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Abstract. Let G be a finite connected graph with minimum degree δ. The leaf number
L(G) of G is defined as the maximum number of leaf vertices contained in a spanning tree
of G. We prove that if δ > 1

2
(L(G) + 1), then G is 2-connected. Further, we deduce,

for graphs of girth greater than 4, that if δ > 1

2
(L(G) + 1), then G contains a spanning

path. This provides a partial solution to a conjecture of the computer program Graffiti.pc
[DeLaViña and Waller, Spanning trees with many leaves and average distance, Electron. J.
Combin. 15 (2008), 1–16]. For G claw-free, we show that if δ >

1

2
(L(G) + 1), then G is

Hamiltonian. This again confirms, and even improves, the conjecture of Graffiti.pc for this
class of graphs.
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Graffiti.pc

MSC 2010 : 05C45

1. Introduction

Let G = (V, E) be a connected simple graph. Then G is traceable if it contains

a spanning path, and is Hamiltonian if it contains a spanning cycle. The leaf number

L(G) of G is defined as the maximum number of end vertices contained in a span-

ning tree of G. Tree topologies appear when designing centralized terminal networks

[6]. The constraint on the number of end vertices (i.e., “degree-1” terminals) arises

because the software and hardware associated to each terminal differs accordingly

with its position in the tree. Usually, the software and hardware associated to a leaf

terminal is cheaper than the software and hardware used in the remaining terminals

because for any intermediate terminal v one needs to check if the message arriving is
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destined to that terminal or to any other terminal located after v. For this reason,

terminal v requires software and hardware for message routing, whereas leaf termi-

nals do not require such equipment. Thus, if G represents the centralized terminal

network, we then ask for a spanning tree solution containing as many leaf vertices

as possible.

Several authors (see, for instance, [5], [8], [7]) have reported on sufficient conditions

for a graph to be traceable. The search continues with various authors focussing their

attention on sufficient conditions for traceability in particular classes of graphs. For

instance, Ren [13] gave sufficient conditions for a 2-connected graph to be traceable

while recently Čada, Flandrin and Kang [1] investigated sufficient conditions for

traceability in locally claw-free graphs.

DeLaViña’s computer program, Graffiti.pc (see, for example, [2] or [3]), which

sorts through various graphs and looks for simple relations among parameters, posed

the following attractive conjecture and posted it on the wall [2]. The conjecture

speculates sufficient conditions for traceability based on minimum degree and the

leaf number. Precisely,

Conjecture (Graffiti.pc 190). If G is a simple connected graph with more than

one vertex such that δ > 1

2
(L(G) + 1), then G is traceable.

In this paper we prove that if G satisfies the hypothesis of the conjecture, then G

is 2-connected. Moreover, we settle the conjecture for the class of graphs with girth

greater than 4. Further, for all claw-free graphs, with the exception of a few from

a forbidden family, we prove a strengthening of the conjecture.

We use the following terminology and notation. The distance between two vertices

u and v in G, i.e., the length of a shortest u-v path in G, is denoted by dG(u, v).

The neigbhourhood of a vertex u, i.e., the set {x ∈ V : dG(x, u) = 1}, is denoted

by NG(u) whilst the closed neigbourhood of u, i.e., the set {x ∈ V : dG(x, u) 6 1}

is denoted by NG[u]. The degree of vertex u in G, i.e., the cardinality of NG(u), is

denoted by degG(u), and δ(G) = δ denotes the minimum degree of G. Where there

is no danger of confusion, we drop the subscript or argument G. A cut vertex of G

is a vertex whose removal increases the number of components in G. We say that

G is 2-connected if G has no cut vertex. A block of G is a maximal subgraph of G

that has no cut vertex, and an end block of G is a block of G that contains exactly

one cut vertex. If H is a subgraph of G, we write H 6 G. For vertex disjoint graphs

G1, G2, . . . , Gk, the sequential join G1 + G2 + . . . + Gk is the graph obtained from

the union of G1, . . . , Gk by joining every vertex of Gi to every vertex of Gi+1 for

i = 1, 2, . . . , k − 1. The complete graph and the cycle of order n is denoted by Kn

and Cn, respectively.
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2. Known results

Several authors have reported on sufficient conditions for a 2-connected graph to

be traceable. We state below a result, due to Ren [13], which will be used later in

this paper.

Theorem 2.1 (Ren [13]). Let G be a 2-connected graph of order n. If |N(u) ∪

N(v)| > 1

2
(n− 1) for all distinct vertices u, v with dG(u, v) = 2, then G is traceable.

Li [11] defines a family F1 of graphs as follows: If G is in F1, then G can be

decomposed into three disjoint subgraphs, G1, G2 and G3 such that for any i 6= j,

1 6 i, j 6 3, EG(Gi, Gj) = {uiuj , vivj}, where ui, vi ∈ V (Gi). We will make use of

a theorem by Li.

Theorem 2.2 (Li [11]). Let G be a 2-connected claw-free graph with minimum

degree δ > 1

4
n which does not belong to F1. Then G is Hamiltonian.

Turning to the leaf number, its determination is known to be NP-hard. Lower

bounds on the leaf number in terms of other parameters, for instance, order, inde-

pendence number and maximum order of a bipartite graph [3], order and size [4] have

been investigated. However, the first result on lower bounds seems to be a statement,

without proof, by Storer [14] that every connected cubic graph G with n vertices has

L(G) > 1

4
n + 2. Linial (see [4]) conjectured, more generally, that every connected

graph G with n vertices and minimum degree δ satisfies

L(G) >
δ − 2

δ + 1
n + cδ,

where cδ is a constant depending only on δ. Several authors have researched on this

conjecture. Kleitman and West [10] introduced a heavy method, the dead leaves

approach, with which they gave a proof of Linial’s Conjecture for δ = 3 with a

best possible cδ = 2, and hence provided, for the first time, a rigorous proof to

Storer’s Theorem. Subsequently, Griggs and Wu [9], using the complicated dead

leaves approach, settled Linial’s Conjecture for δ = 4 and 5. In this paper, we will

make use of one of their theorems.

Theorem 2.3 (Griggs and Wu [9]). If G is a connected simple graph with n

vertices and minimum degree at least 5, then L(G) > 1

2
n + 2.

The following simple lemma, which we also use in this paper, was proved in [12].
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Lemma 2.1 (Mukwembi and Munyira [12]). Let G be a connected graph and

T ′ 6 G a tree. Then there exists a spanning tree T of G such that T ′ 6 T and

L(T ) > L(T ′).

3. Results

Given a connected graph G with minimum degree δ, it can easily be shown that

L(G) > δ and that this bound is tight. In the next theorem we prove that the

presence of cut vertices in G induces the existence of a spanning tree of G with

a double number of end vertices to those in a general graph.

Theorem 3.1. Let G be a connected graph with minimum degree δ. If G has

a cut vertex, then L(G) > 2δ. Moreover, the bound is tight.

P r o o f. Suppose to the contrary that there is a counterexample to the theorem,

and of such counterexamples, choose G to have the smallest order, n. Thus G has

a cut vertex, minimum degree δ and

(3.1) L(G) < 2δ,

and L(H) > 2δ(H) for any graph H of order less than n with a cut vertex.

Claim 1. G has no bridge.

P r o o f of Claim 1. By contradiction, suppose that G has a bridge e = uv,

and let G1 and G2 be the components of G − e containing u and v, respectively.

Let G′ be the graph obtained from G1 and G2 by identifying u and v. Note that

degG′(x) > degG(x) for all x in G′. Hence δ(G′) > δ(G). Moreover, G′ has a cut

vertex u (= v) and order n − 1. It follows, by our choice of G, that

(3.2) L(G′) > 2δ(G′) > 2δ.

Let T ′ be a spanning tree of G′ with L(G′) = L(T ′). We construct a spanning tree

T of G from T ′ as follows. Since u is a cut vertex of G′, u cannot be an end vertex

in T ′ and so T ′ is a union of two trees T1 and T2, where T1 spans G1 and T2 spans

G2. Let T be the tree obtained by taking disjoint copies of T1 and T2 and joining u

and v by an edge. Then T is a spanning tree of G, and so from (3.2) we have

L(G) > L(T ) = L(T ′) = L(G′) > 2δ;

a contradiction to (3.1), and so the claim is proven. �
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We now find a lower bound on L(G). Let G1 be an end block of G, G2 the union

of the remaining blocks, and denote by ni the order of Gi, i = 1, 2. Let w be the

cut vertex of G in common between G1 and G2. For i = 1, 2, we construct a tree

Ti 6 Gi rooted at w such that if T = T1 ∪ T2, then L(T ) > 2δ. First consider G1.

We show in each case that there is a tree T1 6 G1, rooted at w, whose number of

end vertices, excluding possibly w, is at least δ.

First assume that w is adjacent to every vertex in G1, then let x, x 6= w, be

a vertex in G1. Note that all neighbours of x are in G1; hence n1 > |N [x]| > δ + 1.

Thus, w is adjacent to at least δ neighbours in G1. Let T1 be the tree with vertex

set V (G1) and edge set {vw : v ∈ V (G1)−{w}}. Then T1 has at least δ end vertices

excluding possibly w, as claimed.

From now onwards assume that there is a vertex y in G1 which is not adjacent to

w. Thus n1 > |N [y]|+|{w}| > δ+2. Partition V (G1)−{w} as V (G1)−{w} = A∪B,

where A = {u : dG1
(w, u) = 1} and B = {u : dG1

(w, u) > 2}. Consider the set A.

If on one hand there is a vertex x in A adjacent to every vertex in G1, then let T1

be the tree with vertex set V (G1) and edge set {xv : v ∈ V (G1) − {x}}. Since x is

adjacent to every vertex of G1 and n1 > δ+2, T1 has at least δ end vertices excluding

w, and we are done.

If on the other hand there is a vertex x in A which is not adjacent to some vertex

x′ in G1, then we look at two cases separately:

Case 1: x′ ∈ A. Let T1 be the tree with vertex set N [x] ∪ {x′} and edge set

{wx′}∪ {xv : v ∈ N(x)}. Then T1 has at least |{x′}|+ |N(x)−{w}| > 1 + δ− 1 = δ

end vertices, as required. Note that w is not an end vertex of T1.

Case 2: x′ ∈ B. Since G is bridgeless, by Claim 1, there is a w-x′ path P not

containing the edge wx. Of all such w-x′ paths not containing the edge wx, choose P

to be a shortest one. If on one hand x is not on P , then let T1 be the tree with vertex

set V (P ) ∪ N [x′] ∪ {x} and edge set {wx} ∪ E(P ) ∪ {x′v : v ∈ N(x′)}. Hence, since

N(x′)∩{w, x} = ∅, T1 has at least |{x}|+|N(x′)|−1 > δ end vertices, and w is not an

end vertex of T1, as required. If on the other hand x is on P , let P = wu1u2 . . . ukx′,

so that x = ut for some t ∈ {2, 3, . . . , k−1}. By our choice of P , x′ cannot be adjacent

to u1. Now let T1 be the tree with vertex set {u1, w, x, ut+1, ut+2, . . . , uk, x′}∪N(x′)

and edge set

{wu1, wx, xut+1, ut+1ut+2, ut+2ut+3, . . . , uk−1uk} ∪ {vx′ : v ∈ N(x′)}.

Hence, since N(x′) ∩ {w, u1, x} = ∅, T1 has at least |{u1}| + |N(x′)| − 1 > δ end

vertices, and w is not an end vertex in T1, as desired. We conclude that G1 has

a tree T1, rooted at w, with at least δ end vertices excluding possibly w.

Analogously, there is a tree T2 6 G2 rooted at w with, excluding possibly w,

at least δ end vertices. The trees T1 and T2 have only w in common. Let T ′ =
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T1 ∪ T2 6 G. Then L(T ′) > δ + δ = 2δ. It follows, by Lemma 2.1, that G has

a spanning tree T such that T ′ 6 T and L(T ) > L(T ′). Thus, L(T ) > 2δ. Hence

L(G) > L(T ) > 2δ, a contradiction to (3.1), and so the bound in the theorem is

proven.

To see that the bound is tight, let δ be a positive integer. Let G2δ+1 be the graph

Kδ +K1 +Kδ of order 2δ +1. Then G2δ+1 has a cut vertex, minimum degree δ, and

L(G2δ+1) = 2δ. This completes the proof of the theorem. �

Corollary 1. Let G be a connected graph with minimum degree δ. If δ >
1

2
(L(G) + 1), then G is 2-connected.

P r o o f. Assume that δ > 1

2
(L(G) + 1), and suppose to the contrary that G has

a cut vertex. Then by Theorem 3.1,

L(G) > 2δ > 2
(1

2
(L(G) + 1)

)

= L(G) + 1,

a contradiction. Hence G is 2-connected. �

Theorem 3.2. Let G be a connected graph with girth greater than 4 and mini-

mum degree δ > 4. If δ > 1

2
(L(G) + 1), then G is traceable.

P r o o f. Assume that δ > 1

2
(L(G) + 1). Applying Theorem 2.3, we get

(3.3) δ >
1

4
(n + 6).

Let u and v be arbitrary distinct vertices in G such that dG(u, v) = 2. Since G has

girth greater than 4, we have

|N(u) ∪ N(v)| = |N(u)| + |N(v)| − |N(u) ∩ N(v)| > δ + δ − 1 = 2δ − 1.

This, in conjunction with (3.3), yields

|N(u) ∪ N(v)| > 2δ − 1 > 2
(1

4
(n + 6)

)

− 1 =
1

2
(n + 4).

Since u and v were arbitrary, by Theorem 2.1, G is traceable, as desired. �

Theorem 3.3. Let G be a connected claw-free graph not in F1 with minimum

degree δ > 4. If δ > 1

2
(L(G) + 1), then G is Hamiltonian.

P r o o f. Assume that δ > 1

2
(L(G) + 1). Then by Corollary 1, G is 2-connected.

Further, applying Theorem 2.3, we get δ > 1

4
(n + 6) > 1

4
n. Hence by Theorem 2.2,

G is Hamiltonian, as desired. �

544



References

[1] R.Čada, E. Flandrin, H.Kang: A note on degree conditions for traceability in locally
claw-free graphs. Math. Comput. Sci. 5 (2011), 21–25.

[2] E.DeLaViña: Written on the Wall II (Conjectures of Graffiti.pc). http://cms.dt.uh.edu/
faculty/delavinae/research/wowII/.

[3] E.DeLaViña, B.Waller: Spanning trees with many leaves and average distance. Elec-
tron. J. Comb. 15 (2008), 16 p.

[4] G.Ding, T. Johnson, P. Seymour: Spanning trees with many leaves. J. Graph Theory
37 (2001), 189–197.

[5] D.Duffus, M. S. Jacobson, R. J. Gould: Forbidden subgraphs and the Hamiltonian
theme. The Theory and Applications of Graphs. 4th int. Conf., Kalamazoo/Mich. 1980,
Wiley, New York, 1981, pp. 297–316.

[6] L.M. Fernandes, L.Gouveia: Minimal spanning trees with a constraint on the number
of leaves. Eur. J. Oper. Res. 104 (1998), 250–261.

[7] S.Goodman, S. Hedetniemi: Sufficient conditions for a graph to be Hamiltonian. J.
Comb. Theory, Ser. B 16 (1974), 175–180.

[8] R. J.Gould, M. S. Jacobson: Forbidden subgraphs and Hamiltonian properties and
graphs. Discrete Math. 42 (1982), 189–196.

[9] J.R.Griggs, M.Wu: Spanning trees in graphs of minimum degree 4 or 5. Discrete Math.
104 (1992), 167–183.

[10] D. J.Kleitman, D.B.West: Spanning trees with many leaves. SIAM J. Discrete Math.
4 (1991), 99–106.

[11] H.Li: Hamiltonian cycles in 2-connected claw-free-graphs. J. Graph Theory 20 (1995),
447–457.

[12] S.Mukwembi, S.Munyira: Radius, diameter and the leaf number. Quaest. Math. (Sub-
mitted).

[13] S.Ren: A sufficient condition for graphs with large neighborhood unions to be traceable.
Discrete Math. 161 (1996), 229–234.

[14] J.A. Storer: Constructing full spanning trees for cubic graphs. Inf. Process Lett. 13
(1981), 8–11.

Author’s address: S i m o n Mu kwemb i, University of KwaZulu-Natal, School of
Mathematics, Statistics and Computer Science, Westville Campus, P. Bag XG 54001, Dur-
ban, 4000, South Africa, e-mail: mukwembi@ukzn.ac.za.

545


		webmaster@dml.cz
	2020-07-03T20:34:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




