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Abstract. In this paper, we prove the following statements:
(1) There exists a Tychonoff star countable discrete closed, pseudocompact space having

a regular-closed subspace which is not star countable.
(2) Every separable space can be embedded into an absolutely star countable discrete

closed space as a closed subspace.
(3) Assuming 2ℵ0 = 2ℵ1 , there exists a normal absolutely star countable discrete closed

space having a regular-closed subspace which is not star countable.
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1. Introduction

By a space, we mean a topological space. In this section, we give definitions of

terms which are used in this paper. Let X be a space and U a collection of subsets

of X . For A ⊆ X , let St(A, U ) =
⋃
{U ∈ U : U ∩ A 6= ∅}. As usual, we write

St(x, U ) instead of St({x}, U ).

Definition 1.1 ([1], [2], [3], [15]). Let P be a topological property. A space X

is said to be star P if whenever U is an open cover of X , there exists a subspace

A ⊆ X with property P such that X = St(A, U ). The set A will be called a star

kernel of the cover U .

Definition 1.2. Let P be a topological property. A space X is said to be

absolutely star P if whenever U is an open cover of X and D is a dense subset of X ,
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there exists a subspace A ⊆ X with property P such that A is a subset of D and

X = St(A, U ).

The term star P was coined in [15] but certain star properties, specifically those

corresponding to “P = finite”, “P = countable” and “P = countable discrete closed”

were first studied by van Douwen et al. in [14] and Yasui et al. in [17], and later by

many other authors. The term absolutely star P for “P = finite”, “P = count-

able” and “P = countable discrete closed” were first studied by Matveev in [6],

Bonanzinga [4] and Song [10], [11] respectively. A survey of star covering properties

with a comprehensive bibliography can be found in [7], [14]. The author believes

the terminology from [1], [2], [3], [15] and the terminology used in the paper to be

simple and logical. Nonetheless we must mention that the authors of previous works

have used many different terms to define properties of this sort. For example, in [7]

and earlier [14], a star finite space is called starcompact and strongly 1-starcompact,

a star countable space is called star Lindelöf and strongly 1-star Lindelöf; in [8],

[9], [17], a star countable discrete closed space is called discretely star-Lindelöf and

a space with a countable web; in [6], [7], an absolutely star finite space is called

absolutely countably compact; in [4], [7], an absolutely star countable space is called

absolutely star Lindelöf, and in [10], [11], an absolutely star countable discrete closed

space is called absolutely discretely star-Lindelöf.

From the definitions, it is clear that every star finite space is star countable; every

star countable discrete closed space is star countable; every absolutely star countable

space is star countable and every absolutely star countable discrete closed space is

both absolutely star countable and star countable discrete closed.

In this paper we shall be concerned with property P related to the countable

discrete closed property, specifically, “star countable discrete closed” and “absolutely

star countable discrete closed”. In the paper, spaces are assumed only to be T1.

Throughout the paper, the cardinality of a set A is denoted by |A|. For a cardinal

κ, let κ+ denote the smallest cardinal greater than κ and cf(κ) the cofinality of κ.

Let c denote the cardinality of the continuum, ω1 the first uncountable cardinal

and ω the first infinite cardinal. For a pair of ordinals α, β with α < β, we write

(α, β) = {γ : α < γ < β}, (α, β] = {γ : α < γ 6 β} and [α, β] = {γ : α 6 γ 6 β}.

Other terms and symbols that we do not define will be used as in [5].

2. Some results on star countable discrete closed spaces

The author [9], [10] showed that there exists a Tychonoff absolutely star countable

discrete closed (star countable discrete closed) space having a regular-closed subspace

which is not star countable (hence, not star countable discrete closed). However, his
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space is neither pseudocompact nor normal. First we give a stronger example to

show that a regular-closed subspace of a Tychonoff star countable discrete closed,

pseudocompact space need not be star countable. The example uses Matveev’s space.

We now sketch the construction of Matveev’s space Mκ defined in [8]. Let κ be an

infinite cardinal and let D = {0, 1} be a discrete space. For every α < κ, let zα be the

point of Dκ defined by zα(α) = 1 and zα(β) = 0 for β 6= α. Put Z = {zα : α < κ}.

For a given ordinal κ, Matveev’s space Mκ is the subspace

Mκ = (Dκ × ω) ∪ (Z × {ω})

of the product space Dκ × (ω + 1). Then Mκ is Tychonoff. Matveev [8] showed that

Mκ is star countable discrete closed. For a Tychonoff space X , let βX denote the

Čech-Stone compactification of X .

Example 2.1. There exists a Tychonoff star countable discrete closed, pseudo-

compact spaceX having a regular-closed subspace which is not star countable (hence

not star countable discrete closed).

P r o o f. Let D = {dα : α < c} be a discrete space of cardinality c and let

S1 = (βD × (c + 1)) \ ((βD \ D) × {c})

be a subspace of the product space βD×(c+1). Then S1 is Tychonoff pseudocompact.

In fact, it has a countably compact, dense subspace βD × c. To show that S1 is not

star countable discrete closed, we only show that S1 is not star countable, since every

star countable discrete closed space is star countable. For each α < c, let

Uα = {dα} × [0, c].

Let us consider the open cover

U = {Uα : α < c} ∪ {βD × c}

of S1 and let F be any countable subset of S1. Let α′ = sup{α : 〈dα, c〉 ∈ F}. Then

α′ < c, since F is countable. If we pick β > α′, then 〈dβ , c〉 /∈ St(F, U ), since Uβ is

the only element of U containing 〈dβ , c〉 and Uβ ∩F = ∅, which shows that S1 is not

star countable.

Let

S2 = (βMc × (ω1 + 1)) \ ((βMc \ Mc) × {ω1})

be a subspace of the product space βMc × (ω1 + 1). Then S2 is Tychonoff pseudo-

compact. In fact, it has a countably compact, dense subspace βMc × ω1. We show
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that S2 is star countable discrete closed. To this end, let U be an open cover of S2.

Since βMc×ω1 is countably compact, there exists a finite subset E ⊆ βMc×ω1 such

that

βMc × ω1 ⊆ St(E, U ),

since every countably compact space is star finite (see [13]). On the other hand,

Mc × {ω1} is star countable discrete closed, since it is homeomorphic to Mc. Thus

there exists a countable subset E′ ⊆ Mc × {ω1} such that E′ is discrete closed in

Mc × {ω1} and

Mc × {ω1} ⊆ St(E′, U ).

If we put F = E ∪ E′, then F is a countable subset of S2 such that S2 = St(F, U ).

Since Mc × {ω1} is closed in S2, so E′ is discrete closed in S2, hence F is discrete

closed in S2, which shows that S2 is star countable discrete closed.

We assume S1 ∩ S2 = ∅. Let π : D × {c} → (Z × {ω}) × {ω1} be a bijection and

let X be the quotient image of the disjoint sum S1 ⊕ S2 by identifying 〈dα, c〉 of S1

with π(〈dα, c〉) of S2 for each 〈dα, c〉 from D × {c}. Let ϕ : S1 ⊕ S2 → X be the

quotient map. Then X is pseudocompact, since S1 and S2 are pseudocompact. It is

clear that ϕ(S1) is a regular-close subspace of X which is not star countable (hence

not star countable discrete closed).

We shall show that X is star countable discrete closed. To this end, let U be

an open cover of X . Since ϕ(S2) is homeomorphic to S2, so ϕ(S2) is star countable

discrete closed, hence there exists a countable discrete closed subset F1 of ϕ(S2) such

that

ϕ(S2) ⊆ St(F1, U ).

On the other hand, since ϕ(βD × c) is homeomorphic to βD × c, so ϕ(βD × c) is

countably compact, hence there exists a finite subset F2 of ϕ(βD × c) such that

ϕ(βD × c) ⊆ St(F2, U ).

If we put F = F1 ∪F2, then F is countable and X = St(F, U ). Since ϕ(S2) is closed

in X , F is discrete closed in X , thus X is star countable discrete closed. �

Remark 2.2. Example 2.1 shows that regular-closed subspaces of Tychonoff star

countable discrete closed (star countable), pseudocompact spaces need not be star

countable discrete closed (star countable, respectively). The author does not know

if a regular-closed subspace of a Tychonoff absolutely star countable discrete closed,

pseudocompact space is absolutely star countable discrete closed.
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Remark 2.3. For normal spaces, there is no normal star countable discrete closed,

pseudocompact space X having a regular-closed subspace which is not star count-

able discrete closed, since it is well-known that a normal pseudocompact space is

countably compact [5] and countable compactness is preserved by a closed subspace.

Example 2.4. There exists a Tychonoff countably compact (hence star countable

discrete closed) space X which is not absolutely star countable discrete closed.

P r o o f. Let X = ω1×(ω1 +1) be the product space of ω1 and ω1 +1. Then X is

Tychonoff countably compact. Hence X is star countable discrete closed, since every

countably compact space is star finite and every star finite space is star countable

discrete closed.

We will show that X is not absolutely star countable discrete closed. For α < ω1,

let

Uα = [0, α) × (α, ω1] and D = ω1 × ω1.

Let us consider the open cover

U = {Uα : α < ω1} ∪ {D}

of X and a dense subset D of X . It remains to show that St(A, U ) 6= X for any

countable, closed discrete (in X) subset A of D. To show this, let A be a countable,

closed discrete (in X) subset of D. Then A is finite, since X is countably compact.

Then π(A) is a finite subset of ω1, where π : ω1× (ω1 +1) → ω1 +1 is the projection.

Hence there exists an α′ < ω1 such that A ∩ (ω1 × (α′, ω1]) = ∅. Pick β > α′. If

〈β, ω1〉 ∈ Uα, then α > β and Uα ∩ A = ∅ by the construction of the open cover

U . Hence 〈β, ω1〉 /∈ St(A, U ), which shows that X is not absolutely star countable

discrete closed. �

Remark 2.5. The author does not know if there exists a normal star countable

discrete closed space X which is not absolutely star countable discrete closed.

Vaughan [16] proved that every countably compact GO-space is absolutely star

finite. Thus, every cardinal with uncountable cofinality is absolutely star finite.

Remark 2.6. The author [9] gave an example showing that the product of a star

countable discrete closed space and a compact space need not be star countable

(hence not star countable discrete closed). Since ω1 is absolutely star finite, Ex-

ample 2.4 shows that the product of an absolutely star finite (hence absolutely star

countable discrete closed) space and a compact space need not be absolutely star

countable discrete closed. However, the author does not know if the product of

a star countable discrete closed (absolutely star countable discrete closed) space and

a compact metric space is star countable discrete closed (absolutely star countable

discrete closed, respectively).
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Next, we give a machine which produces absolutely star countable discrete closed

spaces. For a separable space X and its countable dense subset D, we define

S(X, D) = X ∪ (κ+ × D), where κ is regular such that cf(κ) > |X |

and topologize S(X, D) as follows: A basic neighborhood of x ∈ X in S(X, D) is the

set of the form

GU,α(x) = U ∪ ((α, κ+) × (U ∩ D)),

for a neighborhood U of x in X and for α < κ+, and a basic neighborhood of

〈α, x〉 ∈ κ+ × D in S(X, D) is the set of the form

GV (〈α, x〉) = V × {x}

for a neighborhood V of α in κ+. When it is not necessary to specify D, we simply

write S(X) instead of S(X, D).

Theorem 2.7. Let X be a separable space with a countable dense set D. Then

the space S(X, D) is absolutely star countable discrete closed (star countable discrete

closed). Moreover,

(1) if X is a Tychonoff space, so is S(X, D);

(2) if X is a normal space, so is S(X, D).

P r o o f. Put S = S(X, D). We will show that S is absolutely star countable

discrete closed. To this end, let U be an open cover of S. Let S′ be the set of all

isolated points of κ+ and let D′ = S′ × D. Then D′ is dense in S and every dense

subspace of S includes D′. Thus it is sufficient to show that there exists a countable

subset F ⊆ D′ such that F is discrete closed in S and St(F, U ) = S. For each d ∈ D,

since κ+ × {d} is absolutely star finite, there exists a finite subset Dd ⊆ S′ × {d}

such that

κ+ × {d} ⊆ St(Dd, U ).

Let

E1 =
⋃

{Dd : d ∈ D}.

Then E is countable, discrete closed in S and

κ+ × D ⊆ St(E1, U ).

On the other hand, for each x ∈ X there exists a neighborhood U of x in X and

α(x) < κ+ such that GU,α(x)(x) is included in some member of U . Since |X | = κ,
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we can find α ∈ S′ such that α > α(x) for each x ∈ X . Then the set E2 = {α} × D

is countable, discrete closed in S and

X ⊆ St(E2, U ).

If we put F = E1 ∪ E2, then F is countable discrete closed in S such that S =

St(F, U ), which shows that S is absolutely star countable discrete closed. The proof

of statement (1) is left to the reader since it is not difficult.

Finally, to prove the statement (2), assume that X is normal. Let A0 and A1 be

disjoint closed subsets of S. Since X is normal and κ+ > |X |, we can find disjoint

open subsets U0 and U1 of X and α < κ+ such that Ai ∩ X ⊆ Ui and

(Ui ∪ ((α, κ+) × (Ui ∩ D))) ∩ A1−i = ∅

for each i = 0, 1. Let X0 = κ+ × D and let

Bi = ((α, κ+) × (Ui ∩ D)) ∪ (Ai ∩ X0) for i = 0, 1.

Then B0 and B1 are disjoint closed in X0. Since X0 is normal, there exist disjoint

open subsets V0 and V1 in X0 such that

B0 ⊆ V0 and B1 ⊆ V1.

Let

G0 = U0 ∪ V0 and G1 = U1 ∪ V1.

Then G0 and G1 are disjoint open subsets in S such that A0 ⊆ G0 and A1 ⊆ G1,

which shows that S is normal. �

We have the following corollaries of Theorem 2.7.

Corollary 2.8. Every separable space can be embedded in an absolutely star

countable discrete closed (hence star countable discrete closed) space as a closed

subspace.

Corollary 2.9. Every Tychonoff space X with w(X) 6 c can be embedded in

a Tychonoff absolutely star countable discrete closed (hence star countable discrete

closed) space as a closed subspace.

P r o o f. Let X be a Tychonoff space with w(X) 6 c. Then it is known that X

can be embedded in a separable Tychonoff space Y as a closed subspace. Indeed,

embed X into [0, 1]c and take a countable dense subset D of [0, 1]c. Then the space Y

is obtained from the subspace X ∪ D by making each point of D \ X isolated. Next

consider the space S(Y ) defined above. Then S(Y ) is absolutely star countable

discrete closed by Theorem 2.7 and X is closed in S(Y ). �
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For a normal space, we have the following consistent example.

Example 2.10. Assuming 2ℵ0 = 2ℵ1 , there exists an absolutely star countable

discrete closed space having a regular-closed subspace which is not star countable.

P r o o f. Let Y = L ∪ ω be a separable normal, uncountable T1 space where L

is closed and discrete and each element of ω is isolated. See Example E [13] for the

construction of such a space. Let

S1 = L ∪ (ω1 × ω)

and topologize S1 as follows: A basic neighborhood of l ∈ L in S1 is the set of the

form

GU,α(l) = (U ∩ L) ∪ ((α, ω1) × (U ∩ ω))

for a neighborhood U of l in X and α < ω1, and a basic neighborhood of 〈α, n〉 ∈

ω1 × ω in S1 is the set of the form

GV (〈α, n〉) = V × {n},

where V is a neighborhood of α in ω1. Then S1 is normal, but it is not star countable

(see [12]).

Let

S2 = S(Y, ω) = Y ∪ (κ+ × ω).

Then S2 is normal absolutely star countable discrete closed by Theorem 2.7.

We assume S1 ∩ S2 = ∅. Let X be the quotient image of the disjoint sum S1 ⊕ S2

by identifying each l in the copy of L in S1 with the corresponding point l in the

copy of L in S2. Let ϕ : S1 ⊕S2 → X be the quotient map. Then X is normal, since

S1 and S2 are normal. It is clear that ϕ(S1) is a regular-close subspace of X which

is not star countable (hence not absolutely star countable).

We show that X is absolutely star countable discrete closed. To this end, let U be

an open cover of X . Let S′ be the set of all isolated points of ω1 and let D′ = S′×ω.

Let S′′ be the set of all isolated points of κ+ and let D′′ = S′′ × ω. If we put

D = ϕ(D′ ∪ D′′),

then D is dense in X and every dense subspace of X includes D. Thus it is sufficient

to show that there exists a countable subset F ⊆ D such that F is discrete closed

in X and St(F, U ) = X . For each n ∈ ω, since ϕ(ω1 × {n}) is absolutely star finite,

there exists a finite subset En ⊆ ϕ(S′ × {n}) such that

ϕ(ω1 × {n}) ⊆ St(En, U ).
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Let

F1 =
⋃

{En : n ∈ ω}.

Then

ϕ(ω1 × ω) ⊆ St(F1, U ).

On the other hand, since ϕ(S2) is homeomorphic to S2, so ϕ(S2) is absolutely star

countable discrete closed, hence there exists a countable subset F2 of ϕ(D′′) such

that F2 is discrete closed in ϕ(S2) and

ϕ(S2) ⊆ St(F2, U ).

If we put F = F1∪F2, then F is countable and X = St(F, U ). Since F ∩ϕ(κ+×{n})

and F ∩ϕ(ω1 ×{n}) are finite for each n ∈ ω, hence F is discrete closed in X , which

shows that X is absolutely star countable discrete closed. �

Remark 2.11. The definition of S1 in the proof of Example 2.10 is more compli-

cated than it is necessary. In fact, S1 is the subspace (Y × (ω1 + 1)) \ ((ω × {ω1}) ∪

(L × ω1)) of the product space Y × (ω1 + 1). But, for the convenience of the proof

of Example 2.10, we use the definition from [11].

Remark 2.12. Example 2.10 shows that regular-closed subspaces of normal star

countable discrete closed (star countable, absolutely star countable, absolutely star

countable discrete closed) spaces need not be star countable discrete closed (star

countable, absolutely star countable, absolutely star countable discrete closed, re-

spectively) under 2ℵ0 = 2ℵ1 . The author does not know if there is a ZFC counterex-

ample

Remark 2.13. As far as the author knows, it is open whether there exists a nor-

mal star countable space containing an uncountable discrete closed subspace within

ZFC. By contrast, we discuss the cardinality of the discrete closed subspaces of nor-

mal absolutely star countable discrete closed (star countable discrete closed) spaces.

Assuming Martin’s axiom and the negation of CH, it is known ([13]) that there

exists a separable normal space Y with a closed discrete subset B with |B| = κ

for ω1 6 κ < c. Then, by Theorem 2.7, the space X = S(Y ) is a normal abso-

lutely star countable discrete closed (star countable discrete closed) space containing

a closed discrete subset B with |B| = κ. Assuming 2ℵ0 = 2ℵ1 , let Y = L ∪ ω be

the same space Y as in the proof of Example 2.10. Then, by Theorem 2.7, the

space X = S(Y ) is a normal absolutely star countable discrete closed (star count-

able discrete closed) space containing an uncountable discrete closed subspace. It

is trivial that 2ℵ0 = 2ℵ1 implies ¬CH. Thus Examples above show the existence of

a normal absolutely star countable discrete closed (star countable discrete closed)
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space containing an uncountable discrete closed subspace under certain set-theoretic

assumption. The author does not know if there exists an example within ZFC.
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