, “+” the limit in the direction of the normal to
the boundary from outside and “—” from inside of the region Gy,.

We start from the variational formulation of the energy equation in three di-
mensions. Due to rotational symmetry we transform the problem to cylindrical
coordinates and use dimensional reduction to x, r coordinates.

In this way we obtain a two dimensional velocity field of flowing water w¢ =
(w1, ws) where

(1.22) wy = ui,
(1.23) wz =/ (u2)? + (u3)?,

where u = (u1, uz,u3) is defined in (1.8).

Dimensional reduction leads to one more boundary condition on the axis of the
system Iy, which means that there is no heat flow in the normal direction to the
axis, thus

0Y;
on

To define the state problem based on the variational formulation of the energy equa-

=0 only, :=0,1,2,3.

tion in two dimensions we define operators

o oY
velo _ 2 2_
(1.24)  Energys ° (9, w, 1) = c,00 /éa ( 5 UL + a5 wg)wrdQ,

D90 O D O
cond — Y 0
(1.25) Energya™ (9, v) = ko/;l ( oz or ' or or

hy /QGl (8191 81/1 8191 81/))

)rdQ

ox 83:

092 81& 8192 oY
tho (%2 30 * 5 ar)7 49

V3 (‘M 8193 (‘M
ks /Q (G 3 * 3 o) 99

(1.26)  Environmentq (4, 1)) = / ads|p,r dT,
Iy
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(1.27) Sourceq (1)) = gl/ qur d€Q,

Qa1

(1.28) Coefq (1)) = Brpr dI + Betpr dT +/ adgprdl.

I Ts 7

Further, we denote

(1.29) A (¥, w,v) = Energy™ (9, w, 1)) + Energy™ (9, )
+ Environmentg (19, ¢)

and
(1.30) Fq(v) = Sourceq () + Coeffq (¢)).

We introduce the weighted Sobolev space H}!(Q;) (see [2]) with the norm

(1.31) [0l 1rq, = (/Q [(%)2 T (%)2 +v2}7~d9>1/2, i=0,1,2,3,

(QO = Q%]? Ql = QGh QQ = Qéa? Qd = QMO)'
Further, we denote

H(Q) = {9; 9 defined in (1.17), ¥; € H}(;) for any i = 0,1,2, 3}.

We define the norm in H(Q) as

(1.32) 19]lex = ([l e,

tro 10113 0, + 10201 1.0, + 195113 .0,)

Theorem 1.2. The set H(Q) with the norm (1.32) is a Hilbert space.

We denote by H*(£2) the dual space to the space H(2) with the norm

F
| Fols = sup T2,
v20 [[¥]m
Denote
QH = QUFg UFin UFout
and

6H2D = {U E COO (QH)7 U|F3UrinUFolxt = 0}

Let Ho(f2) be the closure of the set “H?? with respect to the norm H((Q2).
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We assume the existence of a function 9§ € H(2) such that

(1.33) 9%, =288 on Ty,
(1.34) Vb |owe = Powe 0N Tout,
(1.35) 1916—\|1"3 = hg on Fg,

where h3 € C(I3) is a given function representing the stagnation temperature on the
boundary I's with the presser and h¢ , € C(I'oy;) is a given function representing
the distribution of temperature at the output from the cavity of the plunger I'gys.
We use the variational formulation of the energy equation to formulate
The State Problem:

We look for the function ¢ = 9(F§) € H(Q) such that

(136) AQ(7.97W67’¢)) = Fﬂ(w) VZ/J € HO(Q)a
(1.37) 9 — 9% € Ho(Q),

where Fy € UZ, and w® is the corresponding flow pattern given as the gradient of
the solution (1.7).
The physical assumption of cooling:

A1: The average temperature of water coming into the plunger cavity is less than
the average temperature of the leaving water.

Theorem 1.3. The bilinear form (1.24) satisfies the condition
(1.38) Energy'° (9, we,9) > 0

for ¥, w¢ satisfying the physical assumption of cooling Al.

Proof. The volume of water flowing into the region G¢&,, or flowing out of the
region G¢,, during one second is

— _ in _ out _
Pf—/mu'nde—/BD ol A5 = " hialo dS = 3Du'ndS,
Fin Fin I—‘out I—‘out

because of assumption (1.6).
Further we assume that water flows into the region G¢, through the boundary
3P so

u-n<o0 oan’I]lD

3D
out» SO

and flows out of the region Gg, through the boundary I

3D
u-n>0 onlyy.
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Then the expression

1 1
—— 19211'1’1(15:——/ 288hin, dS
P F3D FSD

in in

means the average temperature of water flowing into G¢, during one second (recall
hin 0) and

Velo
1 1
5 [, temas =5 [ ngnas

3 3

means the average temperature of water flowing out of G¢, during one second.

We assume cooling process, that means the average temperature of water flowing
into is less than the average temperature of water flowing out (assumption A1), so

1 1 e pou
(139) _ﬁ oD 288 velo ds < F /F3 out velto ds.

Now we have

o oY oY
Energyvelo(ﬁ, u, 19) = Cvgg/ ( p 2192u1 + 8 2192 Uo + 822 192U3) dv

1
= 5Cv02 / (V3u1vy + Vausv, + Vauzv,) dS
8G€Ca

1
= 5%92 /ac 193u~ndS
Ca
1 [ 2 2
= —C,02 Jdou-ndS + Jdou-ndS
2 L rep
) -
— g | [ otwnas+ [ oni,as] >
2 U rep
1
> 5%92 min hS,, / R host dS + 288 / 288h!1 dS}
rip
1
= 5Cv02 (mln hout - 288) hguthslellto ds
2 71 raD,
+ 288( e hoME dS + / 288hin, ds)] >0
rap, rsp

where we used Green’s formula, the fact that min A%, > 288 and (1.39). Transfor-
mation to cylindrical coordinates does not change the inequality. O
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Theorem 1.4 (Existence and uniqueness of solution of the state problem). The
state problem (1.36), (1.37) has a unique solution O(Fy) for each F5 € U, and the
associated flow pattern w® obtained as the gradient of the unique solution of (1.7)
and

1

min(co, ¢1, ¢2, €3)

(1.40) [9(F3) [l <

[ Falle-

Proof. It is sufficient to verify the assumptions of the Lax-Milgram Theorem
(see [1] page 12). We denote V = H(Q2). According to Theorem 1.2 V is a Hilbert
space.

We denote the seminorms of the space H(2) as

1/2
lullo,2,r = (/ u27’d9> ;
Q
1/2

lluzllo2r = (A(%)Qrdg> |
o= ([ (Gt ron)

luller = ([ullf 2, + llua]

Then
/2.

(2),2,7’ + HuT||(2),2,r)

According to Theorem 1.1 there exists a unique flow pattern w® corresponding to
F, € US,. We substitute this vector function w® into the bilinear form (1.24):
(—w1 + = >wrdQ‘

/QeCa ox ar 2

< cpo2 max(|wil, [wal, 1)([[V2z]0,2,0 (||
+ 1921 ll0,2,- 1% ]]0,2,r)

< 26y 02 max(|wsl, [we], V)| wlle|la,

09 0V,

|Energy{y™® (40, w®, ¥)| = c,09

0,2,r

because

lullfllvlE = (lelld 2.0 + lualld 2,0 + luelld 2.0) (OIS 2.0 + l02l15 20 + l0rl[5 2,0)
= [[ullg 2, 1013 2.7 + 1ull5 2,102 15 2.0 + 1§ 2 10015 2.
+ luallf 2 1015 2,0 + Nualld 2 102l 2. + 1ualld 2 pll0r I3 2.0

+ g 2, 10108 2. + 1urllf 2 l1ve 13 2.0+ ler 13 2 pllr 13 2.0
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9o 0P Oy O
cond — 2oy 0
|Energyey™ (9, 1)| = ko /Q;1 ( Or Ox + Oor Or

0% 0y Oy OY
k1 /QGl ( Oxr Ox * or 8r>rdQ
002 0y Oy OY
+’€2/% (%2 3+ o or)7 99
093 0y O3 O
ks / (% 3 * 3 7)o
< ko(|[Y0zllo,2, |z
+ k1 ([[912[l0,2,7

)rdQ

0.2,r + 1Porllo,2,- 1Pl 0,2,r)
Yello2,r + 1917 ll0,2,0 1% [|0,2,r)
+ k2 ([922]l0,2,r 1202, + 1927 ll0,2,r [1%0r || 0,2,r)
+ k3 (|| Vs | Vzllo,2,r + [19sr]l0,2.r 1¥r]0,2.r)
< 2max(ko, k1, k2, k3)||9|al[¢ | a,

|Environment9(19,w)|=‘ / a(193|p7)1prdF‘ < / o (93], Joor| dT
F7 1—‘7

1/2 1/2
< a(/ (193|1~7)2rdf> ( wQTdF)
Iy Iy

< aCldsllall¢lla < aCil|9]all¢la,

0,2,7"

where we have used the Holder inequality and the Trace Theorem [1] page 9.
Together we get

|AQ(197W6,1/1)|
< [2cp02 max(|wy |, |we|, 1) + 2max(ko, k1, k2, k3) + aC1 ][]0 al|v || 1,

which proves continuity of the left hand side.
Further,

cond

Energyg™“ (v, ¥) + Environmentq (9, )
:ko/ﬂgl [(%)Z(%ﬂrdawl/g [(%)24-(%)2}7@9

G1
o [ [(G) (G Traesrs [ [(52) + (F2) Jran
+/F a(W3]r,)?rdl = ool + erll9n I + collV2llf + csllVsll
7

e
Ca

> min(co,01702703)||19”%1a

where we have used Friedrichs’ inequality (see [1] page 10).
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Together with Theorem 1.3 we get
(141) |AQ(19,W6,19)| 2min(00,01,02,03)|‘19||%1.

This proves H-ellipticity.
Further we have

1/2 1/2
(1.42)  |Sourceq(¢)| < gl/ lqypr| A2 < Ql(/ qzrdQ) (/ w2rd9>
Q1 Q1 Qe
< aulldllzz@an 1Yl 20 < o1llallrzoan 1¥]la

and

(143)  [Coeta(w) < [ pulvrlar+ [ Gafurlar+ [ atajoriar

r T T,
< Bl 200 1l L2006 + Bsll L2006 11 L2 (00261)

+ ata|1]| 2906 1¥]
< (B1 + Bs + adda)|[1]

L2(092a1)

r2(a9e) 1¥l1,

where we have used the Holder inequality and the Trace Theorem (see [1] page 9).
The linearity of the right hand side of (1.36) together with (1.42) and (1.43) gives

its continuity. According to the Lax-Milgram theorem there exists a unique solution

of problem (1.36), (1.37). O

Remark. The problem includes both the pure conduction of heat in the regions
085, UQa UM, (flow pattern is equal to zero) and the combination of heat convection
with conduction of heat in region g, .

We will solve the problem of optimal design for the plunger cavity shape:
We define the cost functional as

(1.44) T(ES) = 19(F5) Iny =Tl vy

where 9(F¥) |r, is the trace of the solution J(Fy) of the state problem (1.36), (1.37)
in the region Q% on the boundary I', 1T, is a chosen fixed constant corresponding to
the optimal surface plunger temperature. We look for the optimal design Fop, € US,

such that

(1.45) T (Fopt) < T5(F5) VFs € Uy,
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Theorem 1.5 (Existence of solution of the problem of optimal design for plunger
cavity shape). The optimal design problem (1.45) has at least one solution.

Proof. We use Theorem 2.1 published in [1] page 29. We denote U = C([0, 1]),
U° ={feU; 0< f(z) < fi(z) Yz € [0,1]}, where f; € C(]0,1]) is a fixed given
increasing function.

The set US, is bounded and closed in C([0, 1]) and, moreover, consists of uniformly
continuous functions. The theorem of Arzela-Ascoli implies the compactness of Ug,
in C(]0,1]).

We denote Q" = QF, U Qa1 U QE, U Qyvo. Let 97 = 9f + 97 + 95 + 9% be the
solution of the state problem (1.36), (1.37) in the region Q” (see (1.17)). Further
we denote by w” = (w},w}) the associated velocity field derived from the unique
solution of the problem (1.7) in the region Q7.

Let F); € Uy be a sequence of functions, then there exists a subsequence Fy;, —
F¢ € Ug, such that F; = F° uniformly on [0,1] so then Qpf — Qp and thus
Q™ —  on the set ©.

The variational formulation (1.7) of the problem for finding the potential function
in the region Q¢ has the form

0P dp 0P Oy .
1.4 Q= r H:(Q¢ OF
(1.46) /ec [333 ox o or Or ] d /qul“uut gerdl Vo € H, (Q5, UQ5)

and the variational formulation of the analogous problem in the region Q¢ has the
form

9™ Dp 9B D 1
14 0= T HLU(Q™ QY.
(147) /"k [ or Ox + or Or } d /l“mul“mn gprdl' Vo € H, Q¢ UQET)

We subtract (1.47) from (1.46) and obtain

/ {8(@—@"’6) 8ga+ (P — ™) Jy
Qe NGk

ox or or or } rdQ

0P dp 0D Jy / 9Q"™ Jp  OP™ Dy
— == Q- Q=0.
+/Qe \QIE [(’h ox o or or } d e\ e [ dx Oz + or or rd 0

We substitute ¢ = & — &"* and get

[ (o) () g

9% (@ — B™) 9D I — O™)
+‘/Qe \Q”k [% ox + E or :|7'dQ
9™ O(P — D) 0B (B — )]
/"k\Q [ Ox Ox T or ]rdQ =0
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The last two integrals on the left hand side have zero limit for Q™ —  because we
integrate bounded functions ® € H}(Q2§,) and ®"* € H}'(Q¢") over the regions with
meas (QF, \ Q¢F) — 0 and meas (Q¢F \ Q,) — 0. In the first integral we integrate
a nonnegative function and thus

[ [y (Y g

2 2
= / [(wl—wf’“> —l—(wg—wg’“) }rdQ—>O.

From the Holder inequality we get

(1.48) / (w; —w;™)rdQ < / |w; — w;™*|rdQ

o Mg
QaanQCa

1/2
< (/ (w; — wi™*)?r dQ) meas (Q¢, NQE) — 0

for i = 1,2 and thus w]"* — w; in L2(Qg, N Q).

The variational formulation of the state problem in the region Q2"+ has the form
(1.49) Agqri (0 W 4h) = Foni (¥) Vi € Ho(Q™F).

We subtract (1.49) from (1.36) and obtain

- W1
ox

oY 095" 09 095"
cor [ G - Gl Sums - i uperag
Qg Nk

Ox WUQ or
+ ko /ﬂzm’;# {8(1908;;98’“) g_;p + (9(1908;7@6““) g—f}rdQ
+hy /ch [awla;ﬁ?k) g—f + 8(1918—70191”) g—zﬂrdQ
+ ks /Q . [8%8;19% aa_f . 8(19287% g_zﬂr 10
o f, [ g 2D S
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+ a/ (V3|r, — V3% [, )ypr dT
Iz

+/Q » [y L e
-

ox oxr / Ox or or / or
ov oV
e (G lun+ Flu Jy]ran
oYy Ov5* N O 0V QY+ N\ O
+/Q;~,1rmg§ [(ko Ox k2 Ox )8x + (ko or k2 or >E

Y -
= cotn( SR+ Sugt o] rde = o.

We add and subtract the terms 995" /Oxw1vp and 95" /Orwap in the first integral.
Then we substitute ¢ = 9 — ¥ and get

992 — U5") ey, 002 = U5%)
. —c =27 ¥y — UF —c <7 — 9ok
c Q2/ganﬂg’; [ 5 wn (Y2 5F) + 5 wa (Y2 — 95%) | rdQ

e [ (P (2 ) g

Ox or
o [ [ (20

ox or
— 9Tk 2 — 97E)\ 2
+k2/ﬂémg§ K@(ﬁz 0 )) . (8(192 vy )) }rdQ
ohs [ [(GE) s (HRE ) o

ox or
+a [ Ol — 03I Prar
Iy

+ oo /Q _— |52 (wn = wi*) (92 = 95%) + 2 (wo — wi*) (92 — 95+) | rd2
00 204* N 0(92 — Vg*) 009 00 N 0(92 — UG*)
ko 2 — 9
+/Qecaﬂﬂgf“ [( >0 s ) ox * <k2 or ko or ) or

09 094

teven (G2 w2 we) (9 - 0] rde

+ /Q;lr‘nﬂg’; [(ko% — ko 3193k)3(190 —95*%) i (k'()% B k28193’“)8(190 — )

ox Ox ox or or or

_CUQQ( w4 )(190—192 )}rdﬂ_o.

The last two integrals on the left hand side have the zero limit for Q2" — € be-
cause we integrate bounded functions over regions with meas(Q&, N Qpf) — 0 and
meas(Qp,NQEE) — 0. The last but two integral has the zero limit because 095* /0,
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0Y5* /Or, U2, ¥5* are bounded functions and w™ — w (see (1.48)). The first six
integrals are positive and converge to Aq (9 — 9", w,J — ¥").
From the H-ellipticity of Aq (¢, w, ) (see (1.41)) we get

(1.50) |9 — 9™ |3 < CAq (¥ — 9™, w, 9 —9™) — 0
and thus 9% — ¢ in H(Q). We have to verify that

J®(F°) < liminf J5(F, ),

n—00

but this is true because the square of the norm ||w|n |0,y is & weak lower semicon-
tinuous functional. O
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