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Pseudo-homotopies of the pseudo-arc

Alejandro Illanes

Abstract. Let X be a continuum. Two maps g, h : X → X are said to be
pseudo-homotopic provided that there exist a continuum C, points s, t ∈ C and
a continuous function H : X ×C → X such that for each x ∈ X, H(x, s) = g(x)
and H(x, t) = h(x). In this paper we prove that if P is the pseudo-arc, g is one-
to-one and h is pseudo-homotopic to g, then g = h. This theorem generalizes
previous results by W. Lewis and M. Sobolewski.
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1. Introduction

A continuum is a nondegenerate compact connected metric space. The letter
P will denote the pseudo-arc. We will use the definition of the pseudo-arc as it
is given in [7, 1.7]. A map is a continuous function. Two maps h, g : P → P are
pseudo-homotopic provided that there exist a continuum C, points s0, t0 ∈ C and
a map H : P × C → P such that H(p, s0) = g(p) and H(p, t0) = h(p) for each
p ∈ P . In this case, we say that H is a pseudo-homotopy between g and h. The
continuum X is pseudo-contractible, provided that the identity in X is pseudo-
homotopic to a constant map. An ε-map between continua is a map f : X → Y

such that diameter(f−1(y)) < ε for each y ∈ f(X). A continuum X is chainable
provided that for each ε > 0, there exists an ε-map from X into [0, 1]. Another
way to define a chainable continuum [9, Theorem 12.11] is the following: a chain

in a continuum X is a nonempty, finite, indexed collection C = {U1, . . . , Un} of
open subsets Ui ofX such that Ui∩Uj 6= ∅ if and only if |i−j| ≤ 1. The continuum
X is chainable provided that for each ε > 0 there exists a chain C = {U1, . . . , Un}
in X such that X = U1 ∪ . . . ∪ Un and diameter(Ui) < ε for each i ∈ {1, . . . , n}.

The concepts of pseudo-homotopy between maps of a continuum and of a
pseudo-contractible continuum were introduced by W. Kuperberg [5] and the
first example of a pseudo-contractible continuum which is not contractible was
also given by him. This example appears in page 2983 of [10].

This paper was partially supported by the project “Hiperespacios topológicos (0128584)” of
Consejo Nacional de Ciencia y Tecnoloǵıa (CONACYT), 2009.
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Answering a question by W. Kuperberg, in 2007 [10], M. Sobolewski proved
that the pseudo-arc is not pseudo-contractible. In fact, he proved that the only
pseudo-contractible chainable continuum is the arc.

There are only two known types of pseudo-homotopies for maps into the
pseudo-arc, namely those pseudo-homotopiesH : P×C → P satisfyingH(P×{c})
is degenerate for each c ∈ C or those for which there exists a map f : P → P

such that H(x, c) = f(x) for each (x, c) ∈ X ×C. So the following problem arises
naturally.

Problem 1. Do there exist pseudo-homotopies on the pseudo-arc different from

the ones described in the paragraph above?

In [6], W. Lewis proved that if g is a homeomorphism from the pseudo-arc onto
itself and h is pseudo-homotopic to g, then h = g. From here, he deduced that in
the space of homeomorphismsH(P ) of the pseudo-arc there are not nondegenerate
continua. It is still an open problem to determine if H(P ) is totally disconnected
[8, Question 21].

In this paper we use the technique developed by Sobolewski in [10] to prove
that if g : P → P is one-to-one and h is pseudo-homotopic to g, then g = h.

2. Results

Given a continuumX , let C(X) be the hyperspace of subcontinua ofX endowed
with the Hausdorff metric [2, Definition 2.1]. Given subcontinua A and B of a
continuum X such that A ( B, an order arc from A to B is a map α : [0, 1] →
C(X) such that α(0) = A, α(1) = B and, if s < t, then α(s) ( α(t). The
existence of order arcs is proved in [2, Theorem 14.6].

Lemma 2. Let g1, h1 : P → P be pseudo-homotopic maps such that g1 is not

constant and g1 6= h1. Then there exist a pseudo-arc P1 and pseudo-homotopic

maps h, g : P1 → P such that Im g ∩ Imh = ∅, g is not constant and, if g1 is

one-to-one, then g is one-to-one.

Proof: Let H : P × C → P be a pseudo-homotopy between g1 and h1 and let
s0, t0 ∈ C be such that H(p, s0) = g1(p) and H(p, t0) = h1(p) for each p ∈ P .
Let p0 ∈ P be such that g1(p0) 6= h1(p0). Let D (resp., E) be the component
of g−1

1 (g1(p0)) (resp., h−1
1 (h1(p0))) containing p0. Then D ⊂ E or E ⊂ D. Let

D1 = D∩E. Since g1 is not constant, D1 is a proper subcontinuum of P . Let α :
[0, 1] → C(P ) be an order arc from D1 to P . Since g1(α(0)) = g1(D1) = {g1(p0)}
and h1(α(0)) = h1(D1) = {h1(p0)}, we have that there exists t > 0 such that
g1(α(t))∩h1(α(t)) = ∅. Let P1 = α(t). Then P1 is homeomorphic to P and either
P1 * g−1

1 (g1(p0)) or P1 * h−1
1 (h1(p0)). This implies that g1|P1 or h1|P1 is not

constant. We may assume that g1|P1 is not constant. In the case that g1 is one-to-
one, we have indeed that g1|P1 is not constant. LetH1 = H |(P1×C) : P1×C → P .
Then H1 is a pseudo-homotopy between g1|P1 and h1|P1. Define g = g1|P1 and
h = h1|P1. �
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We consider P constructed in the plane R2 [7, 1.7] by using a sequence of
chains Cn, where for each n ∈ N, Cn+1 refines Cn, the mesh of Cn is less than 1

n
,

Cn+1 is crooked in Cn, Cn = {U
(n)
1 , . . . , U

(n)
mn

}, the sets U
(n)
1 , . . . , U

(n)
mn

are open

in P and they cover P , and clP (U
(n)
i )∩ clP (U

(n)
j ) 6= ∅ if and only if |i − j| ≤ 1.

Given n ∈ N and 1 ≤ i ≤ j ≤ mn, let W (i, j, n) = U
(n)
i ∪ . . . ∪ U

(n)
j . In the case

that 0 ≤ j < i ≤ mn, we define W (i, j, n) = ∅.

Theorem 3. Let g, h : P → P be pseudo-homotopic maps such that g is one-to-

one. Then g = h.

Proof: Let d be a metric for P . Suppose to the contrary that g 6= h. We are
going to get a contradiction. By Lemma 2, we may assume that Im g ∩ Imh = ∅.
Let H : P ×C → P be a pseudo-homotopy between g and h and let s0, t0 ∈ C be
such that H(p, s0) = g(p) and H(p, t0) = h(p) for each p ∈ P .

Let B = Im g. Then B is a nondegenerate subcontinuum of P . Let ε =
diameter(B). Let N ∈ N be such that 20

N
< ε and N has the following properties:

(a) if d(g(p), g(q)) < 3
N
, then d(H(p, c), H(q, c)) < ε

20 for each c ∈ C (recall

that g is one-to-one); and (b) 1
N
< min{d(p, q) : p ∈ Im g and q ∈ Imh}. Let

p0, q0 ∈ P be such that diameter(B) = d(g(p0), g(q0)). Let i0, j0 ∈ {1, . . . ,mN}

be such that g(p0) ∈ U
(N)
i0

and g(q0) ∈ U
(N)
j0

. We may assume that i0 < j0.

Notice that 19 < j0 − i0. Let i1, j1 ∈ {1, . . . ,mN+1} be such that g(p0) ∈

U
(N+1)
i1

and g(q0) ∈ U
(N+1)
j1

. Then there exist u0, v0 ∈ {1, . . . ,mN+1} such that

u0, v0 ∈ {min{i1, j1}, . . . ,max{i1, j1}}, U
(N+1)
u0

∩ U
(N)
i0

6= ∅, U
(N+1)
v0 ∩ U

(N)
j0

6= ∅
and W (u0, v0, N + 1) ⊂ W (i0, j0, N). We may assume that u0 < v0. Since

U
(N+1)
i1

∩ B 6= ∅ and U
(N+1)
j1

∩ B 6= ∅, we have that U
(N+1)
i ∩ B 6= ∅ for each

u0 ≤ i ≤ v0.
By the choice of N , Imh does not intersectW (u0, v0, N+1). Therefore, Imh ⊂

W (1, u0 − 1, N + 1) or Imh ⊂W (v0 + 1,mN+1, N + 1).
Since CN+1 is crooked in CN , there exist k0, l0 ∈ {1, . . . ,mN+1} such that

u0 < k0 < l0 < v0, U
(N+1)
k0

∩ U
(N)
j0−1 6= ∅ and U

(N+1)
l0

∩ U
(N)
i0+1 6= ∅.

An appropriate use of Urysohn’s lemma for metric continua allows us to con-
struct a map f0 : P → [− 1

2 ,
3
2 ] such that: clP (W (1, i0 − 1, N)) ⊂ f−1

0 ([− 1
2 , 0]),

clP (W (j0 + 1,mN , N)) ⊂ f−1
0 ([1, 32 ]), f

−1
0 (0) = clP (W (i0, i0 + 2, N)), f−1

0 (1) =

clP (W (j0 − 2, j0, N)), f−1
0 ([0, 1]) = clP (W (i0, j0, N)) and f0 is a 3

N
-map. Again,

by Urysohn’s lemma, it is possible to construct a 3
N
-map f : clP (W (1, u0, N +

1))∪clP (W (v0,mN+1, N+1)) → [− 1
2 , 0]∪ [1, 32 ] such that clP (W (1, u0, N+1)) =

f−1([− 1
2 , 0]), clP (W (v0,mN+1, N +1)) = f−1([1, 32 ]), clP (U

(N+1)
u0

) = f−1(0) and

clP (U
(N+1)
v0 ) = f−1(1). We extend f to P , defining f(p) = f0(p) for each p ∈ clP

(W (u0, v0, N + 1)). Given p ∈ clP (U
(N+1)
u0

) ⊂ clP (W (i0, i0 + 1, N)), we have

f0(p) = 0, and given p ∈ clP (U
(N+1)
v0 ) ⊂ clP (W (j0− 1, j0, N)), we have f0(p) = 1.

This implies that f is a well-defined map from P into [− 1
2 ,

3
2 ]. It is easy to check

that f is a 3
N
-map.
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Let ϕ : P → [ 12 ,
9
2 ] be given by

ϕ(p) =











f(p) + 1, if p ∈ clP (W (1, k0, N + 1)),

3− f(p), if p ∈ clP (W (k0, l0, N + 1)),

3 + f(p), if p ∈ clP (W (l0,mN+1, N + 1)).

If p ∈ clP (W (1, k0, N + 1)) ⊂ clP (W (1, u0, N + 1) ∪ clP (W (i0, j0, N), then

f(p) ∈ [− 1
2 , 1] and ϕ(p) ∈ [ 12 , 2]. If p ∈ clP (U

(N+1)
u0

) ⊂ clP (W (i0, i0 + 1, N)),

then f(p) = 0 and ϕ(p) = 1. If p ∈ clP (U
(N+1)
k0

) ⊂ clP (W (j0 − 2, j0, N)), then

f(p) = 1 and ϕ(p) = 2. If p ∈ clP (U
(N+1)
l0

) ⊂ clP (W (i0, i0 + 2, N)), then f(p) =

0 and ϕ(p) = 3. If p ∈ clP (U
(N+1)
v0 ) ⊂ clP (W (j0 − 1, j0, N)), then f(p) = 1

and ϕ(p) = 4. If p ∈ clP (W (k0, l0, N + 1)) ⊂ clP (W (i0, j0, N)), then f(p) ∈
[0, 1] and ϕ(p) ∈ [2, 3]. If p ∈ clP (W (l0,mN+1, N + 1)) ⊂ clP (W (i0, j0, N) ∪
clP (W (v0,mN+1, N + 1), then f(p) ∈ [0, 32 ], so ϕ(p) ∈ [3, 92 ]. These relations in
particular imply that ϕ is well-defined and continuous.

Since U
(N+1)
u0

∩ B 6= ∅ and clP (U
(N+1)
u0

) ⊂ f−1(0), we have that 0 ∈ f(B)
and 1 ∈ ϕ(B), similarly, 4 ∈ ϕ(B). Thus, ϕ(g(P )) is a closed interval containing
[1, 4]. Consider the map η = (ϕ × ϕ) ◦ (g × g) : P × P → [ 12 ,

9
2 ]

2 and let D =

Im η = ϕ(g(P )) × ϕ(g(P )). Then D is a 2-cell containing [1, 4]2. By [3] and [4,
Proposition 1.2], η is a universal map and hence essential. Recall that a map
between continua γ : X → Y is universal provided that for each map λ : X → Y ,
there exists a point x ∈ X such that γ(x) = λ(x). Moreover, a map γ : X → D,
where D is a 2-cell is essential provided that each map λ : X → D such that
γ(x) = λ(x) for each x ∈ γ−1(∂D) is surjective.

Let ψ : [0, 5] → [−1, 2] be given by

ψ(x) =











x− 1, if x ∈ [0, 2],

3− x, if x ∈ [2, 3],

x− 3, if x ∈ [3, 5].

Clearly, ψ is a continuous function such that for each p ∈ P , ψ(ϕ(p)) = f(p).
Let T = {(x, y) ∈ [0, 5]2 : ψ(x) = ψ(y)}. Then T is the union of the diagonal of
[0, 5]2 and a rectangle (see Figure 1). Let S be the rhombus in the plane with
vertices (1, 3), (2, 4), (3, 3) and (2, 2) and let r : [0, 5]2\{(2, 3)} → S be the radial
retraction with the point (2, 3) as the center. Let A = η−1(S). Since η is essential,
by [3, p. 225], η|A : A→ S is not homotopic to a constant map.

Given (p, q) ∈ A, we have ψ(ϕ(g(p))) = ψ(ϕ(g(q))), so f(g(p)) = f(g(q)).
Hence, d(g(p), g(q)) < 3

N
. Let c ∈ C. By the choice ofN , d(H(p, c), H(q, c)) < ε

20 .
We claim that (ϕ(H(p, c)), ϕ(H(q, c))) 6= (2, 3). Suppose to the contrary that
ϕ(H(p, c)) = 2 and ϕ(H(q, c)) = 3. Considering the options in the definition
of ϕ, we obtain that f(H(p, c)) = 1 and f(H(q, c)) = 0. Thus, H(p, c) ∈
clP (W (j0 − 2, j0, N)) and H(q, c) ∈ clP (W (i0, i0 + 2, N)). This implies that
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max{d(H(p, c), g(q0)), d(H(q, c), g(p0))} <
3
N
. Hence, d(g(p0), g(q0)) <

ε
20 + 6

N
<

ε
20 +

3ε
10 < ε, a contradiction. We have shown that for every (p, q) ∈ A and c ∈ C,

(ϕ(H(p, c)), ϕ(H(q, c))) 6= (2, 3).

Notice that S ⊂ T . By the paragraph above, the map σ : A×C → S given by
σ((p, q), c) = r(ϕ(H(p, c)), ϕ(H(q, c))) is well-defined. Since for each (p, q) ∈ A,
σ((p, q), s0) = r(ϕ(H(p, s0)), ϕ(H(q, s0))) = r(ϕ(g(p), ϕ(g(q))) and σ((p, q), t0) =
r(ϕ(h(p), ϕ(h(q))), the maps σ0, σ1 : A→ S given by σ0(p, q) = r(ϕ(g(p), ϕ(g(q)))
and σ1(p, q) = r(ϕ(h(p), ϕ(h(q))) are pseudo-homotopic. Since S is an ANR, σ0
and σ1 are homotopic (see Claim 1 in [10]).

Notice that Imh ⊂ ϕ−1([ 12 , 1]) or Imh ⊂ ϕ−1([4, 92 ]). In the first case, for each

(p, q) ∈ A, (ϕ(h(p), ϕ(h(q))) ∈ [ 12 , 1]
2, so σ1(p, q) lies on the side of S that joins

the points (2, 2) and (1, 3). This implies that σ1 is homotopic to a constant map.
The second case is similar. We conclude that σ0 is homotopic to a constant map.

Given (p, q) ∈ A, η(p, q) = (ϕ(g(p)), ϕ(g(q))) ∈ S, so η(p, q) = r(η(p, q)) =
σ0(p, q). Hence, σ0 = η|A is not homotopic to a constant map. This contradiction
completes the proof of the theorem. �

3. Conclusions

Corollary 4. Let g, h : P → P be pseudo-homotopic maps. Suppose that A is

a nondegenerate subcontinuum of P such that g|A : A→ P is one-to-one. Then

g|A = h|A.

Corollary 5. Let H : P × C → P be a pseudo-homotopy between the maps g

and h. If g 6= h, then for each c ∈ C,
⋃

{A ∈ C(P ) : A is nondegenerate and

H |A× {c} is one-to-one} is not dense in P .

Corollary 5 shows that if there is a pseudo-homotopy between two different non-
constant maps, all the “levels” of the pseudo-homotopy must have a complicated
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behavior. On the other hand, a negative answer to Problem 1 would lead to
answer other open problems on the pseudo-arc. Next we recall some of them.

Problem 6 ([1, Problem 6]). Let e : P1 × . . . × Pm → P1 × . . . × Pm be an

embedding of a finite product of pseudo-arcs into itself. Must e be a product of

embeddings composed with a permutation of coordinates? Recently in [1] this
problem has been solved for the product of two pseudo-arcs.

Problem 7 ([8, Question 14]). Does there exist a continuum X with the fixed

point property such that X × P does not have the fixed point property?

Problem 8 ([8, Question 20]). Assume that r : P × P → ∆ = {(x, x) ∈ P × P :
x ∈ P} is a continuous retraction. Must r be of the form r(x, y) = (x, x) for all

(x, y) or r(x, y) = (y, y) for all (x, y)?

Problem 9. Does E(P ), the space of all continuous functions from the pseudo-

arc into itself, contain any nondegenerate compact connected sets other than

collections of constant maps?

Notice that Theorem 3 implies that if A is a nondegenerate continuum con-
tained in E(P ), then A does not contain a one-to-one element of E(P ). This
extends the result in [6] that says that in the space of homeomorphisms H(P ) of
the pseudo-arc there are not nondegenerate continua. Notice also that Theorem 3
implies that P is not pseudo-contractible. Related to Problem 9, we can mention
the following two important problems.

Problem 10 ([8, Question 22]). Does E(P ), the space of all continuous functions
from the pseudo-arc into itself, contain any nondegenerate connected sets other

than collections of constant maps?

Problem 11 ([8, Question 21]). Is H(P ), the topological group of all self-

homeomorphisms of the pseudo-arc P , totally disconnected?
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