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Abstract. Let ¢ be a positive integer, x denote any Dirichlet character mod g. For any
integer m with (m,q) = 1, we define a sum C(x, k, m;q) analogous to high-dimensional
Kloosterman sums as follows:

g, q q
C(x,k,m;q) = Z Z Z (a1 +ag+ ...+ ap + majaz .- ag),

where a - @ = 1 mod q. The main purpose of this paper is to use elementary methods
and properties of Gauss sums to study the computational problem of the absolute value
|C(x, k, m;q)|, and give two interesting identities for it.

Keywords: Dirichlet character of polynomials, sum analogous to Kloosterman sum, iden-
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1. INTRODUCTION

Let ¢ be a positive integer, x denote any Dirichlet character mod ¢q. For any integer
m with (m,q) = 1, we define a sum analogous to Kloosterman sums C(x, k,m;q) as
follows:

!/ !/ /

q  q q
C(x,k,m;q) = Z Z ZX(a1+a2+...+ak+ma1a2...ak),

a1=1as=1 ap=1

where a-a@ = 1 mod q.
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It is clear that this sum very similar to a hyper-Kloosterman sum, it is also a special
case of the general character sums of the polynomials

Ni+Mi Na+M> Ns+Ms

(1) Z Z Z X(f(xlvx%"wxs))a

r1=N1+1xz2=N2+1 rs=Ns+1

where M; and N; are any positive integers, and f(x1,xo,...,zs) is a polynomial.

It is a very important and difficult problem in analytic number theory to give
a sharper upper bound estimate for (1). If ¢ = p is an odd prime and s = 1, then
Weil (see [1]) obtained the following important conclusion:

Let x be a gth-order character modp. If f(z) is not a perfect gth power mod p,
then we have the estimate

N+M

(2) > x(f(x)) < p? Inp,

r=N-+1

where A <« B denotes |A| < ¢B for some constant ¢, which in this case depends only
on the degree of f(z). Some related results can also be found in [2], [5] and [6]. The
main term p? in (2) is the best possible. In fact, Zhang Wenpeng and Yao Weili [6]
found some polynomials f(z) = (x — r)™(z — s)" such that

q

Yo xl(a—=r)"(a—)") = va x((sm —rm)™(rn — sn)")x((m +n)™*"),

a=1

where (r — s,q) = 1, m, n and x also satisfy some special conditions.

In this paper, we shall use elementary methods and properties of Gauss sums to
study the computational problem of C(x, k, m; q), and give two interesting identities.
That is, we shall prove the following conclusions:

Theorem 1. Let ¢ be an odd number, k and m be positive integers such that
(km,q) = 1 and (k+ 1,¢(q)) = 1. Then for any primitive character x mod ¢, we
have the identity

IC(x, k,m;q)| =

ql q/ ql
ZZ"'ZX(G1+GQ+...+ak+mm):\/q_k,
ar=1laz=1 ap=1

where @ denotes the solution of the congruent equation ax = 1 mod gq.
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Theorem 2. Let g be an odd perfect square, k and m be positive integers such
that (km,q) = 1 and (k + 1,¢(q)) = 1. Then for any primitive character y mod g,

we have the identity
q

S Xl +ma*)

a=1

=4

For the general integer ¢ > 3 (or the general positive integer k), whether there

exists an identity for

q.

Z x(a +ma")

a=1

)

is an open problem.

2. SEVERAL LEMMAS
To complete the proof of our Theorems, we need the following several lemmas.

Lemma 1. Let p be an odd prime, o« be a positive integer, x be any primitive
character modp®. Then for any integer m and positive integer k with (m(k + 1),
p(p — 1)) = 1, we have the identity

/ Ly k)2
...ZX(a1+a2+...+ak+ma1a2...ak) = ph/e
1

p_, P

a1=1as=1 ay

a a (e

(e

P
where Y denotes the summation over all 1 < a < p® such that (a,p) = 1.
a=1

Proof. From the properties of the classical Gauss sums and the reduced residue

system mod p® we have (in what follows we use e(t) = e2™it)
o o
(3) ZZ...ZX(a1—I—ag—i—...—i—ak—i—malag...ak)
a1:1 a2:1 akzl
1 & pu/pu_ blay +as + ...+ ap +maras .. ax)
7(X) p

/pu_ a1+ as + ...+ ap + mbFtlaras ax
> X0) e % )

12 Ly _ abF T +as + ..+ a + maraz - ag
Z—_ZZ X(b)e( o )
7(X) p

I
q
=
[]*
R
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Since (k + 1,p(p — 1)) = 1, there exist two integers r and s such that ro(p®) +
s(k+1) = 1. If b runs through a reduced residue system mod p®, then b**! also
runs through a reduced residue system mod p®. So from (3) we have

(e

Q

a

P / p / L /
(4) ...ZX(a1+a2+...+ak+ma1a2...ak)
a1=1lazx=1 ap=1
1 & P, ar "t +as + ...+ ap + maiaz . ak
- - Z o Z Y(bs(kJrl)) e
T(X) pe
a;=1 ar=1b=1
pa

e(alb—i—ag+...+ak—|—ma1a2...ak)

Il
3
M =
~
(]
Q
~
[+
R
=|
o
—~
=
~

Y a1=1 ap=1b=1 p(y
7(X%) LAV as + as + ...+ ay + majas .. ax
= ® Z x°(a1) e( - )
X a;=1 ap=1 p
2 p*
T ! as +as...+ ag
= E ) Z X magag k) (—a)
X az=1 ar=1 p
k+1(—s
™(X?)
= x°(m)

Note that |7(X)| = |7(xX*)| = p*/?, |x*(m)| = 1, from (4) we may immediately deduce

p*  p” p*

/ / / - k)2
ZZ...ZX(a1+a2+...+ak+ma1a2...ak) =p .
a1=1as=1 ap=1

This proves Lemma 1. ([
Now we introduce a hyper-Kloosterman sum by
Kgm+lz)= 3 oMt

T1,T2,...,Tm mod q
(z1,p)=...=(Tm, p)=1

for ¢ = p®*, m > 1, and z not divisible by p. Define an exponential sum by

I(g,m,z) = Z e(%ﬁn).

x mod ¢q
(z,p)=1

Under the above notations, we have the following:
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Lemma 2. Let p be an odd prime, g = p*®. Then for any integers m > 1 and z
with (z,p) = 1, we have the identity

K(g,m+1,2) = ¢ V/2I(q,m, z2).

Proof. This identity follows from R. A.Smith [3] or Yangbo Ye [4]. O

Lemma 3. Let p be an odd prime, « be any positive integer, x be any primitive
character mod p?>®. Then for any integer m and positive integer k with (k + 1,
p(p—1)) = (km,p) = 1, we have the identity

p>®
Z (a1 +az+ ...+ ap + majaz ... ax)

a(k—1)

p*°
Z k;a—l—ma

Proof. From Lemma 2 and the method of proving (4) we have

2 2a

P
.ZX(a1+a2+...+ak+ma1a2...ak)

~
~

(5) Z

al1=

—
Q
M
I
—
5]
ES
Il
—

1 X~ say+as + ...+ ap + mbFlatas T ag
LS )

Il
\]
-
<,
7
S
M‘U

ka + mbFt1igk
p2a )

kab + mba*
p2a )

=|
—~
(=
S~—
A
o~
— —~ —

from which Lemma 3 follows. O
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Lemma 4. Let ¢; and g2 be two positive integers with (¢1,q2) = 1, x1 mod ¢1
and x2 mod q2. Then for any integers m > 1 and n with (n,q1q2) = 1, we have

(11<12, (11112 Q1(I2
Z Z Z X1x2(a1 +az + ...+ @y +1G1T2 . . . Cpy)
a1=1 az=1 Am=1
q1 q1
ZZ le (a1 +az+...+am+naas...ay)
a1=1az=1 am=1
q2 q2

X Z S Z Xo(b1 4 bz + ...+ by + nbiba. .. by)

=1b2=1 by=1

Proof. Since (g1,92) = 1, from the properties of the reduced residue system
mod ¢1q2 we have

(11(12 (11112 qmz
E E E xi1xz2(ar +as + ...+ am +na1a2 ... ap)
a1=1laz=1 am=1

q1 q2 q1 q2 q1

Z Z Z Z Z Z X1X2<Z a;q2 + biq1) +nHaiq2 —|—biq1>

a1=1b;=1a2=1by=1 am=1b,,=1

q1 q1
:Z S ZXl(ZazqzﬂLnHazqz)
=las=1 am=1
q2 q2
XZZ ZX2(szQ1+ngzQ1)
bi=lbo=1  by,=1
q1 q1
ZZ ZXI (a1 +az+ ...+ am +na102 .. .Gm)
a1=1lazx=1 am=1
q2 q2
X Z Z ZXQ b1+b2+ +bm+n6162...6m).
bi=lbo=1  by,=1
This proves Lemma 4. U

3. PROOF OF THE THEOREMS

In this section, we shall complete the proof of our Theorems. First we prove
Theorem 1. Let ¢ = pI'p3?...po¢" denote the factorization of ¢ into prime powers.
Then for any primitive character y mod ¢, we have x = xix2...Xr, Where x; is
a primitive character modp;®, i = 1,2,...,r. From Lemma 1 and Lemma 4 with
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(km,q) =1, (k+1,9(q)) =1 we have

.ZX(a1+a2+...+ak+ma1a2...ak)

a1:1 a2:1 akzl
o oy
T p,”, p,;”, Pyt
= E Xal—l—ag—l—...—l—ak—l—malag...ak)
i=1"'a;=1az2=1 ar=1

This proves Theorem 1. O

Now we prove Theorem 2. Applying Lemma 1 and Lemma 3 we have the identity

20 20
pok = pz:pz:/ pz: (a1 +az+ ...+ ap + mkajaz .- ar)
ar=1az=1 . =1
= p(k=1) le(ka + mka®)
a=1
or
2
(6) > Ma+mat)| = pe.
a=1

From (6), Lemma 4 and the properties of the primitive character x mod ¢ we may
immediately deduce the identity

S Xla+mah)| = 7.
a=1

This completes the proof of Theorem 2. O
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