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Abstract. We analyze a general multigrid method with aggressive coarsening and poly-
nomial smoothing. We use a special polynomial smoother that originates in the context of
the smoothed aggregation method. Assuming the degree of the smoothing polynomial is,
on each level k, at least Chk+1/hk , we prove a convergence result independent of hk+1/hk .
The suggested smoother is cheaper than the overlapping Schwarz method that allows to
prove the same result. Moreover, unlike in the case of the overlapping Schwarz method,
analysis of our smoother is completely algebraic and independent of geometry of the problem
and prolongators (the geometry of coarse spaces).
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1. Introduction

This paper is concerned with convergence of a multigrid method featuring aggres-

sive coarsening. We analyze a general (abstract) multigrid algorithm with a special

polynomial smoother that allows to prove a convergence bound independent of the

relative size of the spaces on subsequent levels.

Assuming that the resolution on level k can be characterized by a meshsize hk,

and employing a carefully designed polynomial smoother as a multigrid relaxation
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Foundation under grant numbers DMS-0621199, DMS-0749317 and DMS-0811275 and
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process, we prove a convergence result independent of the ratio hk+1/hk, provided

that the degree of our smoother is greater than or equal to Chk+1/hk, where C is

a positive constant influencing convergence, and hk and hk+1 are the characteristic

resolutions of finer and coarser level, respectively (throughout the paper l denotes the

coarsest level, and 0 the finest level). Thus, we allow the coarse space to be dramat-

ically smaller than the preceding fine space and still obtain a multilevel convergence

result not influenced by the ratio of their sizes. Here the aggressive coarsening is

compensated for by a more powerful multigrid relaxation that consists of a sequence

of Richardson type sweeps whose number is at least Chk+1/hk, C > 0. We note that

the assumption of existence of characteristic meshsize on each level is a sufficient

condition, and the abstract convergence result presented in Theorem 4.1 does not

depend on this assumption. The assumption will, however, allow us to verify the pre-

requisites of the abstract convergence result for the model problem considered. We

stress that the abstract theory (Theorem 4.1) is not restricted to the quasiuniform

case.

The smoother we use was originally derived from a prolongator smoother in the

context of the smoothed aggregation method [9], [7], [4], and the previously proved

theory [9], [8] was also limited to that context. Recent improvements of the conver-

gence theory in [4], establishing the same convergence result as presented here, were

also restricted to the smoothed aggregation method.

The regularity-free theory of [2] is known to derive no theoretical benefit from the

use of more than O(1) smoothing steps. Thus, until recently, the authors believed

that the current result was possible only within the framework of smoothed aggre-

gation, that is, smoothing the prolongator was deemed essential to establishing the

result. The earlier works on this topic [6], [9], [7], depend crucially on this argu-

ment. In this paper, we prove a nearly optimal multilevel convergence result for this

smoother used in general multigrid, and show that with a special choice of iteration

parameters, Chk+1/hk smoothing steps suffice to prove convergence independent of

how aggressive the coarsening is. The near optimality of the convergence estimate is

understood in the sense of the regularity-free theory [2], i.e., the convergence bound

has a linear dependence on the number of levels.

Note that a similar convergence result can be proved for the overlapping Schwarz

smoother. However, the relevant analysis requires verification of geometry-dependent

assumptions on the overlapping subdomains which are tied to the geometrical prop-

erties of the coarse-level basis. In contrast, all assumptions on our smoother are

strictly algebraic, and the analysis of the smoother is therefore independent of the

geometry of the problem or the particular choice of prolongation operators (geometri-

cal properties of coarse-levels). For our smoother, we only need the assumption that

its degree is sufficiently large, which in the quasiuniform case means, greater than or
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equal to Chk+1/hk, C > 0. Moreover, our smoother is cheaper than the overlapping

Schwarz method, while its polynomial nature allows for easy and efficient parallel

implementation whenever a highly tuned parallel matrix-vector multiply subroutine

is available.

The paper is organized as follows: Section 2 presents a convergence result for the

multigrid method in an abstract setting. As usual, we require that the multigrid

relaxation process satisfies a smoothing condition, and that the hierarchy of coarse

spaces (and the associated prolongators) satisfies a weak approximation property. By

the very nature of aggressive coarsening, the smoothing procedure needs to do some

of the work done under normal circumstances by the coarse-grid correction process.

Therefore we have a weaker approximation condition and correspondingly a stronger

smoothing condition. We see the introduction of this relaxed weak approximation

condition, (2.14), as the main contribution of this paper. The corresponding stronger

smoothing condition, (2.16), is shown to be satisfied by our choice of the polynomial

smoother.

Section 3 is devoted to the analysis of an appropriate polynomial smoother suffi-

cient to satisfy the smoothing condition (2.16), needed to establish the convergence

bound. The smoother analysis presented here essentially follows [4] and presents a

minor generalization.

Section 4 summarizes the results presented in Sections 2 and 3 in the form of a

final abstract convergence estimate.

We conclude the paper by considering a model example in Section 5. Here we

demonstrate how the abstract result can be applied to obtain a convergence result

independent of the coarsening aggressivity in the case of a model example of a geo-

metric multigrid method with aggressive coarsening for a simpleH1
0 -equivalent model

problem discretized over a quasiuniform mesh.

2. Multigrid algorithm and abstract estimates

We are solving a problem

Ax = f

with a symmetric positive definite (s.p.d.) matrix A of order n. We set A0 = A and

n0 = n. We assume injective prolongators

P k
k+1 : R

nk+1 → R
nk , nk+1 < nk, k = 0, . . . , l − 1,

where l is the number of levels, are given. Define a composite prolongator

P 0
k = P 0

1 . . . P k−1
k ,
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and assume that the coarse-level matrices are defined by the usual variational

(Galerkin) formula

(2.1) Ak+1 = (P k
k+1)

T AkP k
k+1 = (P 0

k+1)
T AP 0

k+1.

To define a standard V -cycle multigrid, in addition to the hierarchy of matrices

{Ak} and prolongators {P k
k+1}, we also need a multigrid relaxation, defined here

on level k as an iterative process with an error propagation operator I −M−1
k Ak.

We assume that the smoothing matrices Mk are such that the relaxation process is

an Ak-convergent iterative method, which is equivalent to MT
k + Mk − Ak being a

positive definite matrix. We, in fact, assume that there is a constant α > 0, uniform

with respect to k > 0, such that,

(2.2) v
T
k (MT

k + Mk −Ak)vk > αv
T
k Akvk for all vk ∈ R

nk .

We denote by Mk the symmetrized smoother

(2.3) Mk = Mk(MT
k + Mk −Ak)−1MT

k .

It can be defined implicitly from the relation

(2.4) I −M
−1
k Ak = (I −M−T

k Ak)(I −M−1
k Ak).

Based on a given choice of P k
k+1, Mk (that is Ak-convergent) for 0 6 k 6 l − 1,

and Ak obtained variationally from Ak−1 for 1 6 k 6 l, starting with Bl = Al, for

k = l − 1, . . . , 1, 0, we recursively define a V -cycle preconditioner (a s.p.d. matrix)

Bk in the following standard way:

I −B−1
k Ak = (I −M−T

k Ak) (I − P k
k+1B

−1
k+1(P

k
k+1)

T Ak) (I −M−1
k Ak).

Letting B = B0, we are concerned in what occurs with the (upper) bound K∗ in the

estimate

(2.5) v
T Av 6 v

T Bv 6 K⋆v
T Av

(the lower bound holds because our algorithm is a variational multigrid). In what

follows, ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and the inner product in the
relevant vector space. Further, for a symmetric positive definite matrix B, we define

〈·, ·〉B = 〈B·, ·〉 and ‖ · ‖B = 〈·, ·〉1/2
B .

Our analysis is based on the XZ-identity ([11]), formulated here in its matrix-

vector form suitable for our purposes as follows. Given multigrid smoothers defined
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by Mj such that MT
j + Mj −Aj are the s.p.d., interpolation matrices P j

j+1, and the

coarse matrices defined as Aj+1 = (P j
j+1)

T AjP
j
j+1, the following XZ-identity holds

(cf. [10]):

(2.6) v
T Av 6 v

T Bv

= inf
{vk}

{
‖vl‖2Al

+

l−1∑

j=0

‖MT
j v

f
j + AjP

j
j+1vj+1‖2(MT

j
+Mj−Aj)−1

}
,

v0 = v, v
f
k ≡ vk − P k

k+1vk+1.

The infimum here is taken over the components {vk} of all possible decompositions
of v obtained as follows: Starting with v0 = v, for k > 0, vk = v

f
k + P k

k+1vk+1, i.e.,

choosing vk+1 ∈ R
nk+1 arbitrary, we then let vf

k = vk − P k
k+1vk+1.

We observe that applying the triangle inequality together with the trivial inequal-

ity (a+b)2 6 2(a2 +b2), a, b ∈ R and using the property (2.2), results in the estimate

(2.7)

l−1∑

j=0

‖MT
j v

f
j + AjP

j
j+1vj+1‖2(MT

j
+Mj−Aj)−1

6

l−1∑

j=0

2(‖Mjv
f
j ‖2(MT

j
+Mj−Aj)−1 + ‖AjP

j
j+1vj+1‖2(MT

j
+Mj−Aj)−1)

= 2

l−1∑

j=0

‖Mjv
f
j ‖2(MT

j
+Mj−Aj)−1 + 2

l−1∑

j=0

‖AjP
j
j+1vj+1‖2(MT

j
+Mj−Aj)−1

6 2

l−1∑

j=0

‖vf
j ‖2Mj

+
2

α

l−1∑

j=0

‖AjP
j
j+1vj+1‖2A−1

j

= 2
l−1∑

j=0

‖vf
j ‖2Mj

+
2

α

l−1∑

j=0

‖P j
j+1vj+1‖2Aj

= 2

l−1∑

j=0

‖vf
j ‖2Mj

+
2

α

l−1∑

j=0

‖vj+1‖2Aj+1

= 2

l−1∑

j=0

‖vf
j ‖2Mj

+
2

α

l∑

j=1

‖vj‖2Aj
.

From here, we see that in order to bound the relative condition number of the V -cycle

preconditioner B with respect to A based on estimates (2.6) and (2.7), it is sufficient
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to bound the expressions below in terms of ‖v‖2A for some particular choice of {vk}:
l−1∑

k=0

‖vf
k‖2Mk

6 C1‖v‖2A,(2.8)

l∑

k=1

‖vk‖2Ak
6 C2‖v‖2A,(2.9)

and

(2.10) ‖vl‖2Al
6 C3‖v‖2A.

Indeed, the estimates (2.6) and (2.7) give

(2.11) v
T Av 6 v

T Bv 6 ‖vl‖2Al
+ 2

l−1∑

j=0

‖vf
j ‖2Mj

+
2

α

l∑

j=1

‖vj‖2Aj

6

(
C3 + 2C1 +

2

α
C2

)
v

T Av.

Note that (2.10) follows from (2.9) with C3 = C2.

We define coarse-spaces Vk and associated norms ‖ · ‖k by

(2.12) Vk = Rng(P 0
k ),

‖ · ‖k : P 0
k x 7→ ‖x‖ ≡

√
xTx, k = 0, . . . , l (P 0

0 = I).

Further, we define

(2.13) λk,j = sup
x∈R

nk\{0}

〈AP 0
k x, P 0

k x〉
‖P 0

k x‖2j
, k = 0, . . . , l, 0 6 j 6 k.

Note that λk,j 6 ̺(Aj) and λk,k = ̺(Ak).

R em a r k 2.1. Definition (2.13) allows the following interpretation: The spectral

bound

̺(Ak) = sup
x∈R

nk\{0}

〈Akx,x〉
‖x‖2 = sup

x∈R
nk\{0}

〈AP 0
k x, P 0

k x〉
‖P 0

k x‖2k
indicates the smoothness of the space Vk with respect to the norm ‖·‖k. The quantity

λk,j = sup
x∈R

nk\{0}

〈AP 0
k x, P 0

k x〉
‖P 0

kx‖2j
= sup

x∈R
nk\{0}

〈AP 0
k x, P 0

k x〉
‖P 0

j P j
kx‖2j

= sup
x∈R

nk\{0}

〈AP 0
k x, P 0

k x〉
‖P j

kx‖2
,

j < k, indicates the smoothness of the space Vk with respect to the finer space

norm ‖ · ‖j .

We now formulate our abstract convergence estimate,
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Theorem 2.1. Let λ̄k+1,k > λk+1,k, k = 0, . . . , l−1 be upper bounds. We assume

the existence of linear mappings Qk : V0 → Vk, Q0 = I, satisfying

(2.14) ‖(Qk −Qk+1)v‖k 6
Ca√
λ̄k+1,k

‖v‖A ∀v ∈ V0, k = 0, . . . , l − 1,

and

(2.15) ‖Qk‖A 6 Cs, k = 0, . . . , l.

Further, we assume that our smoothers, Mk, satisfy (2.2) and the symmetrized

smoothers Mk satisfy

(2.16) ‖v‖2
Mk

6 β(λ̄k+1,k‖v‖2 + ‖v‖2Ak
) ∀v ∈ R

nk , k = 0, . . . , l − 1.

Then the resulting multigrid operator B is nearly spectrally equivalent to A, more

precisely,

(2.17) v
T Av 6 v

T Bv 6

[
C2

s + 2l
(
β(C2

a + 4C2
s ) +

1

α
C2

s

)]
v

T Av ∀v ∈ R
n0 .

R em a r k 2.2. The difference from the results previously obtained based on the

theory in [2] is in our use of the weak approximation condition (2.14). The original

theory relied instead on the condition

(2.18) ‖(Qk −Qk+1)v‖k 6
Ca√
̺(Ak)

‖v‖A,

and the approximation properties of the space Vk+1 were thus measured against

the smoothness of the space Vk (because of ̺(Ak)). In typical applications, the

approximation on the left-hand side of (2.18) is guided by hk+1, while the spectral

bound of Ak and the scaling of the ‖ ·‖k-norm are guided by hk. To prove (2.18), the

ratio hk+1/hk has to be bounded, and the resolutions of spaces Vk and Vk+1 have to

be comparable.

In our case, the approximation properties of the space Vk+1 are measured against

(the upper bound of) λk+1,k ≡ sup
x∈Rng(P k

k+1
)\{0}

〈Akx,x〉/‖x‖2 6 ̺(Ak), that is,

against the smoothness of the space Vk+1 (measured with respect to the norm ‖ · ‖k
used on the left-hand side of (2.14)), and therefore the resolutions of the spaces Vk

and Vk+1 do not have to be comparable. The current estimate thus allows us to prove

a convergence result independent of the coarsening ratio. The cost of the uniform

convergence result, when the coarsening ratio becomes large (λk+1,k ≪ ̺(Ak)), is in

the increasing demand on the smoother that arises through the smoothing condition

(2.16).
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P r o o f. We write linear mappings Qk : V0 → Vk ≡ Rng(P 0
k ), k = 0, . . . , l, in

the form

Qk = P 0
k Q̃k, Q̃k : V0 = R

n0 → R
nk .

In the XZ-identity (2.6), we choose

vk = Q̃kv, k = 1, . . . , l.

Therefore (see (2.6)),

v
f
k = vk − P k

k+1vk+1 = (Q̃k − P k
k+1Q̃k+1)v.

Thus, to prove our theorem means to verify the inequalities (2.8), (2.9), and (2.10)

for the above particular decomposition of v.

To prove (2.8), we estimate using the assumptions (2.16), (2.14) and (2.15), the

definition (2.12) of ‖ · ‖k, Qk = P 0
k Q̃k for k = 0, . . . , l and the triangle inequality:

(2.19) ‖vf
k‖2Mk

= ‖(Q̃k − P k
k+1Q̃k+1)v‖2Mk

6 β(λ̄k+1,k‖(Q̃k − P k
k+1Q̃k+1)v‖2 + ‖(Q̃k − P k

k+1Q̃k+1)v‖2Ak
)

= β(λ̄k+1,k‖P 0
k (Q̃k − P k

k+1Q̃k+1)v‖2k + ‖P 0
k (Q̃k − P k

k+1Q̃k+1)v‖2A)

= β(λ̄k+1,k‖(Qk −Qk+1)v‖2k + ‖(Qk −Qk+1)v‖2A)

6 β(C2
a‖v‖2A + 2(‖Qkv‖2A + ‖Qk+1v‖2A))

6 β(C2
a + 4C2

s )‖v‖2A.

Thus,
l−1∑

k=0

‖vf
k‖2Mk

6 lβ(C2
a + 4C2

s )‖v‖2A,

proving (2.8) with a constant

C1 = lβ(C2
a + 4C2

s ).

To prove (2.9) and (2.10), we realize that

‖vk‖2Ak
= ‖Q̃kv‖2Ak

= ‖Qkv‖2A 6 C2
s‖v‖2A,

hence (2.9) immediately follows with a constant

C2 = C2
s l

and (2.10) with a constant

C3 = C2
s .

The estimate (2.17) now follows by (2.11). �

376



3. Polynomial smoother

In this section, we investigate a polynomial smoother with the error propagation

operator

(3.1) I −M−T
k Ak = I −M−1

k Ak = Sγ
k

(
I − 1

λ̄S2
k
Ak

S2
kAk

)
,

where Sk is a polynomial in Ak such that ̺(Sk) 6 1, λ̄S2
k
Ak

> ̺(S2
kAk) and γ is a

positive integer. The particular cases of interest are γ = 1 and γ = 2.

From (2.4) and the fact that the error propagation operator corresponding to the

symmetrized smoother Mk is

I −M
−1
k Ak = (I −M−T

k Ak) (I −M−1
k Ak) = S2γ

k

(
I − 1

λ̄S2
k
Ak

S2
kAk

)2

,

it follows that the corresponding symmetrized smoother Mk is given by

(3.2) M
−1
k = A−1

k

[
I −

(
I − 1

λ̄S2
k
Ak

S2
kAk

)2

S2γ
k

]
.

Lemma 3.1. We assume that Sk is a polynomial in Ak such that ̺(Sk) 6 1,

λ̄S2
k
Ak

> ̺(S2
kAk), and γ is a positive integer. Let {vi} be the eigenvectors of Ak and

λi(Sk) the corresponding eigenvalues of Sk. For a given parameter, q ∈ (0, 1), define

U1 = {span{vi} : |λi(Sk)| 6 q} and U2 = {span{vi} : |λi(Sk)| > q}.

Then the symmetrized smoother Mk in (3.2) is positive definite and satisfies

‖x‖2
Mk

6
1

1− q2γ
‖x‖2Ak

∀x ∈ U1, ‖x‖2
Mk

6
λ̄S2

k
Ak

q2
‖x‖2 ∀x ∈ U2,

and

(3.3) ‖x‖2
Mk

6
1

1− q2γ
‖x‖2Ak

+
λ̄S2

k
Ak

q2
‖x‖2 ∀x ∈ R

nk , q ∈ (0, 1).

R em a r k 3.1. Our goal is to satisfy the smoothing condition (2.16). Therefore,

in view of (3.3), the property the smoother (3.1) needs to satisfy is

(3.4) λ̄S2
k
Ak

6 Cλ̄k+1,k
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(with λ̄k+1,k ≪ ̺(Ak) for aggressive coarsening). Indeed, from (3.4) and (3.3), it

follows that

‖x‖2
Mk

6 max
{ 1

1− q2γ
,

1

q2

}
(‖x‖2Ak

+ λ̄S2
k
Ak
‖x‖2)

6 max
{ 1

1− q2γ
,

1

q2

}
·max{1, C} (‖x‖2Ak

+ λ̄k+1,k‖x‖2) ∀x ∈ R
nk .

Here q ∈ (0, 1) is a parameter we choose. Thus, (2.16) follows from (3.4) and (3.3)

with

(3.5) β = min
q∈(0,1)

max
{ 1

1− q2γ
,

1

q2

}
·max{1, C}.

The role of the smoothing polynomial, Sk = p(Ak), is therefore to minimize ̺(S2
kAk)

(to attain the same order of magnitude as λ̄k+1,k), subject to the constraint that Sk

is an error propagation operator of an Ak-non-divergent smoother, that is, p(0) = 1

and ̺(Sk) 6 1. Let λ̄k > ̺(Ak) be an available upper bound. The polynomial p of

a given degree, Nk, satisfying the above constraints and minimizing the right-hand

side of the inequality

̺(S2
kAk) = ̺(p2(Ak)Ak) = max

t∈σ(Ak)
p2(t)t 6 max

t∈[0,λ̄k]
p2(t)t

will be given in Lemma 3.2.

R em a r k 3.2. For γ = 1, using the minimizer q̂ = 1/
√

2, we have (see (3.5))

min
q∈(0,1)

max
{ 1

1− q2γ
,

1

q2

}
= 2.

Similarly, for γ = 2, using the minimizer q̂ =
√

1
2 (−1 +

√
5), we get

min
q∈(0,1)

max
{ 1

1− q2γ
,

1

q2

}
=

2

−1 +
√

5

.
= 1.618034.

P r o o f. The proof given here is a generalization of the one given in [4].

Recall that both Sk and I − λ̄−1
S2

k
Ak

S2
kAk are polynomials in Ak, hence all these

matrices have common eigenvectors, mutually commute and U1 and U2 are their

common invariant subspaces. Further, ̺(Sk) 6 1 and ̺(I − λ̄−1
S2

k
Ak

S2
kAk) 6 1.

To prove

(3.6) 〈Mkx,x〉 6
1

1− q2γ
〈Akx,x〉 on U1,
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(〈·, ·〉 denotes the Euclidean inner product in R
nk), we use (3.2) and estimate for

x ∈ U1:

〈M−1
k x,x〉 = 〈A−1

k x,x〉 −
〈
A−1

k

(
I − 1

λ̄S2
k
Ak

S2
kAk

)2

S2γ
k x,x

〉

> 〈A−1
k x,x〉 − 〈A−1

k S2γ
k x,x〉

> 〈A−1
k x,x〉 − q2γ〈A−1

k x,x〉 = (1− q2γ)〈A−1
k x,x〉.

Since U1 is an invariant subspace of both Mk and Ak, both M
−1
k and Mk are

symmetric, positive definite on U1 and the statement (3.6) follows.

To prove

(3.7) 〈Mkx,x〉 6
λ̄S2

k
Ak

q2
‖x‖2 on U2,

we estimate for x ∈ U2:

〈M−1
k x,x〉 = 〈A−1

k x,x〉 −
〈
A−1

k

(
I − 1

λ̄S2
k
Ak

S2
kAk

)2

S2γ
k x,x

〉

> 〈A−1
k x,x〉 −

〈
A−1

k

(
I − 1

λ̄S2
k
Ak

S2
kAk

)
x,x

〉

=
1

λ̄S2
k
Ak

〈S2
kx,x〉

>
q2

λ̄S2
k
Ak

‖x‖2.

Since U2 is an invariant subspace of Mk, both M
−1
k and Mk are symmetric, positive

definite on U2 and the statement (3.7) follows.

Let us consider the decomposition of x ∈ R
nk \ {0},

x = x1 + x2, x1 ∈ U1, x2 ∈ U2.

From the definition of the spaces U1, U2 it follows that the spaces U1 and U2 are

orthogonal, that is,

〈x1,x2〉 = 0.

Since U1 and U2 are invariant subspaces of both Ak and Mk, it also follows that

〈Akx1,x2〉 = 〈Mkx1,x2〉 = 0.
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Therefore, since Mk is symmetric, positive definite on both U1 and U2, it follows

that

〈Mkx,x〉 = 〈Mkx1,x1〉+ 〈Mkx2,x2〉 > 0,

hence Mk is symmetric, positive definite on R
nk . Thus, the spaces U1 and U2 form

a decomposition of Rnk that is orthogonal with respect to the norms ‖ ·‖, ‖ ·‖Ak
and

‖ · ‖Mk
. Then (3.6) and (3.7) give

‖x‖2
Mk

= ‖x1‖2Mk
+ ‖x2‖2Mk

6
1

1− q2γ
‖x1‖2Ak

+
λ̄S2

k
Ak

q2
‖x2‖2 6

1

1− q2γ
‖x‖2Ak

+
λ̄S2

k
Ak

q2
‖x‖2,

proving (3.3). �

While the validity of property (2.16) is addressed by Lemma 3.1, we still need to

verify that inequality (2.2) is satisfied for our choice of the smoother. To this end,

the smoother Sk is introduced in the next lemma.

Lemma 3.2. For any λ > 0 and integer N > 0 there is a unique polynomial pλ,N

of degree N such that

max
06t6λ

p2
λ,N (t)t

is minimal under the constraint pλ,N (0) = 1. The polynomial p is given by

(3.8) pλ,N (t) =
(
1− t

r1

)
. . .

(
1− t

rN

)
, rk =

λ

2

(
1− cos

( 2kπ

2N + 1

))
,

k = 1, . . . , N . The polynomial pλ,N satisfies

(3.9) max
06t6λ

p2
λ,N (t)t =

λ

(2N + 1)2

and

(3.10) max
06t6λ

|pλ,N (t)| = 1.

The polynomial pλ,N is the transformed Chebyshev polynomial

pλ,N (t) = (−1)N 1

2N + 1

√
λ√
t

T2N+1

(√t√
λ

)
,

where Tk is a Chebyshev polynomial of degree k, that is T0(t) = 1, T1(t) = t, and

Tk+1(t) = 2tTk(t)− Tk−1(t) for k > 1.

P r o o f. Proof of the lemma in this form can be found in [3]. The analysis of

Chebyshev polynomials can be found in [1], see also [10]. �
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Let λ̄k be an available upper bound of ̺(Ak) and let the integer Nk be a given

degree of the smoothing polynomial. We choose

(3.11) Sk = pλ̄k,Nk
(Ak),

where pλ,N is given by (3.8). Further, we set

λ̄S2
k
Ak

=
λ̄k

(2Nk + 1)2
.

Then, by Lemma 3.2 and the spectral mapping theorem, we have

(3.12) ̺(S2
kAk) = max

t∈σ(Ak)
p2

λ̄k,Nk
(t)t 6 max

t∈[0,λ̄k]
p2

λ̄k,Nk
(t)t

= λ̄S2
k
Ak
≡ λ̄k

(2 deg(Sk) + 1)2
, ̺(Sk) 6 1.

Lemma 3.3. For the smoother (3.1), with γ = 1 and Sk given by (3.11) and

(3.8), the inequality (2.2) holds with

α =
δ0

2− δ0
, δ0 = 1− 2

3
√

3
∈ (0, 1).

Further, for γ > 0 that is even, and Sk being a polynomial in Ak satisfying ̺(Sk) 6 1,

the inequality (2.2) holds with α = 1. (That is, for even γ > 0, we do not have to

assume that Sk is given by (3.11) and (3.8), we only need Sk to be a polynomial in

Ak such that ̺(Sk) 6 1.)

P r o o f. For the proof in the case of γ = 1 and Sk given by (3.11) and (3.8),

see [4], Lemma 6.2 and Proposition 7.3.

For an even γ and Sk being a polynomial in Ak satisfying ̺(Sk) 6 1, we have

〈M−1
k x,x〉 = 〈A−1

k x,x〉 −
〈
A−1

k

(
I − 1

λ̄S2
k
Ak

S2
kAk

)
Sγ

kx,x
〉

6 〈A−1
k x,x〉.

Hence, Mk > Ak, and therefore assumption (2.2) on the smootherMk holds trivially

with α = 1. �

R em a r k 3.3. The most natural way to implement the action of (3.1) for a given

vector x is the following: To perform the iteration with the linear part Sk given by

(3.11) and (3.8), we do for i = 1, . . . , Nk = deg(Sk),

x← (I − αiAk)x + αif , αi =
( λ̄k

2

(
1− cos

( 2iπ

2Nk + 1

)))−1

, λ̄k > ̺(Ak).
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To perform the iteration with the error propagation operator I − λ̄−1
S2

k
Ak

S2
kAk, we do

x← x− 1

λ̄S2
k
Ak

S2
k(Akx− f),

where the action of Sk is evaluated as the product

Skx = (I − α1Ak) . . . (I − αNk
Ak)x.

4. The final abstract result

In this section, we summarize the results proved in Sections 2 and 3 in the form

of a theorem.

Theorem 4.1. Let λ̄k+1,k > λk+1,k (k = 0, . . . , l − 1) and λ̄k > ̺(Ak) (k =

0, . . . , l) be upper bounds. We assume the existence of linear mappings (see (2.12))

Qk : V0 → Vk, k = 0, . . . , l, Q0 = I, satisfying (2.14) and (2.15) with positive

constants Ca and Cs, independent of the level. Further, we assume that the linear

part of both the pre- and post-smoother is given by (3.1) with Sk = pλ̄k,Nk
(Ak),

where the polynomial pλ,N is given by (3.8) and its degree, Nk, satisfies

(4.1) Nk > Cdeg

√
λ̄k

λ̄k+1,k
, k = 0, . . . , l − 1,

with a constant Cdeg > 0 independent of the level. We assume that γ in (3.1) is

either even, or γ = 1. Then (2.17) is satisfied; that is,

v
T Av 6 v

T Bv 6

[
C2

s + 2l
(
β(C2

a + 4C2
s ) +

1

α
C2

s

)]
v

T Av ∀v ∈ R
n0

holds with

(4.2) α =





1 for γ even,

δ0

2− δ0
, δ0 = 1− 2

3
√

3
for γ = 1

and

(4.3) β = min
q∈(0,1)

max
{ 1

1− q2γ
,

1

q2

}
·max

{
1,

1

4C2
deg

}
.

382



P r o o f. Statement (2.17) follows from Theorem 2.1 under assumptions (2.2)

and (2.16) (inequalities (2.14) and (2.15) are assumptions of this theorem).

Assumption (2.2), with α given by (4.2), has been verified by Lemma 3.3.

According to Remark 3.1, (2.16) holds under assumption (3.4). Using Lemma 3.2,

we estimate

̺(S2
kAk) = max

t∈σ(Ak)
p2

λ̄k,Nk
(t)t 6 λ̄S2

k
Ak
≡ max

t∈[0,λ̄k]
p2

λ̄k,Nk
(t)t =

λ̄k

(2deg(Sk) + 1)2
.

Based on assumption (4.1), we further estimate

λ̄S2
k
Ak
≡ λ̄k

(2deg(Sk) + 1)2
6

λ̄k

4deg2(Sk)
6

λ̄k

4C2
deg

λ̄k

λ̄k+1,k

6
1

4C2
deg

λ̄k+1,k,

thus proving (3.4) with the constant C = 1/(4C2
deg). Hence, inequality (2.16), with

β given by (4.3), follows by Remark 3.1. Estimate (2.17), with α given by (4.2) and

β given by (4.3), now follows by Theorem 2.1. �

5. Model example

We consider a model elliptic problem withH1
0 -equivalent form on a bounded polyg-

onal or polyhedral domain Ω ⊂ R
d, d = 2 or d = 3, that is,

(5.1) find u ∈ H1
0 (Ω) such that a(u, v) = (f, v)L2(Ω) ∀v ∈ H1

0 (Ω),

where f ∈ L2(Ω) and

(5.2) c|u|2H1(Ω) 6 a(u, u) 6 C|u|2H1(Ω) ∀u ∈ H1
0 (Ω).

Further, we consider a system of nested quasiuniform triangulations {τhk
}lk=0 of Ω

(τhk
being the refinement of τhk+1

) and the corresponding piecewise linear (P1) finite

element spaces

H1
0 (Ω) ⊃ Vh0

⊃ Vh1
⊃ . . . ⊃ Vhl

.

Here, hk denotes a characteristic meshsize on level k. Note that the case of interest

is hk ≪ hk+1. We denote the standard P1 finite element basis of Vhk
by {ϕk

i , i =

1, . . . , nk}, and define standard finite element interpolators in the usual way:

Πhk
: x ∈ R

nk 7→
nk∑

i=1

xiϕ
k
i , k = 0, . . . , l.

383



We assume that the matrix A = A0 was obtained by the standard finite element

discretization of (5.1) using the finite element basis {ϕ0
i }n0

i=1, that is,

a(Πh0
x, Πh0

x) = 〈A0x,x〉, x ∈ R
n0 .

The multigrid prolongators are given by

(5.3) P k
k+1 = Π−1

hk
Πhk+1

.

Note that P k
k+1 is an nk×nk+1 matrix whose j-th column is the basis function ϕk+1

j

represented in terms of the basis {ϕk
i } of the immediately finer level. The coarse-level

matrices are defined by (2.1), that is,

Ak = (P k−1
k )T Ak−1P

k−1
k = (P 0

k )T AP 0
k ,

〈Akx,x〉 = a(Πhk
x, Πkk

x), ∀x ∈ R
nk , k = 1, . . . , l.

Let Qhk
: H1

0 (Ω) → Vhk
be an L2(Ω)-orthogonal projection. We define Q̃k : R

n0 →
R

nk by

Πhk
Q̃k = Qhk

Πh0
, k = 0, . . . , l.

For k = 0, . . . , l, we set

Qk = P 0
k Q̃k.

We will verify the assumptions of Theorem 4.1 for the above linear mappings Qk.

Namely, we need to verify assumptions (2.14) and (2.15) for our linear mappings Qk

and satisfy the assumption (4.1) for smoothersMk whose error propagation operator

is given by the polynomial (3.1), where Sk is chosen as in (3.11) and (3.8). We will

show that our method converges uniformly with respect to the coarsening ratio if

the polynomial Sk = pλ̄k,Nk
(Ak) in (3.11) has a degree

Nk = deg(Sk) > C
hk+1

hk
, C > 0.

Note that the assumption chk+1/hk 6 deg(Sk) 6 Chk+1/hk is equivalent to

(5.4) c
hk+1

hk
6 deg(I −M−1

k Ak) = (2 + γ) deg(Sk) + 1 6 C
hk+1

hk

(with different constants c, C > 0). Again, we recall that the cases of practical

interest are γ = 1 and γ = 2. In any case, we consider γ bounded. Thus, in what

follows, we assume (5.4).

384



We will use the following well-known properties of the finite element functions ([5]):

‖(I −Qhk
)u‖L2(Ω) 6 Chk|u|H1(Ω) ∀u ∈ H1

0 (Ω),(5.5)

|Qhk
u|H1(Ω) 6 C|u|H1(Ω) ∀u ∈ H1

0 (Ω),(5.6)

c‖Πhk
x‖2L2(Ω) 6 hd

k‖x‖ 6 C‖Πhk
x‖2L2(Ω) ∀x ∈ R

nk ,(5.7)

̺(Ak) 6 C max
i=1,...,nk

|ϕi
k|2H1(Ω) 6 Chd−2

k .(5.8)

In the estimates to follow, C, c denote generic constants that will depend on the

constants in (5.2), (5.5), (5.6), (5.7), (5.8), and (5.4).

First we estimate the value of λk+1,k in (2.14):

(5.9) λk+1,k = sup
x∈R

nk+1\{0}

〈Ak+1x,x〉
‖P 0

k+1x‖2k

= sup
x∈R

nk+1\{0}

( 〈Ak+1x,x〉
‖P 0

k+1x‖2k+1

·
‖P 0

k+1x‖2k+1

‖P 0
k+1x‖2k

)

6 sup
x∈R

nk+1\{0}

〈Ak+1x,x〉
‖P 0

k+1x‖2k+1

· sup
x∈R

nk+1\{0}

‖P 0
k+1x‖2k+1

‖P 0
k+1x‖2k

= sup
x∈R

nk+1\{0}

〈Ak+1x,x〉
‖x‖2 · sup

x∈R
nk+1\{0}

‖x‖2
‖P 0

k P k
k+1x‖2k

= ̺(Ak+1) sup
x∈R

nk+1\{0}

‖x‖2
‖P k

k+1x‖2
.

Employing the equivalence (5.7) between the L2-norm and the Euclidean norm,

together with the definition P k
k+1 = Π−1

hk
Πhk+1

, we obtain

‖Πhk+1
x‖2L2(Ω) = ‖Πhk

P k
k+1x‖2L2(Ω) ≈ hd

k‖P k
k+1x‖2.

From here and from (5.7), we have

‖P k
k+1x‖2 ≈ h−d

k ‖Πhk+1
x‖2, and ‖x‖2 ≈ h−d

k+1‖Πhk+1
x‖2.

The last two equivalences, together with (5.9) and (5.8), yield

(5.10) λk+1,k 6 Chd−2
k+1 sup

x∈R
nk+1\{0}

‖x‖2
‖P k

k+1x‖2

6 Chd−2
k+1 sup

x∈R
nk+1\{0}

h−d
k+1‖Πhk+1

x‖2L2(Ω)

h−d
k ‖Πhk+1

x‖2L2(Ω)

6 λ̄k+1,k ≡ C
hd

k

h2
k+1

.
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(We take the final estimate as an upper bound λ̄k+1,k > λk+1,k, see Theorem 2.1.)

To verify (2.14), we further estimate using (5.5), (5.7), (2.12), P k
k+1 = Π−1

hk
Πhk+1

,

Πhk
Q̃k = Qhk

Πh0
, Qk = P 0

k Q̃k, the fact that Qhk
: H1(Ω) → Vhk

is an L2(Ω)-

orthogonal projection and Vhk+1
⊂ Vhk

:

‖(Qk −Qk+1)v‖2k = ‖(P 0
k Q̃k − P 0

k+1Q̃k+1)v‖2k
= ‖P 0

k (Q̃k − P k
k+1Q̃k+1)v‖2k

= ‖(Q̃k − P k
k+1Q̃k+1)v‖2

≈ h−d
k ‖Πhk

(Q̃k − P k
k+1Q̃k+1)v‖2L2(Ω)

= h−d
k ‖(Πhk

Q̃k −Πhk+1
Q̃k+1)v‖2L2(Ω)

= h−d
k ‖(Qhk

−Qhk+1
)Πh0

v‖2L2(Ω)

6 h−d
k (‖(I −Qhk

)Πh0
v‖2L2(Ω) + ‖(Qhk

−Qhk+1
)Πh0

v‖2L2(Ω))

= h−d
k ‖(I −Qhk+1

)Πh0
v‖2L2(Ω)

6 C
h2

k+1

hd
k

|Πh0
v|2H1(Ω).

Since

|Πh0
v|2H1(Ω) ≈ a(Πh0

v, Πh0
v) = ‖v‖2A,

and from (5.10), i.e.

λk+1,k 6 λ̄k+1,k ≡ C
hd

k

h2
k+1

,

we obtain

‖(Qk −Qk+1)v‖2k 6
C

λ̄k+1,k
‖v‖2A,

proving (2.14).

To verify (2.15), we use (5.6), (5.2) and Πhk
Q̃k = Qhk

Πh0
and observe that

‖Qkv‖2A = ‖Q̃kv‖2Ak
= a(Πhk

Q̃kv, Πhk
Q̃kv) = a(Qhk

Πh0
v, Qhk

Πh0
v)

6 C|Qhk
Πh0

v|2H1(Ω) 6 C|Πh0
v|2H1(Ω) 6 Ca(Πh0

v, Πh0
v) = C‖v‖2A.

To satisfy (4.1), it is sufficient to use, in the definition (3.11) of Sk, a polynomial

pλ̄k,Nk
of sufficiently large degree. From (5.10), we have

λ̄k+1,k ≡ C
hd

k

h2
k+1

> λk+1,k.

Further, due to (5.8), we can take

λ̄k = Chd−2
k > ̺(Ak).
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Thus, we have
λ̄k

λ̄k+1,k
= C

(hk+1

hk

)2

and to satisfy (4.1), we need

deg(Sk) > C
hk+1

hk
,

which is guaranteed by (5.4). Thus the assumptions of Theorem 4.1 are verified

whenever γ = 1 or γ is even.

We summarize the above results in the following theorem:

Theorem 5.1. Consider the model elliptic problem and coarse spaces derived

from nested quasiuniform triangulations as described in this section, with the inter-

grid transfer operators defined by the natural embedding of the spaces (5.3). Assume

the error propagation operators of both the pre- and post-smoother are given on each

level k = 0, . . . , l − 1 by (3.1), with Sk defined by (3.11), (3.8), and either γ = 1 or

γ > 0 even. We assume γ is bounded. In addition, we assume that the degree of

the smoothing polynomial satisfies (5.4). Then the resulting multigrid operator, B,

is nearly spectrally equivalent to A, that is,

v
T Av 6 v

T Bv 6 ClvT Av ∀v ∈ R
n0 ,

where the constant C is independent on the meshsizes hk (and the coarsening ratio

hk+1/hk).
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