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OSCILLATION OF THIRD-ORDER HALF-LINEAR NEUTRAL

DIFFERENCE EQUATIONS
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Abstract. Some new criteria for the oscillation of third order nonlinear neutral difference
equations of the form

∆(an(∆
2(xn + bnxn−δ))

α) + qnx
α
n+1−τ = 0

and
∆(an(∆

2(xn − bnxn−δ))
α) + qnx

α
n+1−τ = 0

are established. Some examples are presented to illustrate the main results.
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1. Introduction

Consider the third order neutral difference equations

(1.1) ∆(an(∆2(xn + bnxn−δ))
α) + qnxα

n+1−τ = 0

and

(1.2) ∆(an(∆2(xn − bnxn−δ))
α) + qnxα

n+1−τ = 0

where n ∈ N = {n0, n0 + 1, n0 + 2, . . .}, n0 is a nonnegative integer subject to

(i) α is a ratio of odd positive integers;

(ii) {an}, {bn}, {qn} are positive sequences and an satisfies

(1.3)
∞
∑

n=n0

1

a
1/α
n

= ∞;
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(iii) 0 6 bn 6 b < 1, δ and τ are positive integers.

Let θ = max{δ, τ}. By a solution of equation (1.1) ((1.2)) we mean a real sequence

{xn} defined for all n > n0−θ and satisfying (1.1) ((1.2)) for n > n0. A nontrivial so-

lution {xn} is said to be nonoscillatory if it is either eventually positive or eventually

negative, and it is oscillatory otherwise.

Recently, there has been increasing interest in studying the oscillatory and

nonoscillatory behavior of solutions of neutral type difference equations, see for

example [1], [2], [3] and the references cited therein. For example, the first order

linear difference equations of neutral type

∆(xn + pnxn−k) + qnxn−l = 0

and its special cases have been investigated in [7], [10], [11], [12] and the nonlinear

case has been considered in [1], [3]. Compared to first order neutral difference equa-

tions, the study of higher order equations, especially third order neutral difference

equations, has received considerably less attention, even though such equations arise

in population dynamics [4], see for example [6], [8], [9], [13], [14], [15], [16], [17], [18],

[19] and the references contained therein.

The purpose of this paper is to obtain some new sufficient conditions for the

oscillation of all solutions of equations (1.1) and (1.2). The results obtained in this

paper have been motivated by that of in [5]. In Section 2, we present sufficient

conditions which ensure that all solutions of equation (1.1) are either oscillatory or

converge to zero and we present similar results for (1.2) in Section 3. Examples are

provided to illustrate the main results.

2. Oscillation of equation (1.1)

First we establish some new oscillatory criteria for equation (1.1). We begin with

some useful lemmas, which we intend to use later. For each solution {xn} of equation

(1.1), we define the corresponding sequence {zn} by

(2.1) zn = xn + bnxn−δ.

Lemma 2.1. Let {xn} be a positive solution of equation (1.1). Then there are

only the following two cases for zn defined in (2.1):

(i) zn > 0, ∆zn > 0, ∆2zn > 0;

(ii) zn > 0, ∆zn < 0, ∆2zn > 0

for n > n1 ∈ N, where n1 is sufficiently large.
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P r o o f. Assume that {xn} is a positive solution of equation (1.1) for all n > n0.

We see that zn > xn > 0, and

(2.2) ∆(an(∆2zn)α) = −qnxα
n+1−τ < 0.

Thus an(∆2zn)α is nonincreasing and of one sign. Therefore, ∆2zn is also of one

sign and so we have two possibilities: ∆2zn < 0 or ∆2zn > 0 for n > n1 by (2.2).

If ∆2zn < 0, then there is a constant M > 0 such that an(∆2zn)α 6 −M < 0.

Summing from n1 to n − 1, we obtain ∆zn 6 ∆zn1
− M1/α

n−1
∑

s=n1

1/a
1/α
s . Letting

n → ∞ and using (1.3), we see that ∆zn → −∞. Thus, ∆zn < 0 eventually. But

∆2zn < 0 and ∆zn < 0 eventually imply zn < 0 for all n > n1; a contradiction. This

proves that ∆2zn > 0 and we have only two cases (i) and (ii) for zn. The proof is

now complete. �

Lemma 2.2. Let {xn} be a positive solution of equation (1.1), and let the corre-

sponding zn satisfy (ii). If

(2.3)

∞
∑

n=n0

∞
∑

s=n

[

1

as

∞
∑

t=s

qt

]1/α

= ∞,

then lim
n→∞

xn = lim
n→∞

zn = 0.

P r o o f. Let {xn} be a positive solution of (1.1). Since zn > 0 and ∆zn < 0,

there is a finite limit, lim
n→∞

zn = l. We shall prove that l = 0. Assume that l > 0.

Then for any ε > 0 we have l + ε > zn > l eventually. Choose 0 < ε < l(1 − b)/b.

It is easy to verify that xn = zn − bnxn−δ > l − bzn−δ > l − b(l + ε) > kzn, where

k = (l − b(l + ε))/(l + ε) > 0. From the last inequality and (2.2) we have

∆(an(∆2zn)α) 6 −qnkαzα
n+1−τ .

Summing the last inquality from n to ∞, we obtain

an(∆2zn)α > kα
∞
∑

s=n

qsz
α
s+1−τ .

Using zα
n+1−τ > lα, we get

∆2zn > kl

[

1

an

∞
∑

s=n

qs

]1/α

.
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Summing again from n to ∞, we have

−∆zn > kl

∞
∑

s=n

[

1

as

∞
∑

t=s

qt

]1/α

.

Summing the last inquality from n1 to ∞, we obtain

zn1
> kl

∞
∑

n=n1

∞
∑

s=n

[

1

as

∞
∑

t=s

qt

]1/α

.

This contradicts (2.3). Thus l = 0. Moreover, the inequality 0 < xn 6 zn implies

that lim
n→∞

xn = 0. The proof is now complete. �

Lemma 2.3. Assume that un > 0, ∆un > 0, ∆2un 6 0 for all n > n0. Then for

each l ∈ (0, 1) there exists an integer N > n0 such that un−τ/(n − τ) > lun/n for

n > N.

P r o o f. From the monotonicity property of {∆un}, we have

un − un−τ =

n−1
∑

s=n−τ

∆us 6 (∆un−τ )τ

or

(2.4)
un

un−τ
6 1 + τ

∆un−τ

un−τ
.

Also,

un−τ > un−τ − un0
> ∆un−τ (n − τ − n0).

So, for each l ∈ (0, 1), there is an integer N > n0 such that

(2.5)
un−τ

∆un−τ
> l(n − τ), n > N.

Combining (2.4) with (2.5), we obtain

un

un−τ
6 1 +

τ

l(n − τ)
6

n

l(n − τ)

and the proof is complete. �

Lemma 2.4. Assume that zn > 0, ∆zn > 0, ∆2zn > 0, ∆3zn 6 0 for all n > N.

Then zn+1/∆zn > (n − N)/2 for n > N.
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P r o o f. From the monotonicity property of {∆2zn}, we have

∆zn = ∆zN +

n−1
∑

s=N

∆2zs > (n − N)∆2zn.

Summing from N to n − 1, we obtain

zn+1 > zn > zN +

n−1
∑

s=N

(s − N)∆2zs = zN + (n − N)∆zn − zn+1 + zN .

Hence, zn+1 > 1
2 (n − N)∆zn, n > N. This completes the proof. �

Lemma 2.5. Assume that ∆zn > 0, ∆2zn > 0, ∆3zn 6 0 for all n > N. Then

(n − N)∆2zn/∆zn 6 1 for n > N.

P r o o f. The result follows from the inequality

∆zn >

n−1
∑

s=N

∆2zs > (n − N)∆2zn.

Now, we present the oscillation results. For simplicity we introduce the following

notation:

(2.6) P = lim inf
n→∞

nα

an

∞
∑

s=n

Pl(s), Q = lim sup
n→∞

1

n

n−1
∑

s=n0

sα+1

as
Pl(s)

where Pl(s) = lα(1 − b)αqs

(

(s − τ)/s
)α(

(s − τ − N)/2
)α
with l ∈ (0, 1) arbitrarily

chosen and N large enough. Moreover, for zn satisfying the case (i), we define

(2.7) wn = an

(∆2zn

∆zn

)α

and

(2.8) r = lim inf
n→∞

nαwn+1

an+1
and R = lim sup

n→∞

nαwn

an
.

�

Lemma 2.6. Assume that {an} is nondecreasing. Let {xn} be a positive solution

of equation (1.1).

(I) Let P < ∞ and Q < ∞. Suppose that the corresponding zn satisfies case (i) of

Lemma 2.1. Then

(2.9) P 6 r − r1+1/α and P + Q 6 1.

(II) If P = ∞ or Q = ∞, then {zn} does not belong under the case (i) of Lemma 2.1.
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P r o o f. Part (I): Assume that {xn} is a positive solution of equation (1.1) and

the corresponding zn satisfies (i). First note that

xn = zn − bnxn−δ > zn − bnzn−δ > (1 − bn)zn > (1 − b)zn.

Using the last inequality in equation (1.1), we obtain

(2.10) ∆(an(∆2zn)α) 6 −(1 − b)αqnzα
n+1−τ 6 0.

The last inequality together with ∆an > 0 gives ∆3zn 6 0. So, there exists an integer

N > n0 such that zn satisfies zn−τ > 0, ∆zn > 0, ∆2zn > 0, ∆3zn 6 0 for n > N.

From the definition of wn and (2.10), we see that wn > 0 and satisfies

(2.11) ∆wn =
∆(an(∆2zn)α)

(∆zn)α
−

an+1(∆
2zn+1)

α∆((∆zn)α)

(∆zn)α(∆zn+1)α

6 −qn(1 − b)α
(zn+1−τ

∆zn

)α

−
α

a
1/α
n+1

w
1+1/α
n+1 .

From Lemma 2.3 with un = ∆zn, we have for l the same as in Pl(s)

1

∆zn
>

l(n − τ)

n

1

∆zn−τ
, n > N,

which with (2.11) gives

∆wn 6 −lαqn

(n − τ

n

)α(zn+1−τ

∆zn−τ

)α

(1 − b)α −
α

a
1/α
n+1

w
1+1/α
n+1 .

Using the fact from Lemma 2.4 that zn+1 > 1
2 (n − N)∆zn, we have

(2.12) ∆wn + Pl(n) +
α

a
1/α
n+1

w
(α+1)/α
n+1 6 0.

Since Pl(n) > 0 and wn > 0 for n > N, we have from (2.12) that ∆wn 6 0 and

−
∆wn

αw
(α+1)/α
n+1

>
1

a
1/α
n+1

for n > N.

Summing the last inequality from N to n−1 and using the fact that wn is decreasing

we obtain
−wn + wN

αw
(α+1)/α
n

>

n−1
∑

s=N

1

a
1/α
s+1
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or

(2.13) wn 6 wN

(

α

n−1
∑

s=N

a
−1/α
s+1

)

−α/(α+1)

,

which in view of (1.3) implies that lim
n→∞

wn = 0. On the other hand, from the

definition of wn, and Lemma 2.5, we see that

(2.14) 0 6 r 6 R 6 1.

Now, we prove that the first inequality in (2.9) holds. Let ε > 0. Then due to

the definition of P and r, we can choose an integer n2 > N sufficiently large that

nαa−1
n

∞
∑

s=n
Pl(s) > P − ε and nαwn+1/an+1 > r − ε for all n > n2.

Summing (2.12) from n to ∞ and using lim
n→∞

wn = 0, we have

(2.15) wn >

∞
∑

s=n

Pl(s) + α

∞
∑

s=n

w
1+1/α
s+1

a
1/α
s+1

, n > n2.

Using the fact that ∆an > 0, it follows from (2.15) that

nαwn

an
>

nα

an

∞
∑

s=n

Pl(s) +
αnα

an

∞
∑

s=n

sα+1as+1w
1+1/α
s+1

sα+1a
1+1/α
s+1

> (P − ε) + nα (r − ε)1+1/α

an

∞
∑

s=n

αas+1

sα+1

> (P − ε) + nα (r − ε)1+1/α

an

∞
∑

s=n

αas+1

sα+1

> (P − ε) + nα(r − ε)1+1/α
∞
∑

s=n

α

sα+1

and so

(2.16)
nαwn

an
> (P − ε) + (r − ε)1+1/αnα

∞
∑

s=n

α

sα+1
.

From (2.16) and
∞
∑

s=n
α/sα+1 > α

∞
∫

n

ds/sα+1, we have

nαwn

an
> (P − ε) + (r − ε)1+1/α.
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Taking lim inf on both sides as n → ∞, we obtain that

r > (P − ε) + (r − ε)1+1/α.

Since ε > 0 is arbitrary, we obtain the desired result:

(2.17) P 6 r − r1+1/α.

To complete the proof of part (I) it remains to prove the second inequality in (2.9).

Multiplying the inequality (2.12) by nα+1/an and summing from n2 to n − 1, we

obtain

(2.18)
n−1
∑

s=n2

sα+1∆ws

as
6 −

n−1
∑

s=n2

sα+1

as
Pl(s) − α

n−1
∑

s=n2

(sαws+1

as+1

)(α+1)/α

.

By summation by parts, we obtain

nα+1wn

an
6

nα+1
2 wn2

an2

−
n−1
∑

s=n2

sα+1Pl(s)

as

− α

n−1
∑

s=n2

(sαws+1

as+1

)(α+1)/α

+

n−1
∑

s=n2

ws+1∆
(sα+1

as

)

.

Since ∆an > 0, we have

∆
(sα+1

as

)

=
∆(sα+1)

as+1
−

sα+1∆as

asas+1
6

(α + 1)(s + 1)α

as+1
.

Hence,

nα+1wn

an
6

nα+1
2 wn2

an2

−
n−1
∑

s=n2

sα+1Pl(s)

as

+

n−1
∑

s=n2

[

(α + 1)(s + 1)α ws+1

as+1
− α

(sαws+1

as+1

)(α+1)/α]

.

Using the inequality

Bu − Au1+1/α 6
αα

(α + 1)α+1

Bα+1

Aα

with u = sαws+1/as+1 > 0, A = α and B = (α + 1)((s + 1)/s)α, we obtain

nα+1 wn

an
6

nα+1
2 wn2

an2

−
n−1
∑

s=n2

sα+1Pl(s)

as
+

n−1
∑

s=n2

(s + 1

s

)α(α+1)

.
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It follows that

(2.19) nα wn

an
6

1

n

nα+1
2 wn2

an2

−
1

n

n−1
∑

s=n2

sα+1Pl(s)

as
+

1

n

n−1
∑

s=n2

(s + 1

s

)α(α+1)

.

Taking lim sup on both sides as n → ∞, we obtain

R 6 −Q + 1.

Combining this with the inequalities in (2.17) and (2.14) we have

P 6 r − r1+ 1

α 6 r 6 R 6 −Q + 1,

which gives the desired second inequality in (2.9). The proof of part (I) is complete.

Part (II): Assume that {xn} is a positive solution of equation (1.1). We shall show

that {zn} does not belong to case (i) of Lemma 2.1. Assume the contrary. First

we assume P = ∞. Then exactly as in the proof of the first part, we obtain (2.15).

Then
nαwn

an
>

nα

an

∞
∑

s=n

Pl(s).

Taking the lim inf on both sides as n → ∞, we obtain in view of (2.14) that

1 > r > ∞.

This is a contradiction. Next, we assume that Q = ∞. Then taking lim inf and

lim sup on the left and right hand side of (2.19), respectively, we obtain

0 6 R 6 −∞.

This contradiction completes the proof.

Now we are ready to present the following oscillation criterion for equation (1.1).

�

Theorem 2.7. Assume that condition (2.3) holds and {an} is nondecreasing. Let

{xn} be a solution of (1.1). If

(2.20) P = lim inf
n→∞

nα

an

∞
∑

s=n

Pl(s) >
αα

(α + 1)α+1
,

then {xn} is oscillatory or xn → 0 as n → ∞.
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P r o o f. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss

of generality we may assume that {xn} is a positive solution (since the proof for

the opposite case is similar) of equation (1.1). If P = ∞, then by Lemma 2.6, zn

does not belong to case (i) of Lemma 2.1. That is, zn has to satisfy (ii), and from

Lemma 2.2, we see that lim
n→∞

xn = 0.

Next, we assume that P < ∞.We shall discuss two possibilities. If for zn case (ii)

holds, then exactly as above we are led, by Lemma 2.2, to lim
n→∞

xn = 0.

Now, we assume that for zn case (i) holds. Let wn and r be defined by (2.7) and

(2.8) respectively. Then from Lemma 2.6 we see that r satisfies the inequality

P 6 r − r1+1/α.

Using the inequality Bu − Au1+1/α 6 (αα/(α + 1)α+1)Bα+1/Aα with A = B = 1

and u = r, we obtain that

P 6
αα

(α + 1)α+1
,

which contradicts (2.20). This completes the proof. �

Corollary 2.8. Assume that condition (2.3) holds and {an} is nondecreasing.

Let {xn} be a solution of equation (1.1). If

(2.21) lim
n→∞

inf
nα

an

∞
∑

s=n

qs
(s − τ)2α

sα
>

(2α)α

(α + 1)α+1(1 − b)α
,

then {xn} is oscillatory or xn → 0 as n → ∞.

P r o o f. We shall show that condition (2.21) implies condition (2.20). First note

that for any l ∈ (0, 1) there exists an integer n1 such that n − τ − N > l(n − τ),

n > n1. Therefore,

(2.22) Pl(n) >
l2α(1 − b)α

2α

(n − τ)2α

nα
qn, n > n1.

On the other hand, (2.21) implies that for some l ∈ (0, 1)

(2.23) lim
n→∞

inf
nα

an

∞
∑

s=n

qs
(s − τ)2α

sα
>

1

l2α

(2α)α

(α + 1)α+1(1 − b)α
.

Combining (2.22) with (2.23), we obtain (2.20). �
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Theorem 2.9. Assume that condition (2.3) holds and {an} is non decreasing.

Let {xn} be a solution of equation (1.1). If

(2.24) P + Q > 1,

then {xn} is oscillatory or satisfies lim
n→∞

xn = 0.

P r o o f. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss

of generality we may assume that {xn} is a positive solution of equation (1.1). If

P = ∞ or Q = ∞, then by Lemma 2.6, zn does not belong to case (i) of Lemma 2.1.

That is, zn has to satisfy case (ii). From Lemma 2.2, we see that lim
n→∞

xn = 0.

Next, we assume that P < ∞ and Q < ∞.We shall discuss two possibilities. If for

zn case (ii) holds, then exactly as above we are led, by Lemma 2.2, to lim
n→∞

xn = 0.

Now we assume that for zn case (i) holds. Let wn and r be defined by (2.7) and

(2.8), respectively. Then from Lemma 2.6 we see that P and Q satisfy the inequality

P + Q 6 1, which contradicts (2.24). This completes the proof. �

As a consequence of Theorem 2.9, we have the following results.

Corollary 2.10. Assume that condition (2.3) holds and {an} is nondecreasing.

Let {xn} be a solution of equation (1.1). If

(2.25) Q = lim
n→∞

sup
1

n

n−1
∑

s=n0

sα+1

as
Pl(s) > 1,

then {xn} is oscillatory or satisfies lim
n→∞

xn = 0.

Corollary 2.11. Assume that condition (2.3) holds and {an} is nondecreasing.

Let {xn} be a solution of equation (1.1). If

lim
n→∞

sup
1

n

∞
∑

s=n

s(s − τ)2α

as
qs >

2α

(1 − b)α
,

then {xn} is oscillatory or satisfies lim
n→∞

xn = 0.

The proof is similar to that of Corollary 2.8 and hence the details are omitted.

We conclude this section with two examples.

E x am p l e 2.1. Consider the third order nonlinear difference equation

(2.26) ∆
(

n
(

∆2
(

xn +
1

3
xn−1

))3)

+
λ

(n − 2)6
x3

n−1 = 0, λ > 0.

It is easy to see that condition (2.3) holds. Hence, by Corollary 2.8, we see that

every solution of equation (2.26) is either oscillatory or converges to zero as n → ∞

provided that λ > 36/27.
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E x am p l e 2.2. Consider the third order difference equation

(2.27)

∆
(

n
(

∆2
(

xn +
(n − 1)

2n
xn−1

))3)

+
27(8n2 + 27n + 27)(n − 1)3

(n + 3)3(n + 2)3(n + 1)3n2
x3

n−1 = 0, n > 1.

By Corollary 2.8, every solution of equation (2.27) is either oscillatory or converges

to zero as n → ∞. In fact, {xn} = {1/n} is one such solution of equation (2.27).

3. Oscillation of equation (1.2)

In this section, we present oscillatory criteria for equation (1.2). We define

(3.1) zn = xn − bnxn−δ.

Lemma 3.1. Let {xn} be a positive solution of equation (1.2). Then the corre-

sponding function zn defined in (3.1) satisfies

(iii) zn > 0, ∆zn > 0, ∆2zn > 0;

(iv) zn > 0, ∆zn < 0, ∆2zn > 0;

(v) zn < 0, ∆zn < 0, ∆2zn > 0;

(vi) zn < 0, ∆zn < 0, ∆2zn < 0 for n > n1, where n1 is sufficiently large.

P r o o f. Let {xn} be a positive solution of equation (1.2). Then

∆(an(∆2zn)α) = −qnxα
n+1−τ < 0.

Thus an(∆2zn)α is decreasing and of one sign, which implies that ∆2zn is of one

sign. We have two possibilities for ∆2zn;

∆2zn > 0 or ∆2zn < 0 for all n > n1.

The condition ∆2zn < 0 implies that there exists a constant M > 0 such that

an(∆2zn)α 6 −M < 0 or ∆2zn 6 −M1/α/a
1/α
n .

Summing the last inequality from n1 to n − 1, we obtain

∆zn 6 ∆zn1
− M1/α

n−1
∑

s=n1

1

a
1/α
s

.

Letting n → ∞ in the above inequality and using (1.3) we get ∆zn < 0. But ∆zn < 0

and ∆2zn < 0 eventually, imply zn < 0 eventually. Thus for ∆2zn < 0 case (vi) may

occur.

On the other hand, if ∆2zn > 0, then ∆zn is of one sign. If ∆zn > 0 for n > n1,

then zn > 0. So for ∆2zn > 0 only the cases (iii), (iv) and (v) may occur. �
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Lemma 3.2. Let {xn} be a positive solution of equation (1.2) and let the corre-

sponding zn satisfy (iv). If (2.3) holds, then lim
n→∞

xn = lim
n→∞

zn = 0.

P r o o f. Let {xn} be a positive solution of equation (1.2). It is clear that there

exists a finite limit

lim
n→∞

zn = l.

We claim that l = 0. Assume that l > 0. It follows from (3.1) that zn < xn.

Combining this with equation (1.2), we are led to

∆(an(∆2zn)α) 6 −qnzα
n+1−τ 6 −lαqn.

Summing the last inequality from n to ∞ and then from n1 to ∞, we obtain

zn1
> l

∞
∑

n=n1

∞
∑

s=n

( 1

as

∞
∑

t=s

qt

)1/α

.

This contradicts (2.3). Therefore, l = 0. Moreover, the boundedness of xn yields

lim sup
n→∞

xn = d, 0 6 d < ∞. Hence there exists a sequence {nj} such that lim
j→∞

nj =

∞, lim
j→∞

xnj
= d.

If d > 0, choosing ε = 1
2d(1 − b)/b we see that xnj−δ < d + ε eventually.

Further,

0 = lim
j→∞

znj
> lim

j→∞

(xnj
− b(d + ε)) =

d

2
(1 − b) > 0.

Thus d = 0, and therefore lim
n→∞

xn = 0. The proof is now complete. �

For simplicity, we introduce the following notation: P l(s) = lαqs((s − τ)/s)α ×

((s − τ − N)/2)α with l ∈ (0, 1) arbitrarily chosen and N large enough,

(3.2) P = lim inf
n→∞

nα

an

∞
∑

s=n

P l(s) and Q = lim sup
n→∞

1

n

n−1
∑

s=n0

sα+1

as
P l(s)

where wn and r, R are defined in (2.6) and (2.7) respectively.

Lemma 3.3. Assume that {an} is nondecreasing. Let {xn} be a positive solution

of (1.2).

(I) Let P < ∞ and Q < ∞. Suppose that the corresponding {zn} satisfies (iii).

Then

(3.3) P 6 r − r1+1/α and P + Q 6 1.

(II) If P = ∞ or Q = ∞, then zn does not satisfy (iii).
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P r o o f. Part (I): Let {xn} be a positive solution of equation (1.2) and let zn

satisfy (iii). Since 0 < zn < xn, equation (1.2) can be written in the form

∆(an(∆2zn)α) + qnzα
n+1−τ < 0.

Thus

∆(an(∆2zn)α) < 0.

Since ∆an > 0, we have ∆3zn 6 0. So, there exists an integer N > n0 such that zn

satisfies zn−τ > 0, ∆zn > 0, ∆2zn > 0, ∆3zn 6 0 for n > N.

From the definition of wn and equation (1.2) we see that wn > 0 and satisfies

(3.4) ∆wn 6 −qn

(zn+1−τ

∆zn

)α

−
α

a
1/α
n+1

w
1+1/α
n+1 .

From Lemma 2.3 with un = ∆zn, we have for all l, the same as in P l(n)

1

∆zn
> l

(n − τ

n

) 1

∆zn−τ
, n > N,

which with (3.4) gives

∆wn 6 −lαqn

(n − τ

n

)α(zn+1−τ

∆zn−τ

)α

−
α

a
1/α
n+1

w
1+1/α
n+1 .

Using the fact from Lemma 2.4 that zn+1 > 1
2 (n − N)∆zn, we have

(3.5) ∆wn + P l(n) +
α

a
1/α
n+1

w
1+1/α
n+1 6 0.

Now, we proceed similarly to the proof of Part (I) of Lemma 2.6 to verify that (3.3)

holds.

Part (II): Let {xn} be a positive solution of equation (1.2) and let the correspond-

ing zn satisfy (iii). First assume that P = ∞. Summing (3.5) from n to ∞, one

obtains

(3.6) wn >

∞
∑

s=n

P l(s) + α

∞
∑

s=n

w
1+1/α
s+1

a
1/α
s+1

for n > n2.

Therefore
nα

an
wn >

nα

an

∞
∑

s=n

P l(s).

Taking lim inf on both sides as n → ∞, we obtain in view of (2.14) that

1 > r > ∞,

which is a contradiction. Now assume that Q = ∞. To obtain the desired contradic-

tion one can proceed exactly as in the proof of Lemma 2.6 �
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Theorem 3.4. Assume that {an} is nondecreasing and condition (2.3) holds. Let

{xn} be a solution of equation (1.2). If

(3.7) P = lim inf
n→∞

nα

an

∞
∑

s=n

P l(s) >
αα

(α + 1)α+1
,

then {xn} is oscillatory or xn → 0 as n → ∞.

P r o o f. Let {xn} be a positive solution of equation (1.2). Then

(3.8) ∆(an(∆2zn)α) + qnxα
n+1−τ = 0.

We claim that {xn} is bounded. If not, then there exists a sequence {nj} such that

lim
j→∞

nj = ∞ and lim
j→∞

xnj
= ∞, and

xnj
= max{xs : n0 6 s 6 nj}.

Since n − δ → ∞ as n → ∞, we can choose nj − δ > n0. As n − δ 6 n, we have

xnj
− δ 6 max{xs : n0 6 s 6 nj − δ}.

Therefore for all large j

znj
= xnj

− bnj
xnj−δ > (1 − b)xnj

.

Thus, znj
→ ∞ as j → ∞. So {zn} is positive and unbounded. It follows from

Lemma 3.1 that case (iii) has to occur. Lemma 3.3 (I) yields

P 6 r − r1+1/α.

Using the inequality

Bu − Au1+1/α 6
αα

(α + 1)α+1

Bα+1

Aα

with A = B = 1 and u = r we obtain

Pα 6
αα

(α + 1)α+1
,

which contradicts (3.7). So we can conclude that both {xn} and {zn} are bounded.

Lemma 3.1 now implies that for zn, either (iv) or (v) holds.
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If case (iv) holds, then Lemma 3.2 ensures that lim
n→∞

xn = 0. On the other hand,

if the case (v) holds, then there exists a finite limit lim
n→∞

zn = −d < 0. We know

that 0 < xn is bounded, so

lim sup
n→∞

xn = c, 0 6 c < ∞.

We claim that c = 0. If not, then there exists a sequence {nj} such that lim
j→∞

nj =

∞ and lim
j→∞

xnj
= c. It is easy to see that for ε = 1

2c(1 − b)/b > 0, we have xnj−δ <

c + ε. Moreover,

0 > −d = lim
j→∞

znj
> lim

j→∞

(xnj
− b(c + ε)) =

c

2
(1 − b) > 0,

which is a contradiction. Thus c = 0 and lim
n→∞

xn = 0. This completes the proof. �

Corollary 3.5. Let {an} be nondecreasing and let condition (2.3) hold. Let {xn}

be a solution of equation (1.2). If

(3.9) lim inf
n→∞

nα

an

∞
∑

s=n

qs
(s − τ)2α

sα
>

(2α)α

(α + 1)α+1
,

then {xn} is oscillatory or satisfies lim
n→∞

xn = 0.

P r o o f. It is easy to verify that (3.9) implies (3.7). �

The proof of the next result is similar to that of Theorem 2.9, so it is omitted.

Theorem 3.6. Assume that {an} is nondecreasing and condition (2.3) holds. Let

{xn} be a solution of equation (1.2). If

P + Q > 1,

then {xn} is oscillatory or satisfies lim
n→∞

xn = 0.

Corollary 3.7. Assume {an} is nondecreasing and condition (2.3) holds. Let

{xn} be a solution of equation (1.2). If

Q = lim sup
n→∞

1

n

n−1
∑

s=n0

sα+1

as
P l(s) > 1,

then {xn} is oscillatory or satisfies lim
n→∞

xn = 0.
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Simplifying the last result, we have

Corollary 3.8. Assume {xn} is nondecreasing and condition (2.3) holds. Let

{xn} be a solution of equation (1.2). If

lim sup
n→∞

1

n

n−1
∑

s=n0

s(s − τ)2α

as
qs > 2α,

then {xn} is oscillatory or satisfies lim
n→∞

xn = 0.

E x am p l e 3.1. Consider the third order half-linear difference equation

(3.10) ∆
(

n
(

∆2
(

xn −
1

3
xn−1

))3)

+
λ

(n − 2)6
x3

n−1 = 0, λ > 0.

Corollary 3.5 implies that every solution of equation (3.10) is either oscillatory or

converges to zero as n → ∞ provided that λ > 27
16 .

E x am p l e 3.2. Consider a third order difference equation

(3.11)

∆
(

n
(

∆2
(

xn −
(n − 1)

2n
xn−1

))3)

+
(8n2 + 27n + 27)(n − 1)3

(n + 3)3(n + 2)3(n + 1)3n2
x3

n−1 = 0, n > 1.

By Corollary 3.5, every solution of equation (3.11) is either oscillatory or converges

to zero as n → ∞. In fact, {xn} = {1/n} is one such solution of equation (3.11).

We conclude this section with the following remarks.

R em a r k 3.3. If we relax condition (2.3) in Theorems 2.7, 2.9, 3.4, 3.6, and

Corollaries 2.8, 2.10, 3.5, 3.7, then the assertion of these results may be reformulated

as: every nonoscillatory solution of equations (1.1) and (1.2) is bounded.

R em a r k 3.4. Theorems 2.7, 2.9, 3.4, 3.6 complement the results presented in

[1], [2], [3] for nonlinear difference equations of the form

∆(bn(∆(an∆xn))α) + qnxα
n = 0.

A c k n ow l e d g em e n t. The authors thank the referee for his/her valuable sug-

gestions which improve the consents of the paper.
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