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M-weak and L-weak compactness

of b-weakly compact operators

J. H’Michane, A. El Kaddouri, K. Bouras, M. Moussa

Abstract. We characterize Banach lattices under which each b-weakly compact
(resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-
weakly compact).

Keywords: b-weakly compact operator; b-AM-compact operator; strong type (B)
operator; order continuous norm; positive Schur property

Classification: 46A40, 46B40, 46B42

1. Introduction

The class of b-weakly compact operators was introduced by Alpay, Altin and
Tonyali in [4] on vector lattices. After that, a series of papers, which gave different
characterizations of this class of operators, were published [2], [3], [5], [6], [7].

Many relations between this class and other classes of operators was studied
in [13], [14], [16]. In fact, in [14] the authors studied the b-weak compactness of
semi-compact operators, and in [13] the authors studied the b-weak compactness
of order weakly compact (resp. AM-compact) operators. Also, the compactness
of b-weakly compact operator was studied in [16]. On the other hand, the M-
weak compactness and the L-weak compactness of weakly compact operator was
investigated in [17]. Also, Aqzzouz, Elbour and H’Michane [9] characterize Banach
lattices on which each Dunford-Pettis operator is M-weakly compact (resp. L-
weakly compact). After that, in [12] the authors characterize Banach lattices on
which each semi compact operator is M-weakly compact (resp. L-weakly compact).

Our aim in this paper is to study the M-weak compactness and the L-weak
compactness of b-weakly compact (resp. strong type (B), resp. b-AM-compact)
operators. The article is organized as follows: we give in preliminaries all common
notations and definitions of Banach lattice theory. In main results section, we
study in the first subsection the L-weak compactness of b-weakly compact (resp.
b-AM-compact, strong type (B)) operators and in the second subsection the M-
weak compactness of b-weakly compact (resp. b-AM-compact, strong type (B))
operators.

2. Preliminaries

Let us recall from [4] that an operator T from a Banach lattice E into a Banach
space X is said to be b-weakly compact if it carries each b-order bounded subset



368 J. H’Michane, A. El Kaddouri, K. Bouras, M. Moussa

of E (i.e., order bounded in E′′) into a relatively weakly compact subset of X .
Recall from [10] that an operator defined from a Banach lattice E into a Banach
space X is said to be b-AM-compact if it carries b-order bounded set of E into
norm relatively compact set of X .

Note that each b-AM-compact operator from a Banach lattice E into a Ba-
nach space X is b-weakly compact but the converse is not true in general. In fact,
the identity operator of the Banach lattice L1[0, 1] is b-weakly compact (because
L1[0, 1] is a KB-space, see [2, Proposition 2.1]) but it is not b-AM-compact (be-
cause L1[0, 1] is not a discrete KB-space, see [10, Proposition 2.3]). Moreover, if
E′ is discrete then the class of b-weakly compact operators coincides with that of
b-AM-compact operators (see [18, Theorem 3]).

An operator T defined from a Banach lattice E into a Banach space X is said
to be strong type (B) if T ′′(B) ⊂ X where B is the band generated by E in E′′.

Since E′′ is Dedekind complete, every band in E′′ is a projection band and in
particular there is a projection of E′′ onto B. Thus, strong type (B) operators
extend to E′′. It is easy to see that each strong type (B) operator is a b-weakly
compact operator but the converse is not true in general. Indeed, for p > 1 the
operator Tp : Xp −→ c0 mentioned in [19] does not preserve any copy of c0 and
it follows from Proposition 2.10 of [15] that the operator Tp is b-weakly compact.
On the other hand, Tp is not a strong type (B) operator. Otherwise, since the
Banach lattice Xp does not contain a complemented copy of ℓ1 then, the norm of
(Xp)

′ is order continuous and hence it follows from [8, Proposition 3.2] that the
operator Tp is weakly compact, which is impossible. For more details on strong
type (B) operators, we refer the reader to [8], [19], [20].

To state our results, we need to fix some notations and recall some definitions.
A Banach lattice is a Banach space (E, ‖ · ‖) such that E is a vector lattice and
its norm satisfies the following property: for each x, y ∈ E such that |x| ≤ |y|,
we have ‖x‖ ≤ ‖y‖. A norm ‖ · ‖ of a Banach lattice E is order continuous if for
each generalized sequence (xα) such that xα ↓ 0 in E, (xα) converges to 0 for the
norm ‖ · ‖ where the notation xα ↓ 0 means that (xα) is decreasing, its infimum
exists and inf(xα) = 0. Note that if E is a Banach lattice, its topological dual E′,
endowed with the dual norm and the dual order, is also a Banach lattice.

A Banach lattice E is said to have the positive Schur property if every weakly
convergent sequence to 0 in E+ is norm convergent to zero. For example, the
Banach space ℓ1 has the positive Schur property. A Banach lattice E is called
a KB-space whenever every increasing norm bounded sequence of E+ is norm
convergent. As an example, each reflexive Banach lattice is a KB-space. A nonzero
element x of a vector lattice E is discrete if the order ideal generated by x equals
the lattice subspace generated by x. The vector lattice E is discrete, if it admits
a complete disjoint system of discrete elements. A subset A of a vector lattice
E is called order bounded, if it is included in an order interval in E. A linear
mapping T from a vector lattice E into another F is order bounded if it carries
an order bounded set of E into an order bounded set of F . We will use the term
operator T : E −→ F between two Banach lattices to mean a bounded linear
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mapping. It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. The operator T
is regular if T = T1 − T2 where T1 and T2 are positive operators from E into F .
Note that each positive linear mapping on a Banach lattice is continuous. If an
operator T : E −→ F between two Banach lattices is positive, then its adjoint
T ′ : F ′ −→ E′ is likewise positive, where T ′ is defined by T ′(f)(x) = f(T (x)) for
each f ∈ F ′ and for each x ∈ E. For terminology concerning Banach lattice theory
and positive operators we refer the reader to the excellent book of Aliprantis-
Burkinshaw [1].

3. Main results

3.1 L-weak compactness of b-weakly compact operator. Recall that a
non-empty bounded subset A of a Banach lattice E is said to be L-weakly compact
if for every disjoint sequence (xn) in the solid hull of A, we have limn→∞ ‖xn‖ = 0.
An operator T from a Banach space X into E is L-weakly compact if T (BX) is
L-weakly compact in E, where BX denotes the closed unit ball of X .

Note that any L-weakly compact operator from a Banach space into a Banach
lattice is weakly compact ([1, Theorem 5.61]) and any weakly compact operator
is clearly b-weakly compact, but there exists a b-weakly compact (resp. b-AM-
compact, resp. strong type (B)) operator which is not L-weakly compact. In
fact, the identity operator of the Banach lattice ℓ2 is b-weakly compact (resp.
b-AM-compact, resp. of strong type(B)), but it is not L-weakly compact. Also,
the operator T : C([0, 1]) −→ c0 defined by:

T (f) = (

∫ 1

0

frndt)
∞

1 for each f ∈ C([0, 1]),

is weakly compact ([17, Example 4.4]) and hence is b-weakly compact, where rn
is the n-th Rademacher function on [0, 1], but T is not L-weakly compact ([17,
Example 4.4]).

In the following result, we give the necessary conditions under which each b-
weakly compact operator is L-weakly compact:

Theorem 3.1. Let E and F be two Banach lattices. If each b-weakly compact

operator T : E −→ F is L-weakly compact, then one of the following assertions

is valid:

(1) E = {0},
(2) F is finite dimensional,

(3) the norms of E′ and F are order continuous.

Proof: The proof follows along the lines of the proof of Theorem 3.3 of [9]. We
prove separately the two following assertions.

(a) If the norm of E′ is not order continuous then F is finite-dimensional.
(b) If the norm of F is not order continuous, then E = {0}.

Assume that (a) is false. i.e., the norm of E′ is not order continuous and F is
infinite dimensional. It follows from Theorem 3.1 of [9] that there exists a disjoint
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norm bounded sequence (yn) of F
+ which does not converge in norm to zero. And

since the norm of E′ is not order continuous, then it follows from Theorem 2.4.14
and Proposition 2.3.11 of [22] that E contains a sub-lattice isomorphic to ℓ1 and
there exists a positive projection P : E −→ ℓ1.

To finish the proof, we have to construct a b-weakly compact operator which
is not L-weakly compact.

Consider the operator S : ℓ1 −→ F defined by

S((λn)) =

∞
∑

n=1

λnyn for each (λn) ∈ ℓ1.

The operator S is well defined and it is b-weakly compact because ℓ1 is a KB-
space (resp. ℓ1 is a discrete KB-space, resp. S is b-weakly compact and ℓ1 has
an order continuous norm (see Proposition 2.11 of [4])). But S is not L-weakly
compact. Otherwise, since S(en) = yn for all n ≥ 1 where (en) is the canonical
basis of ℓ1 and (yn) is a disjoint sequence, then (yn) is norm convergent to zero
and this is false.

On the other hand, since the identity operator of the Banach lattice ℓ1 is b-
weakly compact then the composed operator T = S ◦ P : E −→ ℓ1 −→ F is
b-weakly compact because S ◦ P = S ◦ Idℓ1 ◦ P . But T is not L-weakly compact.
Otherwise, T ◦ i = S is L-weakly compact where ı : ℓ1 −→ E is the canonical
injection of ℓ1 into E, and this is a contradiction.

Now, assume that (b) is false, i.e., the norm of F is not order continuous and
E 6= {0}. Choose z ∈ E+ such that ‖z‖ = 1. Hence, it follows from Theorem 39.3
of [21] that there exists φ ∈ (E′)+ such that ‖φ‖ = 1 and φ(z) = ‖φ‖ = 1.

On the other hand, since the norm of F is not order continuous, there exists
some y ∈ F+ and there exists a disjoint sequence (yn) ⊂ [0, y] which does not
converge to zero in norm.

We consider the operator T : E → F defined by

T (x) = φ(x) · y for each x ∈ E.

It is clear that T is positive and compact (because its rank is one) and hence T

is b-weakly compact. But T is not L-weakly compact. In fact, since ‖z‖ = 1 and
T (z) = φ(z) · y = y then y ∈ T (BE). As (yn) ⊂ [0, y], we conclude that (yn) is
a disjoint sequence in the solid hull of T (BE). Hence, if T is L-weakly compact
then limn→∞ ‖yn‖ → 0, which is a contradiction. �

Remark 1. The two necessary conditions (1) and (2) in Theorem 3.1 are suffi-
cient, but the condition (3) is not. In fact, the identity operator of the Banach
lattice ℓ2 is b-weakly compact, but it is not L-weakly compact. However the norm
of (ℓ2)′ = ℓ2 is order continuous.

Remark 2. Since any strong type (B) operator is b-weakly compact and any
b-AM-compact operator is b-weakly compact then the tree necessary conditions
in Theorem 3.1 are also necessary if each strong type (B) operator T : E −→ F
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is L-weakly compact or each b-AM-compact operator T : E −→ F is L-weakly
compact.

Now, we give sufficient conditions under which each strong type (B) operator
is L-weakly compact:

Theorem 3.2. Let E and F be two Banach lattices. Each strong type (B)
operator T from E into F is L-weakly compact, if one of the following statements

is valid:

(1) E = {0},
(2) F is finite dimensional,

(3) E′ has an order continuous norm and F has the positive Schur property.

Proof: (1) Obvious.
(2) Since F is finite dimensional, then it follows from Corollary 3.2 of [9] that

T is L-weakly compact.
(3) Let T : E −→ F be a strong type (B) operator then T ′′(B) ⊂ F where B

is the band generated by E in E′′. As the norm of E′ is order continuous, then it
follows from Theorem 2.4.14 of [22] that B = E′′ and hence T is weakly compact.

Now, since F has the positive Schur property, then by Theorem 3.4 of [17] T
is L-weakly compact. �

Let us remark that if the norm of the Banach lattice E is order continuous then
it follows from [4, Proposition 2.11] that the strong type (B) operators defined
from E into an arbitrary Banach space coincide with b-weakly compact operators.
On the other hand, all b-AM-compact operators are b-weakly compact.

As a consequence of Theorem 3.2, we give the following result:

Proposition 3.3. Let E and F be two Banach lattices. Then each b-weakly

compact (resp, b-AM-compact) operator T : E −→ F is L-weakly compact, if one

of the following statements is valid:

(1) E = {0},
(2) F is finite dimensional,

(3) the norms of E′ and E are order continuous and F has the positive Schur

property.

As a consequence of Theorem 3.1 and Proposition 3.3, we obtain the following
characterization:

Corollary 3.4. Let E be a Banach lattice with order continuous norm and F a

Banach lattice with the positive Schur property. Then the following statements

are equivalent.

(1) Each b-weakly compact operator T : E −→ F is L-weakly compact.

(2) Each positive b-weakly compact operator T : E −→ F is L-weakly com-

pact.

(3) One of the following conditions is valid:

(a) E = {0},
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(b) E′ has an order continuous norm,

(c) F is finite dimensional.

As another consequence of Theorem 3.1 and Theorem 3.2, we obtain the fol-
lowing characterization:

Corollary 3.5. Let E and F be two Banach lattices such that F has the positive

Schur property. Then the following statements are equivalent.

(1) Each strong type (B) operator T from E into F is L-weakly compact.

(2) One of the following conditions is valid:

(a) E = {0},
(b) E′ has an order continuous norm,

(c) F is finite dimensional.

Remark 3. As a particular case of Corollary 3.4 and Corollary 3.5, we have the
following characterizations.

(1) Let E be a non-void Banach lattice with order continuous norm and F

an infinite-dimensional Banach lattice with the positive Schur property.
Each b-weakly compact operator T : E −→ F is L-weakly compact, if and
only if each positive b-weakly compact operator T : E −→ F is L-weakly
compact, if and only if E′ has an order continuous norm.

(2) Let E be a non-void Banach lattice and F an infinite-dimensional Banach
lattice with the positive Schur property. Then, each strong type (B)
operator T from E into F is L-weakly compact, if and only if E′ has an
order continuous norm.

3.2 M-weak compactness of b-weakly compact operator. An operator T :
E −→ X from a Banach lattice E into a Banach space X is said to be M -weakly
compact if for every disjoint sequence (xn) in BE we have limn→∞ ‖T (xn)‖ = 0,
where BE denotes the closed unit ball of E.

Note that every M-weakly compact operator from a Banach lattice into a Ba-
nach space is weakly compact ([1, Theorem 5.61]) and any weakly compact op-
erator is clearly b-weakly compact. But there exists a b-weakly compact (resp.
b-AM-compact, resp. strong type (B)) operator which is not M-weakly compact.
In fact, Idℓ1 is b-weakly compact (resp. b-AM-compact, resp. strong type (B))
but it is not M-weakly compact.

Our following result gives necessary conditions under which each b-weakly com-
pact (resp. b-AM-compact, resp. strong type (B)) operator is M-weakly compact:

Theorem 3.6. Let E and F be two Banach lattices. If each b-weakly compact

(resp. b-AM-compact, resp. strong type (B)) operator T : E −→ F is M-weakly

compact, then one of the following assertions is valid:

(1) F = {0},
(2) E′ has an order continuous norm.

Proof: Assume by way of contradiction that the norm of E′ is not order con-
tinuous norm and F 6= {0}. To finish the proof, we have to construct a positive
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b-weakly compact operator T : E −→ F (resp. b-AM-compact, resp. strong type
(B)) operator which is not M-weakly compact. Since the norm of E′ is not or-
der continuous norm, it follows from Theorem 2.4.14 and Proposition 2.3.11 of
Meyer-Nieberg [22] that E contains a closed sub-lattice which is isomorphic to
ℓ1 and there exists a positive projection P : E −→ ℓ1. On the other hand, as
F 6= {0}, there exists a non-null element y ∈ F+.

Now, we consider the operator S : ℓ1 −→ F defined by

S((λn)) =
(

∞
∑

n=1

λn

)

y for each (λn) ∈ ℓ1.

It is clear that S is well defined and positive. Also, S is compact (because its rank
is one). Hence the positive operator

T = S ◦ P : E −→ ℓ1 −→ F

is compact and T is b-weakly compact (resp. b-AM-compact; resp. strong type
(B)) but it is not M-weakly compact. In fact, if we denote by (en) the canonical
basis of ℓ1 ⊂ E, the sequence (en) is disjoint and bounded in E, moreover we
have T ((en)) = y for each n ≥ 1. Then ‖T ((en))‖ 9 0 (because y 6= 0). So, T is
not M-weakly compact and this proves the result. �

Remark 4. The necessary condition (1) in Theorem 3.6 is sufficient, but the
condition (2) is not. In fact, the identity operator of the Banach lattice ℓ2 is b-
weakly compact (resp. b-AM-compact, resp. strong type (B)) but is not M-weakly
compact. However the norm of (ℓ2)′ = ℓ2 is order continuous.

In the following result, we give sufficient conditions under which each b-weakly
compact operator is M-weakly compact:

Theorem 3.7. Let E and F be two Banach lattices.

(1) If F = {0} or the norm of E is order continuous and E′ has the positive

Schur property then each b-weakly compact operator T : E −→ F is

M-weakly compact.

(2) If the norms of E and E′ are order continuous and F has the positive

Schur property then each regular b-weakly compact operator T : E −→ F

is M-weakly compact.

Proof: (1) If F = {0}, clearly each operator is M-weakly compact. In the latter
case, let T : E −→ F be a b-weakly compact operator. Since the norm of E
is order continuous and the norm of E′ is order continuous (because E′ has the
positive Schur property), then it follows from the proof of Proposition 3.3 that T
is weakly compact.

Now, since E′ has the positive Schur property, it follows from [17, Theorem 3.3]
that T is M-weakly compact.

(2) Let T : E −→ F be an order bounded b-weakly compact operator. Since
the norms of E and E′ are order continuous and F has the positive Schur property,
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then by Proposition 3.3 T is L-weakly compact. Therefore, by [1, Theorem 5.67]
T is M-weakly compact. �

Now, we give sufficient conditions under which each operator of strong type
(B) is M-weakly compact:

Theorem 3.8. Let E and F be two Banach lattices.

(1) If F = {0} or E′ has the positive Schur property then each strong type

(B) operator T : E −→ F is M-weakly compact.

(2) If the norm of E′ is order continuous and F has the positive Schur prop-

erty then each regular strong type (B) operator T : E −→ F is M-weakly

compact.

Proof: (1) If F = {0}, clearly each operator is M-weakly compact. In the latter
case, let T : E −→ F be a strong type (B) operator. Since the norm of E′ is order
continuous, then it follows from [8, Proposition 3.2] that T is weakly compact.
Now, since E′ has the positive Schur property, then by [17, Theorem 3.3] T is
M-weakly compact.

(2) It follows from Theorem 3.6 of [17]. �

As a consequence of Theorem 3.6 and Theorem 3.8, we have the following
characterization:

Corollary 3.9. Let E and F be two Banach lattices such that F has the positive

Schur property. Then the following statements are equivalent.

(1) Each regular operator T from E into F of strong type (B) is M-weakly

compact.

(2) One of the following conditions is valid:

(a) F = {0},
(b) E′ has an order continuous norm.

Remark 5. As a particular case of Corollary 3.9, we have the following charac-
terization: Let E be a Banach lattice and F a non-void Banach lattice with the
positive Schur property. Then, each regular strong type (B) operator T : E −→ F

is M-weakly compact if and only if E′ has an order continuous norm.
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