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KYB ERNET IK A — VO LUME 4 9 ( 2 0 1 3 ) , NUMBER 1 , PAGES 7 3 – 9 5

CONSTRUCTION OF MULTIVARIATE COPULAS
IN N-BOXES

José M. González-Barrios and Maŕıa M. Hernández-Cedillo

In this paper we give an alternative proof of the construction of n-dimensional ordinal sums
given in Mesiar and Sempi [17], we also provide a new methodology to construct n-copulas
extending the patchwork methodology of Durante, Saminger-Platz and Sarkoci in [6] and [7].
Finally, we use the gluing method of Siburg and Stoimenov [20] and its generalization in Mesiar
et al. [15] to give an alternative method of patchwork construction of n-copulas, which can be
also used in composition with our patchwork method.

Keywords: n-copulas, modular functions, rectangular patchwork

Classification: 60A10, 60E05

1. INTRODUCTION

The idea of patching a 2-copula C, or simply copula, in a rectangular region R, by
redefining C using another function D on R, is of great interest when modelling some
bivariate data. It is well known that in many applications such as Mathematical Fi-
nances, Risk Theory, Ecology, etc., the researchers know from previous data what is the
behavior of their observations in the tails, but if they try to fit a known model, many
times, this model does not agree with these tail behaviors. In this case, it is important
to take a base copula C and try to modify it in the regions of interest using some other
copulas which have the behavior that we are looking for. This is now possible using the
general approach of rectangular patchwork construction.

In this paper we will generalize these results for n copulas with dimensions n ≥ 3.

Definition 1.1.
Let n ≥ 2 and let R = [u1, v1] × [u2, v2] × · · · × [un, vn] =: Πn

i=1[ui, vi] ⊂ RI n be an
n-box, that is, for every i ∈ {1, . . . , n}, −∞ < ui ≤ vi < ∞. We will call R a non
trivial n-box if for every i ∈ {1, . . . , n}, −∞ < ui < vi < ∞. For any 1 ≤ k ≤ n and
for every 1 ≤ i1 < i2 < · · · < ik ≤ n define

Ri1,...,ik
= {〈x1, . . . , xn〉 ∈ R | for every j ∈ {1, . . . , k}, either xij = uij or xij = vij}.

(1)
Then we call Ri1,...,ik

an (n− k)-dimensional face of R.
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If k = 1 an (n− 1)-dimensional face is usually called simply a face of R, in this last
case we make a distinction. We will denote by

Rl
i = {〈x1, . . . , xn〉 ∈ R | xi = ui}

and call it the ith-lower face, and

Ru
i = {〈x1, . . . , xn〉 ∈ R | xi = vi}

and call it the ith-upper face.

Let n ≥ 2 and let C : [0, 1]n → [0, 1] be a function which satisfies:

i) C(u1, . . . , un) = 0 if there exists at least one i ∈ {1, . . . n} such that ui = 0.

ii) C(1, . . . , 1, ui, 1, . . . , 1) = ui for every i ∈ {1, . . . , n} and for every ui ∈ [0, 1].

iii) C is an n-increasing function, that is, for any n-box R = Πn
i=1[ui, vi] such that

Vert(R) ⊂ [0, 1]n we have that

VC(R) :=
∑

{c∈D | c∈Vert(R)}

sgn(c)C(c) ≥ 0, (2)

where

sgn(c) =
{

1, if ci = ui for an even number of i′s
−1, if ci = ui for an odd number of i′s.

Then we will call C an n-copula.

We start with a generalization of De Baets and De Meyer [2], the proof of this result
follows the same ideas and it can be found in [11].

Theorem 1.2. Let C : [0, 1]n → [0, 1] be an n-copula, let R = Πn
i=1[ui, vi] ⊂ [0, 1]n be

a non trivial n-box. Let D : R → [0, 1] be a function. Define Q : [0, 1]n → [0, 1] by

Q(x1, . . . , xn) =
{

D(x1, . . . , xn) if 〈x1, . . . , xn〉 ∈ R,
C(x1, . . . , xn) if 〈x1, . . . , xn〉 ∈ [0, 1]n\R.

(3)

Then, Q is an n-copula if and only if D = C on δ(R) and D is n-increasing.

Using Aczel and Dhombres [1], we give a characterization of functions that assign
volume zero to any n-box R called modular, and a useful Lemma.

Lemma 1.3. Let F : D → RI be a function where D ⊂ RI n for some n ≥ 2. Then F
is modular if and only if there exist n functions Gi : RI n−1 → RI such that for every
x = 〈x1, x2, . . . , xn〉 ∈ D

F (x) = G1(x2, x3, . . . , xn)+ · · ·+Gi(x1, . . . , xi−1, xi+1, . . . , xn)+ · · ·+Gn(x1, . . . , xn−1).
(4)
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P r o o f . Let R = Πn
i=1[ui, vi] be an n-box and let c = 〈c1, c2 . . . , cn〉 be a vertex of R,

define c∗1 = v1 if c1 = u1 or c∗1 = u1 if c1 = v1. Then c∗ = 〈c∗1, c2, . . . , cn〉 is another
vertex of R, and using equation (2), sgn(c)G1(c) + sgn(c∗)G1(c∗) = 0. Repeating the
argument for the ith coordinate of c respectively, in the remaining n − 1 functions we
have the result. �

The importance of Lemma 1.3 is that the functions G1, . . . , Gn in equation (4) are
completely arbitrary. For example if n = 3 and we define F (x, y, z) = G1(x, y) +
G2(x, z) + G3(y, z) + H1(x) + H2(y) + H3(z) + K where G1, G2, G3,H1,H2 and H3 are
arbitrary functions and K is a constant, then F is modular.

Lemma 1.4. Let n ≥ 2, let R = Πn
i=1[ui, vi] ⊂ [0, 1]n be an n-box, let D : R → RI

be an n-increasing function and let E : R → RI be a modular function. If we define
F : R → RI by

F (x) = D(x) + E(x). (5)

Then F is an n-increasing function.

The following Theorem is the main result in the patchwork construction of 2-copulas
given in Durante et al. [7], and an alternative shorter proof using Lemma 1.3 and Lemma
1.4 is given in [11].

Theorem A. Let C be a copula, let {Cj}j∈J be a family of copulas and let {Rj =
[uj

1, v
j
1]× [uj

2, v
j
2]}j∈J be a family of 2-boxes, in this case rectangles in [0, 1]2, such that

Rj ∩Rk ⊂ δ(Rj) ∩ δ(Rk) for every j, k ∈ J with j 6= k.

Define for every j ∈ J , λj = VC(Rj), and for every x ∈ [uj
1, v

j
1] and for every y ∈ [uj

2, v
j
2],

Rj,x = [uj
1, x]× [uj

2, v
j
2] and Rj,y = [uj

1, v
j
1]× [uj

2, y]. Let C̃ : [0, 1]2 → [0, 1] defined by

C̃(x, y) =

{
λjCj

(
VC(Rj,x)

λi
,

VC(Rj,y)
λj

)
+ ϕC

j (x, y) if (x, y) ∈ Rj and λj > 0,

C(x, y), otherwise,
(6)

where ϕC
j (x, y) = hC

uj
2
(x) + vC

uj
1
(y)− hC

uj
2
(uj

1). Then C̃ is a copula.

An important result about n-increasing functions proved in [11] that will be used in
this paper is the following

Lemma 1.5. Let n ≥ 2 and let R = Πn
i=1[ui, vi] ⊂ [0, 1]n be a non trivial n-box, let

C : [0, 1]n → [0, 1] and D : [0, 1]n → [0, 1] be two n-copulas. Let λ = VC(R) and assume
that λ > 0. Define E : R → [0, λ] by

E(x) = λD

(
VC(Rx1)

λ
, . . . ,

VC(Rxn)
λ

)
for every x ∈ R, (7)

where for every i ∈ {1, . . . , n}, ui ≤ xi ≤ vi and

Rxi
= [u1, v1]× · · · × [ui−1, vi−1]× [ui, xi]× [ui+1, vi+1]× · · · × [un, vn]. (8)
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Then E is an n-increasing function on R.
Besides, if x = 〈v1, . . . , vj−1, xj , vj+1, . . . , vn〉, for some j ∈ {1, . . . , n} and uj ≤ xj <

vj , then E(x) = VC(Rxj
), in particular E(v1, v2, . . . , vn) = λ.

In Section 2 we use our methodology to give an alternative proof of the ordinal sum
construction of n-copulas for n ≥ 3 first proved in Mesiar and Sempi [17].

In Section 3 we proposed a patchwork construction method for n-copulas with n ≥ 3.
We analyze in detail the difference between the cases n = 2 and n ≥ 3 using the
multivariate ordinal sum construction. We also provide some examples that show the
importance of this construction in the multivariate case.

In section 4 we use the gluing method of Siburg and Stoimenov [20] and its general-
ization given in Mesiar et al. [15] to provide an alternative method of construction of
copulas in n-boxes, with n ≥ 3, and we show that this methodology can be composed
with the patchwork construction given in Section 3 to provide new n-copulas.

In Section 5 we give some final observations.

2. MULTIVARIATE ORDINAL SUMS OF COPULAS

In this section we will use our results to prove that the construction of ordinal sums can
be extended to n ≥ 3. This result was first proved in Mesiar and Sempi [17]. We start
with a general Proposition.

Proposition 2.1. Let C1 be an n-copula for some n ≥ 2, and let 0 ≤ a1 < b1 ≤ 1,
define R = Πn

i=1[a1, b1] = [a1, b1]n an n-box in [0, 1]n. Define C : [0, 1]n → [0, 1] by

C(x) =


a1 + (b1 − a1)C1

(
min{x1,b1}−a1

b1−a1
, . . . , min{xn,b1}−a1

b1−a1

)
if min{x1, . . . , xn} ∈ [a1, b1],

min{x1, . . . , xn} elsewhere.
(9)

Then C is an n-copula.

P r o o f . We will proceed by induction. Let n = 2, and let 0 ≤ a1 < b1 ≤ 1. Define C
as in equation (9). Let A1 = {〈x1, x2〉 ∈ [0, 1]2 | min{x1, x2} ∈ [a1, b1]}, then it is clear
that

Ac
1 = {〈x1, x2〉 ∈ [0, 1]2 |x1 < a1 or x2 < a1} ∪ {〈x1, x2〉 ∈ [0, 1]2 |x1 > b1 and x2 > b1}

= A2 ∪A3.

Observe that A1 is the union of the 3 = 2n − 1 rectangles R1 = [a1, b1]2, R2 = [a1, b1]×
[b1, 1] and R3 = [b1, 1]× [a1, b1], see Figure 1.
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Fig. 1. Regions A1, A2 and A3.

Define D : A1 → RI by

D(x1, x2) = a1 + (b1 − a1)C1

(
min{x1, b1} − a1

b1 − a1
,
min{x2, b1} − a1

b1 − a1

)
. (10)

If 〈x1, x2〉 ∈ R2 then D(x1, x2) = a1+(b1−a1)C1((x1−a1)/(b1−a1), 1) = a1+(x1−a1) =
x1 = min{x1, x2}. Similarly, if 〈x1, x2〉 ∈ R3 then D(x1, x2) = x2 = min{x1, x2}. Using
Theorem 1.2 we have to see that D is 2-increasing on R1 and that D and M(x1, x2) =
min{x1, x2} coincide on δ(R1). We know that C1 is a 2-copula, so, C1 is 2-increasing.
Define a function h : R1 → [0, 1]2 by:

h(x1, x2) =
(

x1 − a1

b1 − a1
,
x2 − a1

b1 − a1

)
. (11)

Then it is clear that h is a bijection which takes R1 onto [0, 1]2, and also h is increasing
in each coordinate. Let S = [x1,1, x1,2] × [x2,1, x2,2] where a1 ≤ xi,1 ≤ xi,2 ≤ b1 for
i = 1, 2. Then S is a rectangle included in R1, and the function h in equation (11), takes
S onto

h[S] =
[
x1,1 − a1

b1 − a1
,
x1,2 − a1

b1 − a1

]
×

[
x2,1 − a1

b1 − a1
,
x2,2 − a1

b1 − a1

]
,

and using Lemma 1.4 with E(x1, x2) = a1, we have from equation (10) that

VD(S) = (b1 − a1)VC1(h[S]) ≥ 0. (12)

Therefore, from equation (12), D is 2-increasing on R1. Now, we prove that D coincides
with M on δ(R1). Let x = (x1, a1) or x = (a1, x2), where a1 ≤ x1, x2 ≤ b1. Then, since
C1 is a 2-copula

D(x1, a1) = a1 + (b1 − a1)C1

(
x1 − a1

b1 − a1
,
a1 − a1

b1 − a1

)
= a1 = M(x1, a1) (13)

and

D(a1, x2) = a1 + (b1 − a1)C1

(
a1 − a1

b1 − a1
,
x2 − a1

b1 − a1

)
= a1 = M(a1, x2). (14)
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Finally, if x = (x1, b1) or x = (b1, x2), where a1 ≤ x1, x2 ≤ b1. Then, since C1 is a
2-copula

D(x1, b1) = a1+(b1−a1)C1

(
x1 − a1

b1 − a1
,
b1 − a1

b1 − a1

)
= a1+(b1−a1)

x1 − a1

b1 − a1
= x1 = M(x1, b1)

(15)
and

D(b1, x2) = a1+(b1−a1)C1

(
b1 − a1

b1 − a1
,
x2 − a1

b1 − a1

)
= a1+(b1−a1)

x2 − a1

b1 − a1
= x2 = M(b1, x2).

(16)

From equations (13), (14), (15) and (16) D and M coincide on δ(R1) and C in equation
(9) is a 2-copula according to Theorem 1.2.

Let n > 2 and let C1 be an n-copula, let R1 = [a1, b1]n be an n-box in [0, 1]n and let
C be defined as in equation (9). Define D : A1 → RI , where

A1 = {〈x1, . . . , xn〉 ∈ [0, 1]n | min{x1, . . . , xn} ∈ [a1, b1]},

then it is clear that

Ac
1 = {〈x1, . . . , xn〉 ∈ [0, 1]n | there exists i ∈ {1, . . . , n} such that xi < a1}

∪ {〈x1, . . . , xn〉 ∈ [0, 1]2 |xi > b1 for every i ∈ {1, . . . , n}}
= A2 ∪A3. (17)

We will observe that in this case A1 is the union of 2n−1 n-boxes with disjoint interiors,
which include R1. Let I1,i = [a1, b1] and I2,i = [b1, 1] for i ∈ {1, . . . , n} then

[a1, 1]n = ([a1, b1] ∪ [b1, 1])n = ∪〈j1,...,jn〉∈{1,2}nΠn
i=1Iji,i.

Therefore,

A1 = [a1, 1]n\[b1, 1]n

= ∪〈j1,...,jn〉∈{1,2}nΠn
i=1Iji,i\Πn

i=1I2,i,

which is a union of 2n−1 n-boxes with disjoint interiors. Define for every 〈x1, . . . , xn〉 ∈
A1

D(x1, . . . , xn) = a1 + (b1 − a1)C1

(
min{x1, b1} − a1

b1 − a1
, . . . ,

min{xn, b1} − a1

b1 − a1

)
. (18)

Using the same ideas as above, and the fact that C1 is n-increasing, it is not difficult to
see that D is n-increasing on A1. So, by a natural generalization of Theorem 1.2, we only
have to see that M(x1, . . . , xn) = min{x1, . . . , xn} and D coincide on δ(A1)∩δ(A2∪A3).

Using equation (17), if 〈x1, . . . , xn〉 ∈ δ(A1) ∩ δ(A2 ∪ A3), then there exists i ∈
{1, . . . , n} such that xi = a1 and for every j ∈ {1, . . . , n}\{i}, xj ∈ [a1, 1], or there
exists i ∈ {1, . . . , n} such that xi = b1 and for every j ∈ {1, . . . , n}\{i}, xj ∈ [b1, 1]. In
the first case using equation (18) and the frontier conditions of C1, we have that

D(x1, . . . , xn) = a1 + (b1 − a1) · 0 = a1 = min{x1, . . . , xn},
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and in the second case

D(x1, . . . , xn) = a1 + (b1 − a1)C(1, . . . , 1,
b1 − a1

b1 − a1
, 1 . . . , 1) = b1 = min{x1, . . . , xn}.

Therefore, M and D coincide on δ(A1)∩ δ(A2 ∪A3) and C defined in equation (9) is an
n-copula. �

Remark 2.2. In the previous Proposition we define R = [a1, b1]n. Let us denote by
λ = VM (R), where M(x1, . . . , xn) = min{x1, . . . , xn}, we will see that λ = b1 − a1. We
know that using formula (2), we have that

VM (R) =
∑

c∈Vert(R)

sgn(c)M(c). (19)

We observe that if c = 〈c1, . . . , cn〉 ∈ Vert(R), then for every i ∈ {1, . . . , n} ci = a1 or
ci = b1. So, if there exists i ∈ {1, . . . , n} such that ci = a1 then M(c) = a1, and the
only vertex of R such that M(c) = b1 is c = 〈b1, b1, . . . , b1〉 =: b1. Then using (18), we
have that

λ = VM (R) = b1 + a1

∑
c∈Vert(R)\{b1}

sgn(c). (20)

Observe that
∑

c∈Vert(R) sgn(c) = 0, this follows using the binomial expansion of 0 =
((−1) + 1)n. But, in this case

0 = ((−1) + 1)n =
n∑

k=0

(
n

k

)
(−1)k(1)n−k = 1 +

n∑
k=1

(
n

k

)
(−1)k(1)n−k.

Therefore,
∑n

k=1

(
n
k

)
(−1)k(1)n−k = −1, and using (20) we get that λ = VM (R) = b1−a1.

Remark 2.3. It is very important to observe that in the case n = 2, the construction
of ordinal sums is made by modifying the copula M only on squares that have opposite
vertices on the main diagonal, namely, if R = [a, b]2 ⊂ [0, 1]2 and D is a 2-copula, then
the function C : [0, 1]2 → [0, 1] given by

C(x1, x2) =

{
a + (b− a)D

(
x1−a
b−a , x2−b

b−a

)
if 〈x1, x2〉 ∈ [a, b]2

M(x1, x2) = min{x1, x2} elsewhere

is a copula, see for example Nelsen (2006). If we try to extend directly this idea to
larger dimensions the result is false, that is, if we take any n ≥ 3, D an n-copula and
R = [a, b]n ⊂ [0, 1]n an n-box with opposite vertices on the main diagonal and we define
a function C : [0, 1]n → [0, 1] by

C(x1, . . . , xn) =

{
a + (b− a)D

(
x1−a
b−a , · · · , xn−b

b−a

)
if 〈x1, . . . , xn〉 ∈ [a, b]n

M(x1, . . . , xn) = min{x1, . . . , xn} elsewhere.
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Then C is not necessarily an n-copula. To see this, we give an easy example with n = 3,
D = Π and R = [0, 1/3]3. If we define C as in the above equation, we have that

C(x1, x2, x3) =

{
1
3Π (3x1, 3x2, 3x3) if 〈x1, x2, x3〉 ∈ [0, 1/3]3

M(x1, x2, x3) = min{x1, x2, x3} elsewhere.
(21)

In this case, if we take 〈x1, x2, x3〉 = 〈1/3, 1/4, 1/4〉, then 〈x1, x2, x3〉 is a point on an
upper face of the 3-box R, but

1
3
Π

(
3
1
3
, 3

1
4
, 3

1
4

)
=

3
16

6= 1
4

= min
{

1
3
,
1
4
,
1
4

}
.

Therefore, by Theorem 1.2, C in equation (21) is not a 3-copula.
By Proposition 2.1, we know that if we define

C1(x1, x2, x3) =


1
3Π

(
min{x1,1/3}

1/3 , min{x2,1/3}
1/3 , min{x3,1/3}

1/3

)
if min{x1, x2, x3} ∈ [0, 1/3],

min{x1, x2, x3} elsewhere.
(22)

Then C1 is a 3-copula. Observe that the big difference between equations (21) and (22)
is that in the first line of (21) the region is R = [0, 1/3]3, and in the first line of equation
(22) the region is [0, 1]3\(1/3, 1]3, that is, the complement of the 3-box (1/3, 1]3.

Of course we can extend Proposition 2.1 to obtain the multivariate version of ordinal
sums, as in Mesiar and Sempi [17]. See also the application given in Durante and
Fernández-Sánchez [8].

Theorem B. Let {Cj}j∈J be a family of n-copulas, let {[aj , bj ]}j∈J where J =
{1, . . . , n} or J = {1, 2, . . .}. Assume that for every j ∈ J , 0 ≤ aj < bj ≤ 1, and even
more for every j, j + 1 ∈ J , bj ≤ aj+1. Define C : [0, 1]n → [0, 1] by

C(x) =


aj + (bj − aj)Cj

(
min{x1,bj}−aj

bj−aj
, . . . ,

min{xn,bj}−aj

bj−aj

)
ifmin{x1, . . . , xn} ∈ [aj , bj ] for j ∈ J

M(x) = min{x1, . . . , xn} elsewhere.
(23)

Then C is an n-copula.

P r o o f . The proof of Theorem B is an easy induction that uses the same arguments
that we used on the proof of Theorem A in [11]. �

3. A MULTIVARIATE PATCHWORK CONSTRUCTION

In this section we provide a multivariate patchwork construction of n-copulas in n-boxes
by using the regions determined in multivariate ordinal sums. We will start by taking a
3−copula and a 3-box R with 〈1, 1, 1〉 as one of its vertices.
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Theorem 3.1. Let C and C1 be two 3-copulas and let R = [u1, 1] × [u2, 1] × [u3, 1]
where 0 < ui < 1 for i ∈ {1, 2, 3} and define 0 = 〈0, 0, 0〉. Assume that λ = VC(R) > 0,
and for every x1 ∈ [u1, 1], for every x2 ∈ [u2, 1] and for every x3 ∈ [u3, 1], define

Rx1 = [u1, x1]× [u2, 1]× [u3, 1],
Rx2 = [u1, 1]× [u2, x2]× [u3, 1],
Rx3 = [u1, 1]× [u2, 1]× [u3, x3].

Let C̃ : [0, 1]3 → [0, 1] be defined in x = 〈x1, x2, x3〉 by

C̃(x) =

{
λC1

(
VC(Rx1 )

λ ,
VC(Rx2 )

λ ,
VC(Rx3 )

λ

)
+ VC([0,x] \ [u,x]) if x ∈ R

C(x), otherwise,
(24)

where [a,b] = [a1, b1] × [a2, b2] × [a3, b3] for a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉, and u =
〈u1, u2, u3〉. Then C̃ is a 3-copula.

Remark 3.2. The 3-box R can be written as R = [u,1] where 1 = 〈1, 1, 1〉.

P r o o f . Let D(x) = E(x) + F (x) with E(x) = λC1

(
VC(Rx1 )

λ ,
VC(Rx2 )

λ ,
VC(Rx3 )

λ

)
and

F (x) = VC([0,x] \ [u,x]). By Lemma 1.5 E is a 3-increasing function.
To see that D is also 3-increasing, using Lemma 1.4, we just need to prove that F is a
modular function. Let x ∈ R then,

F (x) = VC([0,x])− VC([u,x])

= C(x)−
∑

c∈Vert([u,x])

sgn(c)C(c)

= C(x1, x2, x3)− {C(x1, x2, x3)
−C(u1, x2, x3)− C(x1, u2, x3)− C(x1, x2, u3)
+C(x1, u2, u3) + C(u1, x2, u3)− C(u1, u2, x3)
−C(u1, u2, u3)}

= C(u1, x2, x3) + C(x1, u2, x3) + C(x1, x2, u3)
−C(x1, u2, u3)− C(u1, x2, u3)− C(u1, u2, x3)
+C(u1, u2, u3), (25)

but equation (25) is a modular function by the observation just below Lemma 1.3.
Now we will prove that C̃ is 3-increasing. Let x be a point in one of the lower faces of

R. Without loss of generality let x = 〈x1, x2, u3〉 ∈ δ(R) with u1 ≤ x1 ≤ 1, u2 ≤ x2 ≤ 1.
Then VC(Ru3) = 0 and D(x) = λC1

(
VC(Rx1 )

λ ,
VC(Rx2 )

λ , 0
λ

)
+VC([0, x1]×[0, x2]×[0, u3])−

0 = C(x). So, D = C in the lower faces of R.
Using the proof of Theorem 1.2, see [11], we can see that VC̃(S) = VC(S∩{[0, 1]3\R})+

VD(S ∩R) ≥ 0 for any 3-box S ⊂ [0, 1]3 and so C̃ is 3-increasing.
Finally, we prove that C̃ satisfies the boundary conditions of a copula.
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First C̃(x1, x2, x3) = C(x1, x2, x3) = 0 if any of the xi = 0 for i ∈ {1, 2, 3}, and
C̃(1, 1, 1) = λC(1, 1, 1) + VC([0, 1]3)− VC([u,1]) = λ + 1− VC(R) = 1 by the definition
of λ. Then, since C̃ = C in [0, 1]3\R we just need to see that C̃(x) = D(x) = xi,
for x = 〈x1, 1, 1〉, 〈1, x2, 1〉, 〈1, 1, x3〉 with xi ∈ [ui, 1], i = 1, 2, 3. By the second part of
Lemma 1.5 we have E(x1, 1, 1) = VC(Rx1), E(1, x2, 1) = VC(Rx2), E(1, 1, x3) = VC(Rx3)
for xi ∈ [ui, 1], i = 1, 2, 3. Without losing generality let us assume x = 〈x1, 1, 1〉, where
u1 ≤ x1 ≤ 1, then

D(x) = E(x1, 1, 1) + F (x1, 1, 1)
= VC(Rx1) + VC([0, x1]× [0, 1]× [0, 1])− VC([u1, x1]× [u2, 1]× [u3, 1])
= VC(Rx1) + C(x1, 1, 1)− VC(Rx1)
= x1. (26)

Similar results as (26) hold if x = 〈1, x2, 1〉 or if x = 〈1, 1, x3〉. On the other hand
if x = 〈x1, 1, 1〉 where 0 ≤ x1 ≤ u1, then C̃(x) = C(x) = x1, since C is a 3-copula.
Similar results are obtained for x = 〈1, x2, 1〉 and x = 〈1, 1, x3〉 when 0 ≤ x2 ≤ u2 and
0 ≤ x3 ≤ u3. Therefore, C̃ in equation (24) is a 3-copula. �

Remark 3.3. If we let ui = 0 for some i ∈ {1, 2, 3} in the previous Theorem the result
still holds. For example if u1 = 0, then R = [0, 1] × [u2, 1] × [u3, 1], and if we take
x = 〈0, x2, x3〉 where u2 ≤ x2 ≤ 1 and u3 ≤ x3 ≤ 1, then by definition (24) we have that

C̃(x) = λC1

(
VC(Rx1=0)

λ
,
VC(Rx2)

λ
,
VC(Rx3)

λ

)
+ VC([0,x])− VC([u,x])

= 0 + VC([0, 0]× [0, x2]× [0, x3])− VC([0, 0]× [u2, x2]× [u3, x3])
= 0.

Clearly, Theorem 3.1 can be generalized easily to larger dimensions.

Theorem 3.4. For every n ≥ 3 let C and C1 be two n-copulas and let R = [u1, 1] ×
[u2, 1]× · · · × [un, 1] where 0 ≤ ui < 1 for i ∈ {1, . . . , n}. Assume that λ = VC(R) > 0,
and for every i ∈ {1, . . . , n} and for every xi ∈ [ui, 1] define Rxi = [u1, 1] × · · · ×
[ui−1, 1]× [ui, xi]× [ui+1, 1]× · · · × [un, 1]. Let (C

⊎
u C1) : [0, 1]n → [0, 1] be defined in

x = 〈x1, . . . , xn〉 by

(
C

⊎
u

C1

)
(x) =

{
λC1

(
VC(Rx1 )

λ , . . . ,
VC(Rxn )

λ

)
+ VC([0,x] \ [u,x]) if x ∈ R,

C(x), otherwise,
(27)

where [a,b] = [a1, b1] × · · · × [an, bn] for a = 〈a1, . . . , an〉,b = 〈b1, . . . , bn〉, and u =
〈u1, . . . , un〉. Then (C

⊎
u C1) is an n-copula.

P r o o f . It follows the same steps as the proof of Theorem 3.1. �

Remark 3.5. For every n ≥ 3 and for every n-copula C we can obtain from equation
(27) every n-copula C1. Let C and C1 arbitrary n-copulas and let R = [0, 1]n, then
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VC(R) = 1 = λ, and for every i ∈ {1, . . . , n} and for every xi ∈ [0, 1], Rxi = [0, 1]×· · ·×
[0, 1] × [0, xi] × [0, 1] · · · × [0, 1]. So, VC(Rxi) = xi for every i ∈ {1, . . . , n} and u = 0.
Therefore, from equation (27) we have that (C

⊎
u C1)(x) = C1(x) for every x ∈ [0, 1]n.

Using Theorem 3.4 we can construct many different new n-copulas. Observe that
in the construction of the copula (C

⊎
u C1) on R = [u,1], given in equation (27), the

copula C remains fixed on [0, 1]n\R, and on R we have a rescaled version of the copula
C1. Using Theorem 3.4 we have the following

Definition 3.6. Let Cn be the family of all n-copulas for some n ≥ 3, for every fixed
u ∈ [0, 1)n, the function

⊎
u : Cn × Cn → Cn defined by⊎

u

(C,C1) = (C
⊎
u

C1) (28)

is an operator.

Lemma 3.7. Let n = 3, u ∈ (0, 1)3 and Π the product 3-copula and let C1 and C2 be
3-copulas. Then (

C1

⊎
u

C2) = Π (29)

if and only if C1 = C2 = Π.

P r o o f . Let n = 3, u ∈ (0, 1)3 and R = [u,1]. First, assume that C1 = C2 = Π, then
λ = VΠ(R) = (1−u1)(1−u2)(1−u3). Now, we will see that VΠ(Rxi)/λ = (xi−ui)/(1−ui)
for every i ∈ {1, 2, 3}. Without losing generality we will assume that i = 1. Since
Rx1 = [u1, x1]× [u2, 1]× [u3, 1] then

VΠ(Rx1)
λ

=
(x1 − u1)(1− u2)(1− u3)
(1− u1)(1− u2)(1− u3)

=
(x1 − u1)
(1− u1)

.

So, using equations (24), (25) and Definition 3.6, we have that for x ∈ R

(C1

⊎
u

C2)(x) = λΠ
(

VΠ(Rx1)
λ

,
VΠ(Rx2)

λ
,
VΠ(Rx3)

λ

)
+ VΠ([0,x] \ [u,x])

= λΠ
(

(x1 − u1)
(1− u1)

,
(x2 − u2)
(1− u2)

,
(x3 − u3)
(1− u3)

)
+ VΠ([0,x] \ [u,x])

= (x1 − u1)(x2 − u2)(x3 − u3) + x1x2x3 − (x1 − u1)(x2 − u2)(x3 − u3)
= x1x2x3

= Π(x).

Conversely, assume that equation (29) holds for some C1 and C2 3-copulas, then from
equation (24) it is clear that C1 must be Π in [0, 1]3\R. Then λ = (1−u1)(1−u2)(1−u3)
and VC1([0,x]\ [u,x]) = x1x2x3− (x1−u1)(x2−u2)(x3−u3). But, from equations (24)
and (29) this implies that C2 = Π. �

Of course, Lemma 3.7 also holds for n > 3.
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Example 3.8. Let n = 3, let

C1(x) = exp
(
−

[
(− ln(x1))θ + (− ln(x2))θ + (− ln(x3))θ

]1/θ
)

for some θ ≥ 1, which is a member of the Gumbel–Hougaard Archimedean family, see
Example 4.23 in Nelsen [18], and let C = Π. Let R = [1/2, 1] × [1/2, 1] × [3/4, 1], then
λ = VΠ(R) = 1/16, and VΠ(Rxi

) = (1/8)(xi − 1/2) for i = 1, 2 with x1, x2 ∈ [1/2, 1],
and VΠ(Rx3) = (1/4)(x3 − 3/4) with x3 ∈ [3/4, 1]. Besides, VΠ([0,x]) = x1x2x3 and
since u = 〈1/2, 1/2, 3/4〉 then VΠ([u,x]) = (x1 − 1/2)(x2 − 1/2)(x3 − 3/4). Therefore,
using Theorem 3.1 if we define C̃ = (C

⊎
u C1) then

C̃(x) =


1
16C1(2x1 − 1, 2x2 − 1, 4x3 − 3) + x1x2x3 − (x1 − 1/2)(x2 − 1/2)(x3 − 3/4)

if x ∈ R

x1x2x3 otherwise.

Then C̃ is a 3-copula, which behaves like a rescaled version of the Gumbel–Hougaard
family on the upper 3-box R and on the rest is the product copula. It is also clear that
C̃ is not an ordinal sum.

Example 3.9. We will see that even for n = 3 and a simple 3-box of the form R =
[0, v1]× [0, v2]× [0, v3] ⊂ I3, if we take two 3-copulas C and D such that λ = VC(R) > 0
and we define Rxi for xi ∈ [0, vi] as in equation (24) of Theorem 3.1, for every i ∈
{1, 2, 3}, and taking

E(x) = λD

(
VC(Rx1)

λ
,
VC(Rx2)

λ
,
VC(Rx3)

λ

)
,

which is 3-increasing by Lemma 1.5. We can find functions F1,2(x1, x2), F1,3(x1, x3),
F2,3(x2, x3) from [0, 1]2 into RI , and functions H1(x1), H2(x2) and H2(x2) from [0, 1]
into RI , such that if we define for every x ∈ R

ϕ(x) = F1,2(x1, x2) + F1,3(x1, x3) + F2,3(x2, x3) + H1(x1) + H2(x2) + H3(x3),

then the function Q : [0, 1]3 → [0, 1] defined by

Q(x) =
{

E(x) + ϕ(x) if x ∈ R
C(x) if x ∈ [0, 1]3\R

satisfies that Q is continuous. However Q is not in general a 3-copula.
We know that the function ϕ defined above is a modular function by Lemma 1.3, and

by Lemma 1.4 the first row in the definition of Q is also 3-increasing. Besides, since C
and D are 3-copulas we also know that E(x) is continuous. The idea now is try to find
an appropriate continuous function ϕ, such that it makes Q continuous.

First we observe that δ(R) is given by the union of {x ∈ R | there exists i ∈ {1, 2, 3}
such that xi = 0} with {x ∈ R | there exists i ∈ {1, 2, 3} such that xi = vi}. Since C is
continuous we only have to find ϕ such it makes coincide the first row with the second
row of Q on the upper faces of R, that is, on

{x ∈ R | there exists i ∈ {1, 2, 3} such that xi = vi}.
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In this case we want to find adequate functions in the definition of ϕ such that the
following three conditions hold

Q(v1, x2, x3) = C(v1, x2, x3) for every 〈x2, x3〉 ∈ [0, v2]× [0, v3],
Q(x1, v2, x3) = C(x1, v2, x3) for every 〈x1, x3〉 ∈ [0, v1]× [0, v3],

and
Q(x1, x2, v3) = C(x1, x2, v3) for every 〈x1, x2〉 ∈ [0, v1]× [0, v2].

We define for 〈x1, x2〉 ∈ [0, v1]× [0, v2]

F1,2(x1, x2) = −λD

(
VC(Rx1)

λ
,
VC(Rx2)

λ
, 1

)
+ C(x1, x2, v3),

for 〈x1, x3〉 ∈ [0, v1]× [0, v3]

F1,3(x1, x3) = −λD

(
VC(Rx1)

λ
, 1,

VC(Rx3)
λ

)
+ C(x1, v2, x3),

and for 〈x2, x3〉 ∈ [0, v2]× [0, v3]

F2,3(x2, x3) = −λD

(
1,

VC(Rx2)
λ

,
VC(Rx3)

λ

)
+ C(v1, x2, x3).

We also define for x1 ∈ [0, v1], x2 ∈ [0, v2] and x3 ∈ [0, v3]

H1(x1) = VC(Rx1)− C(x1, v2, v3), H2(x2) = VC(Rx2)− C(v1, x2, v3)
and

H3(x3) = VC(Rx3)− C(v1, v2, x3).

Then if we take 〈v1, x2, x3〉 ∈ R, we observe that Rv1 = R, λ = VC(R) = C(v1, v2, v3),
and using the frontier properties of D, we have that

Q(v1, x2, x3) = λD

(
1,

VC(Rx2)
λ

,
VC(Rx3)

λ

)
−λD

(
1,

VC(Rx2)
λ

, 1
)

+ C(v1, x2, v3)

−λD

(
1, 1,

VC(Rx3)
λ

)
+ C(v1, v2, x3)

−λD

(
1,

VC(Rx2)
λ

,
VC(Rx3)

λ

)
+ C(v1, x2, x3)

+VC(Rv1)− C(v1, v2, v3) + VC(Rx2)− C(v1, x2, v3) + VC(Rx3)
−C(v1, v2, x3)

= −VC(Rx2)− VC(Rx3) + C(v1, x2, x3) + λ− λ + VC(Rx2) + VC(Rx3)
= C(v1, x2, x3).
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Therefore, the first condition above holds. Analogously it is easy to see that the other
two conditions also hold with the same definition of ϕ which is clearly continuous. Hence,
Q is continuous.

Now, if x ∈ R is such that xi = 0 for some i ∈ {1, 2, 3}, then it is clear that
VC(Rxi) = 0 and since D and C are 3-copulas then E(x) = 0 = C(x). However, if we
take x = 〈0, x2, x3〉 with x2 ∈ (0, v2] and x3 ∈ (0, v3], then E(x) = 0, F1,2(0, x2) = 0,
F1,3(0, x3) = 0, F2,3(x2, x3) = −λD(1, VC(Rx2)/λ, VC(Rx3)/λ) + C(v1, x2, x3),
H1(0) = 0, H2(x2) = VC(Rx2) − C(v1, x2, v3) = C(v1, x2, v3) − C(v1, x2, v3) = 0 and
H3(x3) = VC(Rx3)− C(v1, v2, x3) = C(v1, v2, x3)− C(v1, v2, x3) = 0. So,
ϕ(x) = −λD(1, C(v1, x2, v3)/λ, C(v1, v2, x3)/λ) + C(v1, x2, x3), which in general is not
zero. Therefore, Q is not a 3-copula even if it is continuous.

This last example shows that it is not easy to find a modular function ϕ, such that
the function Q satisfies being a 3-copula. The problem is to find a modular function ϕ
such that the first and second rows in the definition of Q coincide on the lower and upper
faces of R. It seems that we can make them coincide if we take only the lower faces or
only the upper faces, but not both at the same time, in order to get a 3-copula. Maybe
if we define a different function ϕ we could obtain a 3-copula, but this still remains an
open problem.

3.1. Patchwork Construction Method for Dimensions Larger Than or Equal
to Three

We first observe that the construction of new copulas in Theorem 3.4 is restricted to
n-boxes of the form R = [u,1] ⊂ [0, 1]n where u = 〈u1, . . . , un〉 and 1 = 〈1, . . . , 1〉. The
question here is, how to do a construction of a new copula when we want to modify a
base n-copula C on an arbitrary n-box R = [u,v] ⊂ [0, 1]n by another rescaled n-copula
D?

In order to answer this question we will propose a new methodology which is based
on Theorem 3.4.

Let us assume that R = [u,v] ⊂ [0, 1]n is a non trivial n-box such that for every
i ∈ {1, . . . , n}, 0 < ui < vi < 1. Let Vert(R) be the set of vertices of R. We will
first establish an order in this set of vertices. Let c ∈ Vert(R), define a bijection
f : Vert(R) → {1, 2}n given by f(c) = 〈l1, l2, . . . , ln〉 ∈ {1, 2}n, where li = 1 if ci = ui

and li = 2 if ci = vi. Define Qf(c) = {k ∈ {1, . . . , n} | f(c)k = 2}, where f(c)k is the kth
coordinate of f(c). Now we define the composition ϕ : Vert(R) → {1, 2, . . . , 2n} given
by

ϕ(f(c)) = 1 +
∑

k∈Qf(c)

2n−k for every c ∈ Vert(R).

Of course, Qf(c) = ∅ if and only if c = 〈u1, u2, . . . , un〉 and in this case ϕ(f(u1, u2, . . . , un))
= 1. Also observe that if c = 〈v1, v2, . . . , vn〉, then ϕ(f(v1, v2, . . . , vn)) = 1+

∑n
k=1 2n−k =

1+
∑n−1

j=0 2j = 2n. It is easy to see that ϕ is a bijection which establishes an order among
the vertices of R, in fact, this order gives the number one to the “lowest” vertex and the
number 2n to the “highest” vertex.
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Let C be an n-copula which we will call base copula, let D be an n-copula which we
will call modifying copula, and let R = [u,v] ⊂ [0, 1]n be a non trivial n-box. Then
inductively define

• Let C1 = (C
⊎

u D) where 1 = ϕ(u).

• Given Ck for 1 ≤ k < 2n, let c ∈ Vert(R) such that ϕ(c) = k + 1 and define
Ck+1 = (Ck

⊎
c C).

• The n-copula C2n is our target copula.

Observe that if we follow this construction, then in the first step in C1 we introduce
the rescaled version of the n-copula D on [u,1], and in the remaining steps we keep
unaltered C1 at least in the semi open n-box [u,v) = Πn

i=1[ui, vi).

Example 3.10. Let us assume that n = 3 and that we want to construct a 3-copula
C which has a desired behavior in each of the eight vertices of I3 := [0, 1]3. We will
use the 3-box given by R = [0, 1/2]3 as an auxiliary tool. We first establish a bijection
h : Vert(I3) → Vert(R), among the vertices of I3 and the vertices of R. If c ∈ Vert(I3)
then the coordinates of h(c) are given by

h(c)i =
{

0 if ci = 0
1/2 if ci = 1,

for i = 1, 2, 3. Using the order established at the beginning of this subsection we have
Table 1:

c f(c) Qf(c) ϕ(f(c))
〈0, 0, 0〉 〈1, 1, 1〉 ∅ 1
〈0, 0, 1〉 〈1, 1, 2〉 {3} 1 + 23−3 = 2
〈0, 1, 0〉 〈1, 2, 1〉 {2} 1 + 23−2 = 3
〈0, 1, 1〉 〈1, 2, 2〉 {2, 3} 1 + 23−2 + 23−3 = 4
〈1, 0, 0〉 〈2, 1, 1〉 {1} 1 + 23−1 = 5
〈1, 0, 1〉 〈2, 1, 2〉 {1, 3} 1 + 23−1 + 23−3 = 6
〈1, 1, 0〉 〈2, 2, 1〉 {1, 2} 1 + 23−1 + 23−2 = 7
〈1, 1, 1〉 〈2, 2, 2〉 {1, 2, 3} 1 + 23−1 + 23−2 + 23−3 = 8

Tab. 1. Order of the vertices of I3.

Of course, the order of the vertices of R is the same, that is,

ϕ(f(h(c))) = ϕ(f(c)) for every c ∈ Vert(I3).

Assume that we have selected eight 3-copulas {Cj}8
j=1, such that if c ∈ Vert(I3) and

it satisfies that ϕ(f(c)) = j, then Cj has the desired behavior near the vertex c, for
every j ∈ {1, . . . , 8}. Now we proceed with the construction of a 3-copula which satisfies
the desired properties using the 3-box R:
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• Let j = 1, R1 = [0, 1]3 and define D1 = C1 on R1, then D1 is exactly C1 near
c = 0 ∈ Vert(R), 0 ∈ Vert(I3) and ϕ(f(0)) = 1.

• Let j = 2, R2 = [0, 1]×[0, 1]×[1/2, 1], u2 = 〈0, 0, 1/2〉 ∈ Vert(R), then ϕ(f(h(u2)))
= 2 = j. Define D2 = (D1

⊎
u2 C2), then from equation (27), D2 behaves like C1

near 0 and like C2 near 〈0, 0, 1〉 = c, where ϕ(f(c)) = 2 = j.

• Inductively, given Dj−1 for 3 ≤ j ≤ 8, let Rj = [cj
1, 1]× [cj

2, 1]× [cj
3, 1], where uj =

〈cj
1, c

j
2, c

j
3〉 ∈ Vert(R) is such that ϕ(f(h(uj))) = j. Define Dj = (Dj−1

⊎
uj Cj),

then from equation (27), Dj behaves like Ck near ck ∈ Vert(I3) for every k =
{1, 2, . . . , j}.

• Then if we define C := D8, C has the desired properties.

The last example has of course generalizations to larger dimensions, and it is of great
importance because it allows to model tail dependence, see for example Joe [12] and
Nelsen [18]. In fact, in Finance and Risk Theory one of the biggest problems is to model
tail dependence for economic variables using copulas, see for example Embrechts et al.
[9], Cherubini et al. [3], McNeil et al. [16], Malevergne et al. [14], Zhang [21], just to
mention some references. The use of copulas for modeling dependence has been also
used in other areas such as ecology, hidrology, medicine, etc., see for example Dorey
and Joubert [4], Erdely and Dı́az-Vieira [10] or Salvadori et al. [19]. The last example
provides a method for modeling the tail dependence in dimensions larger than or equal
to three.

Of course this methodology also allows us to study the multidimensional versions of
the horizontal and vertical sections of 2-copulas and the construction of 2-copulas with
given horizontal or vertical sections, see for example see Nelsen [18], Durante et al. [5]
or Klement et al. [13]. For n ≥ 3, we can analyze the structure of the n− 1 dimensional
faces of an n-copula, of the form

Ci(x) = {C(x1, . . . , xi−i, ai, xi+1, . . . , xn) | xj ∈ [0, 1] for every j ∈ {1, . . . , n}\{i}},

where ai ∈ [0, 1] is fixed and i ∈ {1, . . . , n}; which are clearly equivalent to the horizontal
and vertical sections of a 2-copula.

Example 3.11. Let us assume that n = 3 and R = [0, 1/2]3 in Example 3.10, and let us
select the first six copulas as C1 = · · · = C6 = Π, C7 = M and C8 is a Gumbel–Hougaard
copula with parameter θ = 2, that is,

C8(x) = exp
{
−

[
(lnx1)2 + (lnx2)2 + (lnx3)2

]1/2
}

.

If we proceed with the order given in Table 1 and the steps of Example 3.10, we get that
D1 = D2 = · · · = D6 = Π by Lemma 3.7, so, we can start at the seventh step.

Let u7 = 〈1/2, 1/2, 0〉 ∈ Vert(R), R7 = [1/2, 1] × [1/2, 1] × [0, 1] and define D7 =
(D6

⊎
u7 C7), after some calculations we have that λ7 = VΠ(R7) = 1/4,

VΠ(R7
x1

) = x1/2− 1/4, VΠ(R7
x2

) = x2/2− 1/4, VΠ(R7
x3

) = x3/4,
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VΠ([u7,x]) = x1x2x3 − (1/2)(x2x3 + x1x3) + x3/4

and

D7(x) =

{
1
4 min{2x1 − 1, 2x2 − 1, x3}+ 1

2 (x2x3 + x1x3)− 1
4x3 if x ∈ R7

x1x2x3 otherwise.

For the last step we have u8 = 〈1/2, 1/2, 1/2〉 ∈ Vert(R), R8 = [1/2, 1]×[1/2, 1]×[1/2, 1].
Define D8 = (D7

⊎
u8 C8), then we get λ8 = VD7(R

8) = 1/8,

VD7(R
8
x1

) = x1/2− 1/4− C7(2x1 − 1, 1, 1/2)/4,

VD7(R
8
x2

) = x2/2− 1/4− C7(1, 2x2 − 1, 1/2)/4,

VD7(R
8
x3

) = x3/4− 1/8,

VD7([u
8,x]) = D7(x1, x2, x3)− C7(2x1 − 1, 2x2 − 1, 1/2)/4 + x3/4− (x2x3 + x1x3)/2

and

D8(x) =

8>>>>>><>>>>>>:

1
8
C8

`
4x1 − 2− 2min{2x1 − 1, 1

2
}, 4x2 − 2− 2min{2x2 − 1, 1

2
}, 2x3 − 1

´
+ 1

4
min{2x1 − 1, 2x2 − 1, 1

2
} − 1

4
x3 + 1

2
(x2x3 + x1x3) if x ∈ R8

1
4

min{2x1 − 1, 2x2 − 1, x3}
+ 1

2
(x2x3 + x1x3)− 1

4
x3 if x ∈ [1/2, 1]× [1/2, 1]× [0, 1/2]

x1x2x3 otherwise.

We can see that this last copula behaves similar to the copula M in the vertex 〈1, 1, 0〉
and similar to a Gumbel–Hougaard copula near the vertex 〈1, 1, 1〉.

4. AN ALTERNATIVE PATCHWORK USING GLUING COPULAS

In Siburg and Stoimenov [20] a new methodology of constructing n-copulas is proposed.
The main idea is to glue two rescaled copulas on adjacent n-boxes of [0, 1]n whose union
is [0, 1]n, two n-boxes R and S are adjacent if their intersection is a common face. Their
main result is the following:

Theorem C. Let n ≥ 2 and let C1, C2 be two n-copulas. Let 0 ≤ θ ≤ 1 and define
Rl

i,θ = [0, 1]× · · · × [0, 1]× [0, θ]× [0, 1]× · · · × [0, 1], where the interval [0, θ] is located
on the ith coordinate, for some i ∈ {1, 2, . . . , n}, similarly define Ru

i,θ = [0, 1] × · · · ×
[0, 1]× [θ, 1]× [0, 1]× · · · × [0, 1]. Define for every x = (x1, . . . , xi, . . . , xn) ∈ [0, 1]n

(
C1 ~

xi=θ
C2

)
(x) =


θC1

(
x1, . . . ,

xi

θ , . . . , xn

)
if x ∈ Rl

i,θ

(1− θ)C2

(
x1, . . . ,

xi−θ
1−θ , . . . , xn

)
+ θC1(x1, . . . , 1, . . . , xn)

if x ∈ Ru
i,θ.

(30)
Then C1 ~xi=θ C2 is an n-copula.

P r o o f . Observe that the first row in equation (30) it is simply C1 rescaled on Rl
i,θ and

the second row is C2 rescaled on Ru
i,θ plus the value of the rescaled C1 in 〈x1, . . . , 1, . . . xn〉.
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It is clear that C1 ~xi=θ C2 satisfies the frontier conditions of an n-copula. Using that
Rl

i,θ and Ru
i,θ are adjacent n-boxes with common face Ri,θ = {x ∈ [0, 1]n |xi = θ}, and

observing that on Ri,θ both rows of equation (30) coincide, it is clear that C1 ~xi=θ C2

is an n-increasing function. Therefore, C1 ~xi=θ C2 is an n-copula. �

Of course, the binary operation ~xi=θ, where i ∈ {1, . . . , n} and θ ∈ [0, 1], is defined
on the family Cn of all n-copulas. Of course, ~xi=θ is not a commutative operation.
In Proposition 3.1 of Siburg and Stoimenov [20], it is shown that if Π is the n-product
copula, i ∈ {1, . . . , n} and θ ∈ [0, 1]. Then

C1 ~
xi=θ

C2 = Π if and only if C1 = C2 = Π. (31)

This result follows directly from equation (30).

Remark 4.1. For dimension n = 2 the constructions proposed in Theorem A in Section
1 and the one given in Theorem C are quite different. Let C = M , J = {1}, R1 =
[0, 1/2, 1] × [0, 1] and C1 = Π in Theorem A. Then λ1 = VM (R1) = 1/2, R1,x =
[0, x] × [0, 1], R1,y = [0, 1/2], [0, y] for every x ∈ [0, 1/2] and for every y ∈ [0, 1]. So,
VM (R1,x) = x and VM (R1,y) = min{1/2, y} and ϕM

1 (x, y) = hM
0 (x)+vM

0 (y)−hM
0 (0) = 0.

Therefore, using equation (6)

C̃(x, y) =

{
1
2Π(2x, 2 min{1/2, y}) if 〈x, y〉 ∈ [0, 1/2]× [0, 1]

min{x, y} if 〈x, y〉 ∈ [1/2, 1]× [0, 1].

=

{
2x ·min{1/2, y} if 〈x, y〉 ∈ [0, 1/2]× [0, 1]

min{x, y} if 〈x, y〉 ∈ [1/2, 1]× [0, 1].

On the other hand, if we let C1 = Π, C2 = M and θ = 1/2 in Theorem C, then using
equation (30), we get that(

Π ~
x=1/2

M

)
(x, y) =

{
1
2Π(2x, y) if 〈x, y〉 ∈ [0, 1/2]× [0, 1]
1
2 min{2x− 1, y}+ 1

2 min{1, y} if 〈x, y〉 ∈ [1/2, 1]× [0, 1].

=

{
xy if 〈x, y〉 ∈ [0, 1/2]× [0, 1]
1
2 min{2x + y − 1, 2y} if 〈x, y〉 ∈ [1/2, 1]× [0, 1].

Of course, C̃ 6=
(
Π ~x=1/2 M

)
.

Example 4.2. We will see that even for n = 3 the patchwork construction given in
Theorem 3.1 is also different from the gluing proposal in Theorem C. In the case where
Π is the base copula they may coincide, but in general they are different. Let us glue Π
with some 3-copula C1 in x1 = 1/2, using equation (30) we get

(
Π ~

x1=1/2
C1

)
(x) =


1/2Π

(
x1
1/2 , x2, x3

)
if x ∈ [0, 1/2]× [0, 1]× [0, 1]

(1− 1/2)C1

(
x1−1/2
1−1/2 , x2, x3

)
+1/2Π(1, x2, x3) if x ∈ [1/2, 1]× [0, 1]× [0, 1]
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=


x1x2x3 if x ∈ [0, 1/2]× [0, 1]× [0, 1]
1
2C1 (2x1 − 1, x2, x3)
+ 1

2x2x3 if x ∈ [1/2, 1]× [0, 1]× [0, 1].
(32)

Now, using Remark 3.3, let us patch the 3-copula C1 in R = [1/2, 1]×[0, 1]×[0, 1] with the
3-copula Π. In this case, u = 〈1/2, 0, 0〉, λ = VΠ(R) = 1/2, VΠ(Rx1) = x1− 1

2 , VΠ(Rx2) =
x2
2 , VΠ(Rx3) = x3

3 , VΠ([0,x]) = Π(x1, x2, x3) and VΠ([u,x]) = VΠ([1/2, x1] × [0, x2] ×
[0, x3]) = (x1−1/2)x2x3, for every x1 ∈ [1/2, 1] and for every x2, x3 ∈ [0, 1]. Then using
equation (24) in Theorem 3.1 we have that

Π
⊎
u

C1

 (x)=


Π (x1, x2, x3) if x ∈ [0, 1/2]× [0, 1]× [0, 1]

1
2C1

(
x1−1/2

1/2 , x2/2
1/2 , x3/2

1/2

)
+ Π(x1, x2, x3)

−VΠ([1/2, x1]× [0, x2]× [0, x3])
if x ∈ R = [1/2, 1]× [0, 1]× [0, 1]

=


x1x2x3 if x ∈ [0, 1/2]× [0, 1]× [0, 1]

1
2C1 (2x1 − 1, x2, x3) + 1

2x2x3 if x ∈ R = [1/2, 1]× [0, 1]× [0, 1].
(33)

Then from equations (32) and (33), clearly, (Π ~x1=1/2 C1) = (Π
⊎

u C1). But if we
reverse the order and we glue some copula C1, say C1 = M+Π

2 , with Π in x = 1/2 we
get from equation (30) that

(
C1 ~

x1=1/2
Π

)
(x)=


1
2C1

(
x1
1/2 , x2, x3

)
if x ∈ [0, 1/2]× [0, 1]× [0, 1]

(1− 1/2)Π
(

x1−1/2
1−1/2 , x2, x3

)
if x ∈ [1/2, 1]× [0, 1]× [0, 1]

+1/2C1(1, x2, x3)

=

{ 1
4 min{2x1, x2, x3}+ 1

2x1x2x3 if x ∈ [0, 1/2]× [0, 1]× [0, 1]

x1x2x3 − x2x3
4 + min{x2,x3}

4 if x ∈ [1/2, 1]× [0, 1]× [0, 1],
(34)

and using Theorem 3.1 and Remark 3.3 again, if we patch the same copula C1 in
R = [1/2, 1]×[0, 1]×[0, 1] with Π we have that u = 〈1/2, 0, 0〉, λ = VC1(R) = C1(1, 1, 1)−
C1(1/2, 1, 1) = 1/2, VC1(Rx1) = C1(x1, 1, 1) − C1(1/2, 1, 1) = x1 − 1/2, VC1(Rx2) =
C1(1, x2, 1)−C1(1/2, x2, 1) = (3x2−min{1, 2x2})/4, VC1(Rx3) = C1(1, 1, x3)−C1(1/2, 1, x3)
= (3x3−min{1, 2x3})/4, VC1([0,x]\[u,x]) = C1(x1, x2, x3)−(C1(x1, x2, x3)−C1(1/2, x2, x3))
= C1(1/2, x2, x3), for every x1 ∈ [1/2, 1] and for every x2, x3 ∈ [0, 1]. So, by equation
(24) in Theorem 3.1 we have that

C1

⊎
u

Π

 (x)=


C1 (x1, x2, x3) if x ∈ [0, 1/2]× [0, 1]× [0, 1]

1
2Π

(
x1−1/2

1/2 , (3x2−min{1,2x2})/4
1/2 , (3x3−min{1,2x3})/4

1/2

)
+C1(1/2, x2x3) elsewhere
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=


1
2 min{x1, x2, x3}+ 1

2x1x2x3 if x ∈ [0, 1/2]× [0, 1]× [0, 1]

1
4

(
x1 − 1

2

)
(3x2 −min{1, 2x2}) (3x3 −min{1, 2x3})

+ 1
2 min{1/2, x2, x3}+ 1

4x2x3 if x ∈ [1/2, 1]× [0, 1]× [0, 1]
(35)

If x = 〈1/4, 1/4, 1/4〉 then from equations (34) and (35), (C1 ~x1=1/2 Π)(x) = 9/128,
but (C1

⊎
u Π)(x) = 9/64. So, gluing and patching copulas do not always yield the

same result. This example also shows that the operators gluing and patching are not
commutative.

4.1. Proposed Methodology Using Gluing Copulas

Let R = Πn
i=1[ui, vi] ⊂ [0, 1]n be a non trivial n-box, we want to define an n-copula C,

such that on R it behaves as a rescaled version of another n-copula C1. We propose to
take as a background copula Π(x1, . . . , xn) = x1x2 · · ·xn the n-product copula and to
give a rescaled version of C1 on R. In order to do so, we can use the gluing method as
follows:

• Since R is non trivial then for every i ∈ {1, . . . , n}, 0 ≤ ui < vi ≤ 1, then there
exists ai ∈ [0, 1) such that aivi = ui.

• Define T1 = Π~x1=a1 C1, then T1 is an n-copula such that for x1 ∈ [0, a1] behaves
like Π, and for x1 ∈ [a1, 1] behaves like a rescaled version of C1.

• Inductively, let Tk = Π~xk=ak
Tk−1 for every k ∈ {2, . . . , n}, then Tk is an n-

copula such that for xk ∈ [0, ak] behaves like Π.

• Define inductively Tn+j = Tn+j−1 ~xj=vj Π for every j ∈ {1, 2, . . . , n}.

• Let C = T2n, then C has the desired properties.

Example 4.3. We will see that this proposed methodology does not yield to the ordinal
sum. In order to do so we will consider the copula Π. Let us define

T1(x1, x2) =
(

M ~
x1=1/2

Π
)

(x1, x2) =
{

min
{
x1,

1
2x2

}
if 〈x1, x2〉 ∈ [0, 1/2]× [0, 1]

x1x2 if 〈x1, x2〉 ∈ [1/2, 1]× [0, 1].

In the next step we glue M with the copula T1 at x2 = 1/2, that is, we define

T2(x1, x2) =

=
(

M ~
x2=1/2

T1

)
(x1, x2) =

 min
{

1
2x1, x2

}
if 〈x1, x2〉 ∈ [0, 1]× [0, 1/2]

min
{
x1,

2x1+2x2−1
4

}
if 〈x1, x2〉 ∈ [0, 1/2]× [1/2, 1]

x1x2 if 〈x1, x2〉 ∈ [1/2, 1]× [1/2, 1].

The resulting copula T2 behaves like Π on [1/2, 1]2, on [0, 1] × [0, 1/2] has support the
line joining 〈0, 0〉 and 〈1, 1/2〉 with mass 1/2 and on [0, 1/2, 1]× [1/2, 1] has support the
line joining 〈0, 1/2〉 and 〈1/2, 1〉 with mass 1/4, see Figure 2 below.
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On the other hand the ordinal sum of Π on [1/2, 1]2 is given by

C(x1, x2) =
{

2x1x2 − x1 − x2 + 1 if 〈x1, x2〉 ∈ [1, 2, 1]2

min{x1, x2} otherwise.

Of course, the gluing copula T2 is different from C the ordinal sum.

10 1/2 x1

1/2

1
x2

6

-����
�����

�
�

�
��

Π

.

.. . . . . . . . . . . . . . . . . . . . . . ...
..
..
..
..
..

Fig. 2. Support of the gluing copula T2.

5. FINAL REMARKS

In this paper we give a new multivariate patchwork construction of n-copulas using
a base n-copula C and an n-box R ⊂ [0, 1]n and a function D : R → [0, 1] which is
easily proved to be n-increasing on R, then we try to construct a modular function E
on R such that C = D + E on the frontier of R, δ(R). Of course, this procedure can be
carried out in many different ways, and in this paper we explore just a few possibilities.
However, other proposals may lead to different solutions that the one given in this paper.

The construction described in Section three for arbitrary n-boxes is sequential and
it is more complicated than the one given in Durante et al. in [7]. The reason for
this complication is related to the dimension n, and this problem is very common with
multidimensional generalizations.

Of course we can construct new n-copulas composing our methodology with the gluing
copulas of Siburg and Stoimenov [20] or its generalization given in Mesiar et al. [15],
because as we noticed in our examples both constructions are not necessarily equivalent.

The study of tail behavior and the multivariate generalization of horizontal and ver-
tical sections of dimension two can also be studied using our methodology, but it goes
beyond the goal of this article.

(Received February 15, 2012)
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copulas. Kybernetika 44 (2008), 6, 807–816.

[16] A. J. McNeil, R. Frey, and P. Embrechts: Quantitative Risk Management. Princeton
University Press, Princeton 2005.

[17] R. Mesiar and C. Sempi: Ordinal sums and idempotent of copulas. Aequationes Math.
79 (2010), 1-2, 39–52.

[18] R. B. Nelsen: An Introduction to Copulas. Second edition. Springer, New York 2006.

[19] G. Salvadori, C. De Michele, N.T. Kottegoda, and R. Rosso: Extremes in Nature. An
Approach Using Copulas. Series: Water Science and Technology Library 56, Springer,
Amsterdam 2007.

[20] K. F. Siburg and P. A. Stoimenov: Gluing copulas. Comm. Statist. Theory Methods 37
(2008), 3124–3134.

[21] M. H. Zhang: Modelling total tail dependence along diagonals. Insur. Math. Econ. 42
(2008), 73–80.



Multivariate copulas in n-boxes 95
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Maŕıa M. Hernández-Cedillo, Universidad Nacional Autónoma de México, Instituto de Investi-
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