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Belmesnaoui Aqzzouz, Jawad H’michane

Abstract. We characterize Banach lattices on which each regular order weakly
compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) ope-
rator is AM-compact.
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1. Introduction and notation

The class of AM-compact operators is introduced and studied by Dodds-Fremlin
[14] and its domination problem is characterized in [5]. Recall that a regular ope-
rator T from a Banach lattice E into a Banach space F is said to be AM-compact
if it carries each order bounded subset of E onto a relatively compact subset of F .

On the other hand, each regular compact operator is AM-compact, but an
AM-compact operator is not necessary compact. In fact, the identity operator of
the Banach lattice ℓ1 is AM-compact (because ℓ1 is discrete with order continuous
norm) but it is not compact. However, if E is an AM-space with unit, the class
of regular compact operators coincides with that of AM-compact operators. For
a more detailed study of this class of operators we refer the reader to the book of
Zaanen [21].

In this paper we are interested in three classes of operators. The first one is
bigger than that of AM-compact operators. It is the class of order weakly compact
operators introduced by Dodds [13]. Recall that an operator T from a Banach
lattice E into a Banach space F is said to be order weakly compact if for each
x ∈ E+, the set T ([0, x]) is relatively weakly compact in F . Note that an order
weakly compact operator is not necessarily AM-compact. In fact, the identity
operator IdL1[0,1] : L1[0, 1] −→ L1[0, 1] is order weakly compact (because the

norm of L1[0, 1] is order continuous), but it is not AM-compact (because L1[0, 1]
is not discrete).

The second class is that of b-weakly compact operators introduced by Alpay-
Altin-Tonyali [3]. An operator T from a Banach lattice E into a Banach space
F is said to be b-weakly compact if for each b-order bounded subset A of E (i.e.
order bounded in the topological bidual E′′), T (A) is relatively weakly compact
in F . Note that there is an AM-compact operator which is not b-weakly compact
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and conversely there is a b-weakly compact operator which is not AM-compact.
In fact, the identity operator IdL1[0,1] : L

1[0, 1] −→ L1[0, 1] is b-weakly compact

(because L1[0, 1] is KB-space), but it is not AM-compact (because L1[0, 1] is not
discrete), and conversely the identity operator Idc0 : c0 −→ c0 is AM-compact
(because c0 is discrete with order continuous norm), but is not b-weakly compact
(because c0 is not KB-space).

The third class is that of almost Dunford-Pettis operators introduced by San-
chez in [18]. Recall from [20] that an operator T from a Banach lattice E into a
Banach space F is called almost Dunford-Pettis if the sequence (‖T (xn)‖) con-
verges to 0 for every weakly null sequence (xn) consisting of pairwise disjoint
elements in E. Note that there is an AM-compact operator which is not almost
Dunford-Pettis, and conversely there is an almost Dunford-Pettis operator which
is not AM-compact. In fact, the identity operator IdL1[0,1] : L

1[0, 1] −→ L1[0, 1]

is almost Dunford-Pettis (because L1[0, 1] has the positive Schur property) but it
is not AM-compact, and conversely the identity operator Idc0 : c0 −→ c0 is AM-
compact but is not almost Dunford-Pettis (because c0 does not have the positive
Schur property).

In [6], we studied the AM-compactness of positive Dunford-Pettis operators.
The aim of this paper is to extend this study to other classes of operators,
by characterizing Banach lattices for which each regular order weakly compact
(resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-
compact. Also, we will give some interesting consequences.

To state our results, we need to fix some notation and recall some definitions.
A vector lattice is said to be Dedekind σ-complete if every nonempty countable
subset that is bounded from above has a supremum. A nonzero element x of a
vector lattice E is discrete if the order ideal generated by x equals the lattice
subspace generated by x. The vector lattice E is discrete, if it admits a complete
disjoint system of discrete elements. A Banach lattice is a Banach space (E, ‖.‖)
such that E is a vector lattice and its norm satisfies the following property: for
each x, y ∈ E such that |x| ≤ |y|, we have ‖x‖ ≤ ‖y‖. Note that the topological
dual E′, endowed with the dual norm and the dual order, is also a Banach lattice.
A norm ‖.‖ of a Banach lattice E is order continuous if for each generalized
sequence (xα) such that xα ↓ 0 in E, the sequence (xα) converges to 0 for the
norm ‖.‖ where the notation xα ↓ 0 means that the sequence (xα) is decreasing,
its infimum exists and inf(xα) = 0. A Banach lattice E is said to be a KB-space
whenever every increasing norm bounded sequence of E+ is norm convergent. As
an example, each reflexive Banach lattice is a KB-space. A Banach lattice E is
said to be an AM-space if for each x, y ∈ E such that inf(x, y) = 0, we have
‖x+ y‖ = max{‖x‖, ‖y‖}. A Banach lattice E is said to have weakly sequentially
continuous lattice operations whenever xn −→ 0 in σ(E,E′) implies ‖xn‖ −→ 0 in
σ(E,E′). Note that every AM-space has this property ([2, Theorem 4.31]). Also,
any discrete Banach lattice with an order continuous norm has weakly sequentially
continuous lattice operations ([17, Proposition 2.5.23]).
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For a bounded linear mapping T : E −→ F between two Banach lattices, we
will use the term operator. It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E.
An operator T : E −→ F is regular if T = T1 − T2 where T1 and T2 are positive
operators from E into F . It is well known that each positive linear mapping on
a Banach lattice is continuous. If an operator T : E −→ F between two Banach
lattices is positive, then its dual operator T ′ : F ′ −→ E′ is likewise positive, where
T ′ is defined by T ′(f)(x) = f(T (x)) for each f ∈ F ′ and for each x ∈ E.

For terminology concerning Banach lattice theory and positive operators, we
refer the reader to the excellent book of Aliprantis-Burkinshaw [2].

2. Preliminaries

Recall that an operator T from a Banach space E into another F is said to
be Dunford-Pettis if it carries weakly compact subsets of E onto compact subsets
of F . A Banach space E has the Dunford-Pettis property if every weakly compact
operator defined on E (and taking their values in a Banach space F ) is Dunford-
Pettis.

Note that if E is a Banach lattice and X , Y are two Banach spaces, and if
T : E → X and S : X → Y are two operators such that T is order weakly compact
and S is Dunford-Pettis, then the composed operator S ◦ T is AM-compact.

To give a characterization of AM-compact operators, we need the following
lemma.

Lemma 2.1. Let E be a Banach lattice. Then the following assertions are equiv-

alent.

(1) Every positive operator from E into E is AM-compact.

(2) The identity operator of the Banach lattice E is AM-compact.

(3) E is discrete and its norm is order continuous.

Proof: (1)=⇒(2) Obvious.
(2)=⇒(3) Since the identity operator of E is AM-compact, then for each x ∈

E+, the order interval [0, x] is norm relatively compact, and since [0, x] is norm
closed, then [0, x] is norm compact. Finally, Corollary 21.13 of [1] implies that E
is discrete with order continuous norm.

(3)=⇒(1) Let T be a positive operator from E into E. Since E is discrete
and its norm is order continuous, it follows from Corollary 21.13 of [1] that for
each x ∈ E+, the order interval [0, x] is norm compact and hence T [0, x] is norm
compact. �

Let E be a Banach lattice. For each u ∈ E+, we denote Eu the principal ideal
generated by u, that we endow with the norm ‖.‖∞ defined by ‖x‖∞ = inf{λ > 0 :
‖x‖ ≤ λu}. It is an AM-space having u as the unit and [−u, u] as the closed unit
ball (see Theorem 4.21 of [2]), and the natural embedding iu : (Eu, ‖.‖∞) → E is
continuous.

Moreover, for every f ∈ E′ we have f ◦ iu ∈ (Eu)
′ and ‖f ◦ iu‖(Eu)′ = sup{|(f ◦

iu)(y)| : y ∈ [−u, u]} = sup{|f(y)| : |y| ≤ u} = |f |(u).
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Note that an operator T : E −→ X is AM-compact if and only if for every
u ∈ E+ the composed map T ◦ iu : Eu −→ E −→ X is compact. Thus T : E → X

is AM-compact if and only if for every order bounded sequence (xn) of E, the
sequence (T (xn)) has a norm convergent subsequence in X .

Now we are in position to give this characterization.

Proposition 2.2. Let E be a Banach lattice, X a Banach space and T an ope-

rator from E into X . Then T is AM-compact if and only if for every order

bounded sequence (xn) in E such that (T (xn)) converges weakly to x in X , we

have limn ‖T (xn)− x‖ = 0.

Proof: Let T : E −→ X be an AM-compact operator and A an order bounded
subset of E and let (xn) be a sequence in A such that the sequence (T (xn))
converges weakly to x in X . Since T (A) is norm relatively compact and (T (xn))
converges weakly to x in X , we obtain limn ‖T (xn)− x‖ = 0.

Conversely, consider the operator T : E −→ X and let A be an order bounded
subset of E. Choose x ∈ E+ with A ⊂ [−x, x]. Let Ex be the principal ideal
generated by x in E and endowed with the norm ‖ · ‖∞ and (xn) be a weakly
null sequence in Ex. Since the identity mapping ix : (Ex, ‖ · ‖∞) −→ (E, ‖ · ‖)
is continuous, (xn) converges weakly to 0 in E. Hence (Txn) converges weakly
to zero in X , and thus ‖Txn‖ → 0 by the assumption. Thus we have verified
that T ◦ ix : Ex −→ X is a Dunford-Pettis operator. Since (Ex, ‖ · ‖∞) is an
AM-space with unit, then by Theorem 2.1.3 of [2], (Ex, ‖ · ‖∞) can be identified
with a suitable C(K)-space. It follows from Theorem 4 of [15], that T ◦ ix is
weakly compact. Thus T (A) is a relatively weakly compact subset of X .

Now we claim that T (A) is relatively norm compact. Indeed, otherwise there
would exist a sequence (Txn) in T (A) without a norm convergent subsequence.
By the relative weak compactness of T (A) we may assume that (Txn) converges
weakly to a point x ∈ X . But then we have a contradiction with the assumption.
Therefore, T (A) is a norm relatively compact subset of X , and hence T : E −→ X

is AM-compact. �

As a consequence of Proposition 2.2, we obtain the following characterization
of a discrete Banach lattice with order continuous norm.

Corollary 2.3. Let E be a Banach lattice. Then E is discrete and its norm is

order continuous if and only if every order bounded weakly convergent sequence

(xn) in E is norm convergent.

Proof: Let (xn) be an order bounded and weakly convergent sequence in E.
Since E is discrete with order continuous norm, it follows from Lemma 2.1 that
its identity operator is AM-compact. And hence Proposition 2.2 implies that (xn)
is norm convergent.

Conversely, let (xn) be an order bounded and weakly convergent sequence in E.
Then (xn) is norm convergent and it follows from Proposition 2.2 that the identity
operator of E is AM-compact. Finally, Lemma 2.1 implies that E is discrete and
its norm is order continuous. �
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3. Major results

Note that each b-weakly compact operator is order weakly compact, but the
converse is false in general. However, if the Banach lattice E has the (b)-property
(i.e. each subset A ⊂ E is order bounded in E whenever it is order bounded in
its topological bidual E′′), then the class of b-weakly compact operators on E

coincides with that of order weakly compact operators on E.
On the other hand, each almost Dunford-Pettis operator is b-weakly compact.

(In fact, let (xn) be a disjoint b-order bounded sequence of E. Then (xn) is an
order bounded disjoint sequence of the topological bidual E′′. So, xn → 0 for the
topology σ(E′′, E′′′), and hence xn → 0 for the topology σ(E,E′). If T : E → X

is almost Dunford-Pettis, then T (xn) converges in norm to 0 and hence it follows
from Proposition 2.8 of [3] that T is b-weakly compact). However, a b-weakly
compact operator is not necessarily almost Dunford-Pettis. In fact, the identity
operator Idℓ2 : ℓ2 → ℓ2 is b-weakly compact, but it is not almost Dunford-Pettis.

Now, we are in position to give necessary and sufficient conditions under which
each regular order weakly compact (resp. b-weakly compact, almost Dunford-
Pettis, Dunford-Pettis) operator T : E −→ F is AM-compact.

Theorem 3.1. Let E and F be two Banach lattices such that the lattice opera-

tions of F are weakly sequentially continuous. Then the following statements are

equivalent.

(1) Every regular order weakly compact operator T : E → F is AM-compact.

(2) Every regular b-weakly compact operator T : E → F is AM-compact.

(3) Every regular almost Dunford-Pettis operator T : E → F is AM-compact.

(4) One of the following conditions is valid:

(i) E′ is discrete,

(ii) F is discrete with order continuous norm.

Proof: (1)=⇒(2) Since every regular b-weakly compact operator is order weakly
compact, it is evident that every regular b-weakly compact operator is AM-
compact.

(2)=⇒(3) Since every regular almost Dunford-Pettis operator is b-weakly com-
pact, then every regular almost Dunford-Pettis operator is AM-compact.

(3)=⇒(4) Suppose that E′ is not discrete. So, we have to show that F is
discrete and its norm is order continuous.

Suppose that F is not discrete or its norm is not order continuous. It fol-
lows from Corollary 2.4 the existence of an order bounded sequence (yn) ⊂ F

which converges weakly to some y and limn ‖yn − y‖ > ε. Consider the sequence
(vn) = (|yn − y|). Since the lattice operations of F are weakly sequentially con-
tinuous, then (vn) converges weakly to 0 and we have limn ‖vn‖ > ε. Now, by
Corollary 2.3.5 of [17], there exist a subsequence (kn) ⊂ N and a disjoint sequence
(zn) ⊂ F+ such that zn ≤ vkn

and ‖zn‖ ≥ 1
2 for all n ∈ N. Since (vn) is order

bounded then (zn) is order bounded and hence there exists z ∈ F+ such that
(zn) ⊂ [0, z]. By Lemma 3.4 of [7] there exists a positive disjoint sequence (gn) of
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F ′ with ‖gn‖ ≤ 1 such that

gn(zn) = 1 for all n and gn(zm) = 0 for n 6= m.

On the other hand, as E′ is not discrete, it follows from Theorem 3.1 of Chen-
Wickstead [11] the existence of a sequence (fn) ⊂ E′ such that fn → 0 in σ(E′, E)
as n → ∞ and ‖fn‖ = f > 0 for all n and some f ∈ E′.

Now, we consider the operators S, T : E → F defined by

S(x) =

( ∞
∑

n=1

fn(x) · zn

)

and T (x) = f(x) · z for all x ∈ E.

Since
∑

∞

n=1 ‖fn(x) · zn‖ ≤
∑

∞

n=1 f(|x|) · ‖zn‖ ≤ f(|x|) · ‖z‖, the series defining
S converges in norm for each x ∈ E. So, the operator S is well defined and is
positive. Note that S and T are the same operators considered in Theorem 2
of [19].

Clearly, 0 ≤ S ≤ T holds. (In fact, for each x ∈ E+ and each n ≥ 1, we have
|
∑n

k=1 fk(x) · zk| ≤
∑n

k=1 f(x) · zk ≤ f(x) · z. Then |
∑

∞

n=1 fn(x) · zn| ≤ f(x) · z
for each x ∈ E+. Hence 0 ≤ S(x) ≤ T (x) for each x ∈ E+.)

The operator T is compact and hence almost Dunford-Pettis. After that, it
follows from the Corollary 2.3 of [9] that the operator S is almost Dunford-Pettis.

It remains to show that S is not AM-compact. Choose u ∈ E+ such that
f(u) > 0, and note that (fn ◦ iu)

∞

n=1 has no norm convergent subsequence in
(Eu)

′. In fact, for each y ∈ Eu we have fn ◦ iu(y) = fn(y) → 0 as n → ∞. Then
fn ◦ iu → 0 in σ((Eu)

′, Eu). As ‖fn ◦ iu‖(Eu)′ = ‖fn‖(u) = f(u) > 0 for all n, we
conclude that (fn ◦ iu)

∞

n=1 has no norm convergent subsequence in (Eu)
′.

If S is AM-compact, then S ◦ iu : Eu → E → F is compact and so is (S ◦ iu)
′.

As we have (S◦iu)
′(g) = (

∑

∞

n=1 g(zn)·(fn◦iu)) for all g ∈ F ′, then (S◦iu)
′(gk) =

(fk ◦ iu) for all k. Hence ((S ◦ iu)
′(gk)) has a norm convergent subsequence in

(Eu)
′. We conclude that (fk ◦ iu)k has a convergent subsequence in (Eu)

′. This
is a contradiction and then S is not AM-compact.

(4)(i)=⇒(1) Follows from Proposition 7 of [4].
(4)(ii)=⇒(1) Since T : E → F is a regular operator, then the image by T ,

of each order interval of E, is an order bounded subset of F . Finally, the result
follows from Corollary 21.13 of [1]. �

Remark 3.2. The assumption “the lattice operations of F are weakly sequen-
tially continuous” is essential in Theorem 3.1. For instance, every regular opera-
tor T : L1[0, 1] → L2[0, 1] is AM-compact. But neither (L1[0, 1])′ is discrete nor
L2[0, 1] is discrete with order continuous norm.

As consequences of Theorem 3.1, we obtain the following results:

Corollary 3.3. Let F be a Banach lattice with weakly sequentially continuous

lattice operations. Then the following statements are equivalent.

(1) Every regular order weakly compact operator T : ℓ∞ → F is AM-compact.
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(2) Every regular b-weakly compact operator T : ℓ∞ → F is AM-compact.

(3) Every regular almost Dunford-Pettis operator T : ℓ∞ → F is AM-compact.

(4) F is discrete with order continuous norm.

Corollary 3.4. Let E be a Banach lattice, then the following statements are

equivalent.

(1) Every regular order weakly compact operator T : E → c is AM-compact.

(2) Every regular b-weakly compact operator T : E → c is AM-compact.

(3) Every regular almost Dunford-Pettis operator T : E → c is AM-compact.

(4) E′ is discrete.

To give another consequence of Theorem 3.1, we need to recall from [8] that an
operator T from a Banach lattice E into a Banach space X is said to be b-AM-
compact if it carries each b-order bounded subset of E into a relatively compact
subset of X .

Note that a regular order weakly compact (resp. b-weakly compact, almost
Dunford-Pettis) operator is not necessarily b-AM-compact. In fact, the identity
operator IdL1[0,1] : L

1[0, 1] → L1[0, 1] is order weakly compact (resp. b-weakly

compact, almost Dunford-Pettis) but it is not b-AM-compact (because L1[0, 1] is
not a discrete KB-space).

Theorem 3.5. Let E and F be two Banach lattices such that the norm of E is

order continuous and the lattice operations of E and F are weakly sequentially

continuous. Then the following statements are equivalent.

(1) Every regular operator T : E → F is b-AM-compact.

(2) Every regular order weakly compact operator T : E → F is b-AM-

compact.

(3) Every regular AM-compact operator T : E → F is b-AM-compact.

(4) One of the following conditions is valid:

(a) E is a discrete KB-space,

(b) F is a discrete KB-space.

Proof: (1)=⇒(2) Obvious.
(2)=⇒(3) Since every regular AM-compact is order weakly compact, then every

regular AM-compact operator is b-AM-compact.
(3)=⇒(4) Since the norm of E is order continuous and the lattice operations

of E are weakly sequentially continuous, it follows from Corollary 2.3 of [12] that
E is discrete.

Suppose that E is not a KB-space and that F is not a discrete KB-space. Since
the norm of E is order continuous, then it follows from [10] that E contains a
complemented copy of c0. Hence, there exists a positive projection P : E → c0
and let i : c0 → E be the injection of c0 in E. And as F is not a discrete KB-space,
it follows from Corollary 3.9 of [8] that there exists a regular operator S : c0 −→ F

which is not b-AM-compact.
Consider the operator T = S ◦P : E → c0 → F , since S and P are two regular

operators and the identity operator Idc0 is AM-compact, then T = S ◦ Idc0 ◦ P
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is AM-compact. But T is not b-AM-compact. Otherwise, the operator T ◦ i = S

would be b-AM-compact, which is a contradiction.
(4)=⇒(1) Follows from [8, Corollary 2.4]. �

Remarks 3.6. (1) The assumption “the norm of E is order continuous” is
essential in Theorem 3.5. For instance, every positive operator T : l∞ → c0 is
b-AM-compact. But neither l∞ nor c0 is a discrete KB-space.

(2) The assumption “the lattice operations of E are weakly sequentially contin-
uous” is essential in Theorem 3.5. For instance, from [16, Theorem] it follows that
each regular operator T : L1[0, 1] → c0 is Dunford-Pettis. Since T = T ◦ IdL1[0,1]

and IdL1[0,1] is b-weakly compact, it follows from Proposition 3.4 of [8] that the

operator T : L1[0, 1] → c0 is b-AM-compact. But neither L1[0, 1] nor c0 is a
discrete KB-space.

(3) The assumption “the lattice operations of F are weakly sequentially contin-
uous” is essential in Theorem 3.5. For instance, from Theorem 6.8 of Wnuk [20]
every regular operator T : c0 → (l∞)′ is compact. But neither c0 nor (l∞)′ is a
discrete KB-space.

Let us recall that a Banach space X has the Dunford-Pettis property if
limn x

′

n(xn) = 0 whenever (xn) converges weakly to zero in X and (x′

n) converges
weakly to zero in X ′.

It follows from Theorem 5.82 of [2] that a Banach space X has the Dunford-
Pettis property if and only if every weakly compact operator from X to an arbi-
trary Banach space is Dunford-Pettis.

We end this paper by establishing a result on the AM-compactness of Dunford-
Pettis operators.

Theorem 3.7. Let E and F be two Banach lattices such that E is Dedekind

σ-complete and the lattice operations of F are weakly sequentially continuous.

Then the following statements are equivalent.

(1) Every regular Dunford-Pettis operator T : E → F is AM-compact.

(2) One of the following conditions is valid:

(a) the norm of E is order continuous,

(b) F is discrete with order continuous norm.

Proof: (2)(a)⇒(1). Let T : E → F be a regular Dunford-Pettis operator and let
A be an order bounded subset of E. Since E has an order continuous norm, then
it follows from Theorem 4.9 of [2] that A is weakly relatively compact. On the
other hand, since the operator T is Dunford-Pettis, then T (A) is norm relatively
compact and hence T is AM-compact.

(2)(b)⇒(1). In this case it follows from Corollary 21.13 of [1] that every regular
operator T : E → F is AM-compact.

(1)⇒(2). Assume that the norm of E is not order continuous and that F is not
discrete with order continuous norm. Since E is Dedekind σ-complete, it follows
from Corollary 2.4.3 of [17] that E contains a sublattice which is isomorphic
to l∞ and there exists a positive projection P from E onto l∞. As the lattice
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operations of F are weakly sequentially continuous and F is not discrete with
order continuous norm, it follows from Corollary 3.3 that there exists a regular
almost Dunford-Pettis operator S : l∞ → F which is not AM-compact. Since
S : l∞ → F is almost Dunford-Pettis, it is order weakly compact and as l∞ is
an AM-space with unit, S : l∞ → F is weakly compact. As l∞ has the Dunford-
Pettis property, then S : l∞ → F is Dunford-Pettis. We consider the operator
product T = S ◦P : E → F . Note that T is Dunford-Pettis because the operator
S is Dunford-Pettis and the class of Dunford-Pettis operators is a two-sided ideal.
But it is not AM-compact. If not, the operator T ◦ i = S would be AM-compact
and this is a contradiction. �

Remark 3.8. The assumption “E is Dedekind σ-complete” is essential in Theo-
rem 3.7. In fact, every regular Dunford-Pettis operator T : c → c is AM-compact
(In fact, since T is Dunford-Pettis then T is almost Dunford-Pettis. As c′ is dis-
crete and the lattice operations of c are weakly sequentially continuous, then it
follows from Theorem 3.1 that the operator T is AM-compact), but the norm of
the Banach lattice c is not order continuous.
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