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Abstract. By a relational system we mean a couple (A, R) where A is a set and R is a
binary relation on A, i.e. R ⊆ A × A. To every directed relational system A = (A, R) we
assign a groupoid G(A) = (A, ·) on the same base set where xy = y if and only if (x, y) ∈ R.
We characterize basic properties of R by means of identities satisfied by G(A) and show
how homomorphisms between those groupoids are related to certain homomorphisms of
relational systems.
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The theory of binary relations was settled by J.Riguet [8]. An algebraic approach

to relational systems was developed by A. I.Mal’cev [6]. Some particular cases of re-

lational systems and certain homomorphisms of them were treated by the first author

and his co-authors in [1]–[5]. The method assigning a groupoid to a given relational

system was initiated in [5] where certain concepts of this paper were introduced. We

are motivated by the fact that to certain relational systems, in particular to directed

posets, a certain directoid (see e.g. [3]) or semilattice can be assigned in such a way

that a 6 b if and only if a ∨ b = b. Moreover, every homomorphism of a semilattice

induces a certain homomorphism of the poset (A, 6) as was investigated in [3] or, in

the case of (A, E) where E is an equivalence relation on A, in [2]. For quasiordered

sets a similar question was solved in [4].

Support of the research of the first and second author by ÖAD, Cooperation between
Austria and Czech Republic in Science and Technology, grant No. CZ 01/2011, and of
the first author by the Project CZ.1.07/2.3.00/20.0051 Algebraic Methods of Quantum
Logics is gratefully acknowledged.
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We generalize these approaches in a way similar to that of [5] and produce several

results which enable us to consider relational systems from a purely algebraic point

of view.

Some of our results were already published in [5] but, for the reader’s convenience,

these results are repeated.

First, we recall the basic concepts.

Definition 1. A relational system is an ordered pair (A, R) consisting of a non-

empty set A and a binary relation R on A. For a, b ∈ A the (upper) cone UR(a, b)

of a and b is defined by

UR(a, b) := {x ∈ A : (a, x), (b, x) ∈ R}.

A relational system (A, R) is called directed if UR(a, b) 6= ∅ for all a, b ∈ A.

R em a r k 2. (i) All considerations which will follow can be dualized for the lower

cone LR(a, b) := {x ∈ A : (x, a), (x, b) ∈ R} of a and b.

(ii) Every relational system A = (A, R) can be extended to a directed one by

adjoining a new element 1 /∈ A and putting Ad := A ∪ {1}, Rd := R ∪ (Ad × {1}).

Then Ad := (Ad, Rd) is directed and A is the restriction of Ad to A. Hence we

will formulate our results mainly for directed relational systems and this is not an

essential constraint.

Definition 3. A groupoid (A, ·) corresponds to a directed relational system

(A, R) if ab = b provided (a, b) ∈ R and ab ∈ UR(a, b) otherwise.

R em a r k 4. Although a groupoid (A, ·) corresponding to a relational system

A = (A, R) need not be uniquely determined since for a, b ∈ A with (a, b) /∈ R

and |UR(a, b)| > 1 there are several possibilities to define ab, we have ab = b if

and only if (a, b) ∈ R in every groupoid corresponding to A. Hence every groupoid

corresponding to A contains complete information concerning the relation R.

R em a r k 5. If (A, ·) corresponds to (A, R) and a, b ∈ A then (a, ab) ∈ R. This

is clear in the case (a, b) /∈ R, and in the case (a, b) ∈ R it follows from (a, ab) =

(a, b) ∈ R.

First we are interested in the question which groupoids may correspond to a rela-

tional system.
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Theorem 6. For a groupoid G = (G, ·) the following assertions are equivalent:

(i) There exists a directed relational system A = (G, R) with a reflexive relation R

such that G corresponds to A.

(ii) G satisfies the identities xx = x and x(xy) = y(xy) = xy.

P r o o f. Let a, b ∈ G.

(i) ⇒ (ii): Since (a, a) ∈ R we have aa = a. If (a, b) ∈ R then ab = b and hence

a(ab) = ab and b(ab) = bb = b = ab. If (a, b) /∈ R then (a, ab), (b, ab) ∈ R and hence

a(ab) = b(ab) = ab.

(ii)⇒ (i): Put R := {(x, y) ∈ G2 : xy = y}∪{(x, x) : x ∈ G}. Then R is reflexive.

Since xy ∈ UR(x, y) for all x, y ∈ G, (A, R) is directed. Moreover, if (a, b) ∈ R

then ab = b or a = b. In the latter case we have ab = bb = b. If (a, b) /∈ R then

ab ∈ UR(a, b). �

R em a r k 7. Every relational system A = (A, R) can be considered as a graph

with vertex-set A and edge-set R. It is well-known (see e.g. [7]) that to every graph

A = (A, R) a graph algebra H(A) = (A+, ◦) can be assigned as follows: A+ :=

A ∪ {∞}, x ◦ y := x if (x, y) ∈ R and x ◦ y := ∞ if (x, y) /∈ R (x, y ∈ A+). However,

there is an essential difference in applications. Contrary to a groupoid corresponding

to A, the graph algebra H(A) is determined uniquely. But if e.g. A = (A, 6) is a

join-semilattice we may put ab := a ∨ b for a, b ∈ A since a ∨ b ∈ U6(a, b), and the

corresponding groupoid is just a join-semilattice (A,∨) which has a nice structure

used in numerous applications both in algebra and beyond. On the other hand, a

graph algebra can be far from a join-semilattice and need not have so nice properties.

This means that our relative “vagueness” in the definition of the operation “·” may

be an essential advance in applications.

In what follows we are going to show how the properties of A = (A, R) can be

captured by G(A) = (A, ·).

Theorem 8. If A = (A, R) is a directed relational system and G(A) = (A, ·) a

groupoid corresponding to A then the following assertions hold:

(i) R is reflexive if and only if G(A) is idempotent.

(ii) R is symmetric if and only if G(A) satisfies the identity (xy)x = x.

(iii) R is transitive if and only if G(A) satisfies the identity x((xy)z) = (xy)z.

(iv) If G(A) is commutative then R is antisymmetric.

(v) If G(A) satisfies the identity (xy)x = xy then R is antisymmetric.

(vi) If G(A) is a semigroup then R is transitive.

P r o o f. Let a, b, c ∈ A.

(i) is evident.
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(ii) “⇒”: According to Remark 5, (a, ab) ∈ R whence (ab, a) ∈ R, i.e. (ab)a = a.

“⇐”: If (a, b) ∈ R then ab = b and hence ba = (ab)a = a, i.e. (b, a) ∈ R.

(iii) “⇒”: According to Remark 5, (a, ab), (ab, (ab)c) ∈ R and hence (a, (ab)c) ∈ R,

i.e. a((ab)c) = (ab)c.

“⇐”: If (a, b), (b, c) ∈ R then ab = b and bc = c and hence

ac = a(bc) = a((ab)c) = (ab)c = bc = c,

i.e. (a, c) ∈ R.

(iv) If (a, b), (b, a) ∈ R then ab = b and ba = a and hence a = ba = ab = b.

(v) If (a, b), (b, a) ∈ R then ab = b and ba = a and hence a = ba = (ab)a = ab = b.

(vi) If (a, b), (b, c) ∈ R then ab = b and bc = c and hence ac = a(bc) = (ab)c =

bc = c, i.e. (a, c) ∈ R. �

We can ask also conversely which relational systems can be induced by a given

groupoid G = (G, ·).

Definition 9. Let G = (G, ·) be a groupoid. Define two corresponding relational

systems A(G) := (G, R(G)) and A∗(G) := (G, R∗(G)) as follows:

R(G) := {(x, y) ∈ G2 : xy = y},

R∗(G) :=
⋃

x,y∈G

{(x, xy), (y, xy)}

Obviously, R(G) ⊆ R∗(G).

Lemma 10. If G = (G, ·) is a groupoid then the following assertions hold:

(i) A∗(G) is directed.

(ii) If G satisfies the identities x(xy) = y(xy) = xy then A(G) = A∗(G).

P r o o f. (i) We have xy ∈ UR∗(G)(x, y) for all x, y ∈ G.

(ii) We have R(G) = R∗(G). �

Lemma 11. If A = (A, R) is a directed relational system and G(A) = (A, ·) a

corresponding groupoid then A(G(A)) = A.

P r o o f. Let a, b ∈ A. If (a, b) ∈ R(G(A)) then ab = b and since G(A) is a

corresponding groupoid, we have (a, b) ∈ R. Conversely, if (a, b) ∈ R then ab = b in

G(A) and hence (a, b) ∈ R(G(A)). �

In what follows, we will study connections between homomorphisms of relational

systems and homomorphisms of the corresponding groupoids.
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Definition 12. Let A = (A, R) and B = (B, S) be relational systems, h : A → B

and Θ an equivalence relation on A. The mapping h is called a homomorphism from

A to B if (a, b) ∈ R implies (h(a), h(b)) ∈ S. If, moreover, for all (c, d) ∈ S there

exists (a, b) ∈ R with h(a) = c and h(b) = d then h is called strong. Moreover, the

quotient relational system A/Θ := (A/Θ, R/Θ) is defined by

R/Θ := {([a]Θ, [b]Θ): (a, b) ∈ R}.

It is almost evident that if R is reflexive or symmetric then also R/Θ has this

property. This need not be true for transitivity (see e.g. [1]).

We can state

Lemma 13. If (A, R) is a relational system with transitive R and with Θ an

equivalence relation on A then R/Θ is transitive if and only if R ◦Θ ◦R ⊆ Θ ◦R ◦Θ.

P r o o f. Let a, b ∈ A. Then ([a]Θ, [b]Θ) ∈ R/Θ if and only if (a, b) ∈ Θ ◦ R ◦ Θ.

Hence R/Θ is transitive if and only if Θ ◦R ◦Θ ◦Θ ◦R ◦Θ ⊆ Θ ◦R ◦Θ. But this is

equivalent to R ◦ Θ ◦ R ⊆ Θ ◦ R ◦ Θ. �

Lemma 14. If (A, R) is a relational system and Θ an equivalence relation on A

then the canonical mapping h from A to A/Θ is a strong homomorphism from A to

A/Θ and R/Θ is the least binary relation T on A/Θ such that h is a homomorphism

from A to (A/Θ, T ).

P r o o f. This is evident. �

We can define one more modification of the notion of a homomorphism between

relational systems by means of corresponding groupoids.

Definition 15. A g-homomorphism from a relational system A = (A, R) to

a relational system B = (B, S) is a homomorphism h from A to B such that there

exists a groupoid (A, ·) corresponding toA such that for all a, b, c, d ∈ A the equalities

h(a) = h(c) and h(b) = h(d) together imply h(ab) = h(cd).

Theorem 16. If A = (A, R) and B = (B, S) are directed relational systems and

G(A) = (A, ·) and G(B) = (B, ◦) are corresponding groupoids then every homomor-

phism h from G(A) to G(B) is a g-homomorphism from A to B.

P r o o f. Let a, b, c, d ∈ A. If (a, b) ∈ R then ab = b and hence h(a) ◦ h(b) =

h(ab) = h(b) showing (h(a), h(b)) ∈ S. Moreover, if a, b, c, d ∈ A, h(a) = h(c) and

h(b) = h(d) then h(ab) = h(a) ◦ h(b) = h(c) ◦ h(d) = h(cd). �

The next theorem states that in some sense homomorphisms between relational

systems are homomorphisms between corresponding groupoids.
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Theorem 17. If A = (A, R) and B = (B, S) are directed relational systems

and h is a strong g-homomorphism from A onto B with the groupoid G(A) = (A, ·)

corresponding to A then there exists a groupoid G(B) = (B, ◦) corresponding to B

such that h is a homomorphism from G(A) to G(B).

P r o o f. According to Definition 15 there exists a groupoid G(A) = (A, ·) corre-

sponding to A such that for each a, b, c, d ∈ A, if h(a) = h(c) and h(b) = h(d) then

h(ab) = h(cd). Define h(x) ◦ h(y) := h(xy) for all x, y ∈ A. According to Defini-

tion 15, ◦ is well-defined. Let a, b ∈ A. If (h(a), h(b)) ∈ S then, since h is strong,

there exists (c, d) ∈ R with h(c) = h(a) and h(d) = h(b). Now h(a) ◦ h(b) = h(ab) =

h(cd) = h(d) = h(b) according to Definition 15. If (h(a), h(b)) /∈ S then (a, b) /∈ R

according to Definition 15 and hence ab ∈ UR(a, b), i.e. (a, ab), (b, ab) ∈ R whence

(h(a), h(a) ◦ h(b)) = (h(a), h(ab)) ∈ S and (h(b), h(a) ◦ h(b)) = (h(b), h(ab)) ∈ S, i.e.

h(a) ◦ h(b) ∈ US(h(a), h(b)). This shows that G(B) corresponds to B. Finally, h is a

homomorphism from G(A) to G(B) since h(xy) = h(x) ◦ h(y) for all x, y ∈ A. �

Our next theorem contains some assertions concerning factor groupoids.

Theorem 18. If A = (A, R) and B = (B, S) are directed relational groupoids

then the following implications hold:

(i) If h is a g-homomorphism fromA to B then there exists a groupoid G(A) = (A, ·)

corresponding to A such that kerh ∈ ConG(A).

(ii) If G(A) = (A, ·) is a groupoid corresponding to A and Θ ∈ ConG(A) then the

canonical mapping h from A to A/Θ is a strong g-homomorphism from A to

A/Θ.

P r o o f. Let a, b, c, d ∈ A.

(i) Obviously, kerh is an equivalence relation on A. According to Definition 15

there exists a groupoid G(A) = (A, ·) corresponding to A such that for each a, b, c, d ∈

A, if h(a) = h(c) and h(b) = h(d) then h(ab) = h(cd), i.e. (a, c), (b, d) ∈ kerh implies

(ab, cd) ∈ kerh.

(ii) If (a, b) ∈ R then (h(a), h(b)) = ([a]Θ, [b]Θ) ∈ R/Θ. Moreover, if h(a) = h(c)

and h(b) = h(d) then [a]Θ = h(a) = h(c) = [c]Θ and [b]Θ = h(b) = h(d) = [d]Θ

and hence h(ab) = [ab]Θ = [a]Θ · [b]Θ = [c]Θ · [d]Θ = [cd]Θ = h(cd). If, finally,

([c]Θ, [d]Θ) ∈ R/Θ then there exists (a, b) ∈ R with ([a]Θ, [b]Θ) = ([c]Θ, [d]Θ), i.e.

with h(a) = [a]Θ = [c]Θ and h(b) = [b]Θ = [d]Θ. �

Theorem 19. Every homomorphism h from a groupoid G = (G, ·) to a groupoid

H = (H, ◦) is a homomorphism from A(G) to A(H) and from A∗(G) to A∗(H).

P r o o f. Let a, b ∈ G. If (a, b) ∈ R(G) then ab = b and hence h(a) ◦ h(b) =

h(ab) = h(b), i.e. (h(a), h(b)) ∈ R(H). This shows that h is a homomorphism from
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A(G) to A(H). If, on the other hand, (a, b) ∈ R∗(G) then there exist c, d ∈ G with

(a, b) ∈ {(c, cd), (d, cd)}. Now h(c), h(d) ∈ H and

(h(a), h(b)) ∈ {(h(c), h(cd)), (h(d), h(cd))}

= {(h(c), h(c) ◦ h(d)), (h(d), h(c) ◦ h(d))}

and hence (h(a), h(b)) ∈ R∗(H) showing that h is a homomorphism from A∗(G) to

A∗(H). �

R em a r k 20. A homomorphism h from G = (G, ·) to H = (H, ◦) need not be a

g-homomorphism from A(G) to A(H) as can be seen from the following example:

E x am p l e 21. Put G := ({−1, 0, 1}, ·) and H := ({0, 1}, ·) where · de-

notes the multiplication of integers, and let h denote the mapping x 7→ |x|

from {−1, 0, 1} to {0, 1}. Then h is a homomorphism from G to H and R(G) =

{(−1, 0), (0, 0), (1,−1), (1, 0), (1, 1)}. Let ({−1, 0, 1}, ∗) be a groupoid corresponding

to A(G). Then for x, y ∈ {−1, 0, 1} we have 1 ∗ x = x and x ∗ y = 0 otherwise. Now

h(−1) = h(1) but h((−1) ∗ (−1)) = h(0) = 0 6= 1 = h(1) = h(1 ∗ 1) and hence h is

not a g-homomorphism from A(G) to A(H).

The next theorem gives the final answer to the question whether a homomorphism

between groupoids is a g-homomorphism between corresponding relational systems.

The groupoids have to satisfy the identity natural for corresponding groupoids of

relational systems.

Theorem 22. If G = (G, ·) is a groupoid satisfying the identities xx = x and

x(xy) = y(xy) = xy then every homomorphism h from G to a groupoid H = (H, ◦)

is a g-homomorphism from A(G) to A(H).

P r o o f. Obviously, G corresponds to A(G) and h is a homomorphism from A(G)

to A(H). If a, b, c, d ∈ G, h(a) = h(c) and h(b) = h(d) then h(ab) = h(a) ◦ h(b) =

h(c) ◦ h(d) = h(cd) and hence h is a g-homomorphism from A(G) to A(H). �

In the remaining part of the paper we point out a relationship between relation

preserving functions and corresponding groupoids. This has an application in the

theory of clones since both the set of functions preserving a given relation and the

set of functions commuting with a given operation are clones.

Definition 23. An m-ary operation f on A is said to preserve a binary relation

R on A if (a1, b1), . . . , (am, bm) ∈ R implies

(f(a1, . . . , am), f(b1, . . . , bm)) ∈ R.
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An m-ary operation f and an n-ary operation g on A are said to commute with each

other if

f(g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)) = g(f(x11, . . . , xm1), . . . , f(x1n, . . . , xmn))

for all x11, . . . , x1n, . . . , xm1, . . . , xmn ∈ A.

R em a r k 24. If m = 2 and n = 1 then f and g commute with each other if and

only if g is an endomorphism of the groupoid (A, f).

Lemma 25. If (A, R) is a directed relational system and (A, ·) a corresponding

groupoid then every m-ary operation f on A commuting with · preserves R.

P r o o f. If (a1, b1), . . . , (am, bm) ∈ R then aibi = bi for i = 1, . . . , m and hence

f(a1, . . . , am)f(b1, . . . , bm) = f(a1b1, . . . , ambm) = f(b1, . . . , bm)

whence (f(a1, . . . , am), f(b1, . . . , bm)) ∈ R. �

E x am p l e 26. If A = (A, 6) is a poset which is a join-semilattice (A,∨) then

(A,∨) is a groupoid corresponding to (A, 6) and Lemma 25 witnesses the fact that

every join-preserving operation (i.e. every operation commuting with ∨) is order-

preserving.

However, the assumption that f commutes with the operation of a corresponding

groupoid is only sufficient but not necessary. It is e.g. elementary to show that an

order preserving function on a join-semilattice need not commute with ∨. Hence we

ask for a necessary and sufficient condition formulated in terms of a corresponding

groupoid which ensures that a given operation preserves R. The answer is as follows:

Theorem 27. If (A, R) is a directed relational system, (A, ·) a corresponding

groupoid and f anm-ary operation on A then the following conditions are equivalent:

(i) f preserves R.

(ii) f satisfies the identity

f(x1, . . . , xm)f(x1y1, . . . , xmym) = f(x1y1, . . . , xmym).

P r o o f. Let a1, . . . , am, b1, . . . , bm ∈ A.

(i) ⇒ (ii): Since (a1, a1b1), . . . , (am, ambm) ∈ R according to Remark 5, we have

(f(a1, . . . , am), f(a1b1, . . . , ambm)) ∈ R

whence f(a1, . . . , am)f(a1b1, . . . , ambm) = f(a1b1, . . . , ambm).
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(ii) ⇒ (i): If (a1, b1), . . . , (am, bm) ∈ R then a1b1 = b1, . . . , ambm = bm and hence

f(a1, . . . , am)f(b1, . . . , bm) = f(a1, . . . , am)f(a1b1, . . . , ambm)

= f(a1b1, . . . , ambm) = f(b1, . . . , bm)

whence (f(a1, . . . , am), f(b1, . . . , bm)) ∈ R. �
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