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Abstract. In this paper, we deal with the existence of periodic solutions of the p(t)-
Laplacian Hamiltonian system







d

dt
(|u̇(t)|p(t)−2u̇(t)) = ∇F (t, u(t)) a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0.

Some new existence theorems are obtained by using the least action principle and minimax
methods in critical point theory, and our results generalize and improve some existence
theorems.

Keywords: periodic solution, Hamiltonian system, p(t)-Laplacian system, critical point,
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1. Introduction

Consider the p(t)-Laplacian Hamiltonian system

(1.1)





d

dt
(|u̇(t)|p(t)−2u̇(t)) = ∇F (t, u(t)) a.e. t ∈ [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

(A) F (t, x) is measurable in t for every x ∈ R
N and continuously differentiable in x

for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+), b ∈ L1([0, T ],R+) such that

|F (t, x)| 6 a(|x|)b(t), |∇F (t, x)| 6 a(|x|)b(t)

for all x ∈ R
N and a.e. t ∈ [0, T ].

This work has been partially supported by the NNSF (No. 11171351, 11261020) of China
and Hunan Provincial Innovation Foundation For Postgraduate (No. CX2011B079).
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Moreover, we suppose that p(t) ∈ C([0, T ],R+) satisfies the following assumption:

(A′) p+ := max
06t6T

p(t), p− := min
06t6T

p(t) > 1, and q+ > 1 satisfies 1/p− + 1/q+ = 1.

When p(t) = p is a constant, system (1.1) reduces to the ordinary p-Laplacian

system. In recent years, the existence and multiplicity of periodic solutions for

Hamiltonian systems have been investigated via the variational methods and many

results were obtained based on various hypotheses on the potential functions, see,

e.g., [10], [13], [14], [25] and references therein.

If p = 2, system (1.1) reduces to

(1.2)

{
ü(t) = ∇F (t, u(t)) a.e. t ∈ [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0.

The corresponding functional ψ on H1
T given by

ψ(u) :=
1

2

∫ T

0

|u̇(t)|
2
dt+

∫ T

0

F (t, u(t)) dt

is continuously differentiable and weakly lower semicontinuous on H1
T (see [12]),

where

H1
T := {u : [0, T ] → R

N , u is absolutely continuous,

u(0) = u(T ), u̇ ∈ L2([0, T ];RN)}

is a Hilbert space with a norm defined by

‖u‖H1
T

:=

(∫ T

0

|u(t)|2 dt+

∫ T

0

|u̇(t)|2 dt

)1/2

for u ∈ H1
T .

Considerable attention has been paid to the periodic solutions for system (1.2) in

recent years. It has been proved that system (1.2) has at least one solution which

minimizesH1
T by the least action principle (see [1], [11], [12], [15], [16], [17], [22], [24]).

Many solvability conditions were given, such as the coercivity condition (see [1]), the

periodicity condition (see [24]), the convexity condition (see [11]), the boundedness

condition (see [12], [23]), the subadditive condition (see [15]), and the sublinear con-

dition (see [16]). Meanwhile, using the minimax methods, [5], [8], [20] considered the

superquadratic second order Hamilton systems. The periodic potential (see [6], [9],

[19]) and the subquadratic potential (see [6], [7], [16], [18]) have been also considered.

Specifically, when F (t, x) = G(x) + H(t, x), H is sublinear, that is, there exist

f, g ∈ L1(0, T, R+) and α ∈ [0, 1) such that

(1.3) |∇H(t, x)| 6 f(t)|x|α + g(t)
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for all x ∈ R
n and a.e. t ∈ [0, T ], assuming that there exists r < 4π

2/T 2 such that

(1.4) (∇G(x) −∇G(y), x − y) > −r|x− y|2

for all x, y ∈ R
n, and there exists a subset E of [0, T ] with meas(E) > 0 such that

(1.5) F (t, x) → −∞ as |x| → ∞

for a.e. t ∈ E, under the condition of (1.3), (1.4), and (1.5), Ye and Tang (see [26])

proved the existence of periodic solutions for system (1.2).

The study of elliptic partial differential equations and variational problems with

nonstandard growth conditions has been an interesting topic in recent years (see, for

example, [3], [4], [27], [28]). The ordinary p(t)-Laplacian system (1.1) was studied by

Fan (see [2]), then Wang (see [21]) obtained the existence and mulplicity of periodic

solutions for ordinary p(t)-Laplacian system (1.1) under the generalized Ambrosetti-

Rabinowitz conditions.

The ordinary p(t)-Laplacian system can be applied to describe the physical phe-

nomena with “pointwise different properties” which arise from the nonlinear elasticity

theory (see [27]). The p(t)-Laplacian system possesses more complicated nonlinearity

than that of the p-Laplacian, for example, it is not homogeneous, which causes many

troubles, and some classical theories and methods, such as the theory of Sobolev

spaces are not applicable.

Inspired and motivated by the results mentioned above, in this paper we sup-

pose that H(t, x) is p−-sublinear, that is, there exist f, g ∈ L1([0, T ],R+) and

α ∈ [0, p− − 1) such that

(1.6) |∇H(t, x)| 6 f(t)|x|α + g(t)

for all x ∈ R
n and a.e. t ∈ [0, T ], and there exist 0 6 r < 1/(p+T p−) and 1 6 β 6 p−

such that

(1.7) (∇G(x) −∇G(y), x− y) > −r|x− y|β

for all x, y ∈ R
n. Under the condition of (1.5), (1.6), and (1.7), the existence of

periodic solutions for system (1.1), which generalizes Ye-Tang’s results, is obtained by

the minimax methods in the critical point theory. Moreover, we consider system (1.1)

with a potential which is the sum of a subconvex function and another function under

suitable conditions by the least action principle, and the new solvability conditions

develop and generalize the corresponding results in [24].
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2. Preliminaries

In this section we recall some known results in the critical point theory, and the

properties of the space W
1,p(t)
T are listed for the convenience of readers.

Definition 2.1 ([21]). Let p(t) satisfy the condition (A′), and define

Lp(t)([0, T ],RN) =

{
u ∈ L1([0, T ],RN) :

∫ T

0

|u|p(t) dt <∞

}

with the norm

|u|p(t) := inf

{
λ > 0:

∫ T

0

∣∣∣u
λ

∣∣∣
p(t)

dt 6 1

}
.

For u ∈ L1
loc([0, T ],RN), let u′ denote the weak derivative of u, if u′ ∈ L1

loc([0, T ],RN)

and satisfies ∫ T

0

u′φdt = −

∫ T

0

uφ′ dt, ∀φ ∈ C∞
0 ([0, T ],RN).

Define

W 1,p(t)([0, T ],RN) = {u ∈ Lp(t)([0, T ],RN) : u′ ∈ Lp(t)([0, T ],RN)}

with the norm ‖u‖W 1,p(t) := |u|p(t) + |u′|p(t).

R em a r k 2.1. If p(t) = p, where p ∈ [1,∞) is a constant, by the definition

of |u|p(t) it is easy to get |u|p =
(∫ T

0
|u(t)|p dt

)1/p
, which is the same with the usual

norm in the space Lp.

The space Lp(t) is a generalized Lebesgue space, and the space W 1,p(t) is a gen-

eralized Sobolev space. Because most of the following lemmas have appeared in [2],

[4], [12], [21], we omit their proofs.

Lemma 2.1 ([2]). Both Lp(t) and W 1,p(t) are Banach spaces with the norms

defined above; when p− > 1, they are reflexive.

Definition 2.2 ([12]).

C∞
T = C∞

T (R,RN ) := {u ∈ C∞(R,RN ) : u is T -periodic}

with the norm ‖u‖∞ := max
t∈[0,T ]

|u(t)|.

For a constant p ∈ [1,∞), using another concept of weak derivative which is called

the T -weak derivative, Mawhin and Willem gave the definition of the space W 1,p
T in

the following way.
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Definition 2.3 ([12]). Let u ∈ L1([0, T ],RN) and v ∈ L1([0, T ],RN). If

∫ T

0

vφdt = −

∫ T

0

uφ′ dt ∀φ ∈ C∞
T ,

then v is called the T -weak derivative of u and is denoted by u̇.

Definition 2.4 ([12]). Define

W 1,p
T ([0, T ],RN) = {u ∈ Lp([0, T ],RN) : u̇ ∈ Lp([0, T ],RN)}

with the norm ‖u‖W 1,p

T
= (|u|pp + |u̇|pp)

1/p.

Definition 2.5 ([2]). Define

W
1,p(t)
T ([0, T ],RN) = {u ∈ Lp(t)([0, T ],RN) : u̇ ∈ Lp(t)([0, T ],RN)}

and H
1,p(t)
T ([0, T ],RN) to be the closure of C∞

T in W
1,p(t)([0, T ],RN).

R em a r k 2.2. From Definition 2.4, if u ∈ W
1,p(t)
T ([0, T ],RN), it is easy to con-

clude that u ∈ W 1,p−

T ([0, T ],RN).

Lemma 2.2 ([12]). For u ∈W 1,p−

T , let

ū =
1

T

∫ T

0

u(t) dt and ũ(t) = u(t) − ū.

Then ∫ T

0

|ũ(t)|p
−

dt 6 T p−
∫ T

0

|u̇(t)|p
−

dt.

Lemma 2.3 ([2]).

(i) C∞
T ([0, T ],RN) is dense in W

1,p(t)
T ([0, T ],RN),

(ii) W
1,p(t)
T ([0, T ],RN) = H

1,p(t)
T ([0, T ],RN) := {u ∈ W 1,p(t)([0, T ],RN) : u(0) =

u(T )},

(iii) if u ∈ H1,1
T , then the derivative u

′ is also the T -weak derivative u̇, i.e. u′ = u̇.

R em a r k 2.3. In what follows, we use ‖u‖ instead of ‖u‖
W

1,p(t)
T

for convenience

without clear indications.

43



Lemma 2.4 ([12]). Assume that u ∈W 1,1
T . Then

(i)
∫ T

0 u̇ dt = 0,

(ii) u has its continuous representation, which is still denoted by u(t) =
∫ t

0
u̇(s) ds+

u(0), u(0) = u(T ),

(iii) u̇ is the classical derivative of u, if u̇ ∈ C([0, T ],RN).

Since every closed linear subspace of a reflexive Banach space is also reflexive, we

have

Lemma 2.5 ([2]). H
1,p(t)
T ([0, T ],RN) is a reflexive Banach space if p− > 1.

Obviously, there are continuous embeddings Lp(t) →֒ Lp− , W 1,p(t) →֒ W 1,p− , and

H
1,p(t)
T →֒ H1,p−

T . By the classical Sobolev embedding theorem we obtain

Lemma 2.6 ([2]). There is a continuous embedding

W 1,p(t) (or H
1,p(t)
T ) →֒ C([0, T ],RN),

when p− > 1, the embedding is compact.

Lemma 2.7. Denoting W
1,p(t)
T = W̃

1,p(t)
T ⊕ R

N , where

W̃
1,p(t)
T =

{
u ∈ W

1,p(t)
T :

∫ T

0

u(t) dt = 0

}
,

there exists C0 > 0 such that, if u ∈ W̃
1,p(t)
T ,

‖u‖∞ 6 2C0

(∫ T

0

|u̇(t)|p(t) dt

)1/p−

+ 2C0T
1/p− .

P r o o f. Let A = {t ∈ [0, T ] : |u̇(t)| > 1}. From Remark 2.2 we obtain u ∈

W 1,p−

T , and by virtue of the inequality in the classical Sobolev space there exists a

positive constant C0 > 0 such that

‖u‖∞ 6 C0

(∫ T

0

|u̇(t)|
p−

dt

)1/p−

= C0

(∫

A

|u̇(t)|
p−

dt+

∫

[0,T ]\A

|u̇(t)|
p−

dt

)1/p−

6 C0

(∫

A

|u̇(t)|
p(t)

dt+ meas [0, T ] \A

)1/p−

6 C0

(∫ T

0

|u̇(t)|p(t) dt+ T

)1/p−

6 2C0

(∫ T

0

|u̇(t)|
p(t)

dt

)1/p−

+ 2C0T
1/p− .

This completes the proof of Lemma 2.7. �
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Lemma 2.8 ([2]). Each of the following two norms is equivalent to the norm

in W
1,p(t)
T :

(i) |u̇|p(t) + |u|q, 1 6 q 6 ∞,

(ii) |u̇|p(t) + |ū|, where ū = (1/T )
∫ T

0
u(t) dt.

Lemma 2.9 ([21]). If we denote ̺(u) =
∫ T

0
|u|p(t) dt, ∀u ∈ Lp(t), then

(i) |u|p(t) < 1 (= 1;> 1) ⇐⇒ ̺(u) < 1 (= 1;> 1);

(ii) |u|p(t) > 1 =⇒ |u|p
−

p(t) 6 ̺(u) 6 |u|p
+

p(t), |u|p(t) < 1 =⇒ |u|p
+

p(t) 6 ̺(u) 6 |u|p
−

p(t);

(iii) |u|p(t) → 0 ⇐⇒ ̺(u) → 0; |u|p(t) → ∞ ⇐⇒ ̺(u) → ∞.

Proposition 2.1. In the space W
1,p(t)
T , the implication

‖u‖ → ∞ =⇒

∫ T

0

|u̇|p(t) dt+ |ū| → ∞

holds.

P r o o f. By Lemma 2.8 there exists a positive constant C1 such that

‖u‖ 6 C1(|u̇|p(t) + |ū|).

If |u̇|p(t) < 1, it is easy to get

(2.1) |u̇|p(t) <

∫ T

0

|u̇|p(t) dt+ 1.

When |u̇|p(t) > 1, we conclude that

(2.2) |u̇|p(t) 6

( ∫ T

0

|u̇|p(t) dt

)1/p−

and by Lemma 2.9, (2.1) and (2.2) it follows that

(2.3) ‖u‖ 6 C1

((∫ T

0

|u̇|p(t) dt

)1/p−

+ 1 + |ū|

)
,

which implies that

‖u‖ → ∞ =⇒

∫ T

0

|u̇|p(t) dt+ |ū| → ∞.
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Lemma 2.10 ([21]). If u, un ∈ Lp(t) (n = 1, 2, . . .), then the following statements

are equivalent to each other:

(i) lim
n→∞

|un − u|p(t) = 0,

(ii) lim
n→∞

̺(un − u) = 0,

(iii) un converges to u in measure in [0, T ] and lim
n→∞

̺(un) = ̺(u).

Definition 2.6 ([24]). A function G : R
N → R is said to be (λ, µ)-subconvex if

G(λ(x + y)) 6 µ(G(x) +G(y))

for some λ, µ > 0 and all x, y ∈ R
N . A function G : R

N → R is called γ-subadditive

if it is (1, γ)-subconvex. A function G : R
N → R is called subadditive if it is

1-subadditive. The convex and subadditive function are special subconvex functions.

Lemma 2.11 ([26]). Suppose that F satisfies the assumption (A) and E is a

measurable subset of [0, T ]. Assume that

F (t, x) → −∞ as |x| → ∞

for a.e. t ∈ E. Then for every δ > 0 there exists a subset Eδ of E with meas(E\Eδ) <

δ such that

F (t, x) → −∞ as |x| → ∞

uniformly for all t ∈ Eδ.

Lemma 2.12 ([21]). The functional on W
1,p(t)
T given by

(2.4) ϕ(u) =

∫ T

0

1

p(t)
|u̇(t)|p(t) dt+

∫ T

0

F (t, u(t)) dt

is continuously differentiable and weakly lower semicontinuous onW
1,p(t)
T . Moreover,

we have

〈ϕ′(u), v〉 =

∫ T

0

[(|u̇(t)|p(t)−2u̇(t), v̇(t)) + (∇F (t, u(t)), v(t))] dt

for all u, v ∈W
1,p(t)
T . It is well known that the critical points of ϕ correspond to the

solutions of system (1.1).
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Lemma 2.13. The functional ϕ defined on W
1,p(t)
T given by (2.4) is weakly lower

semicontinuous on W
1,p(t)
T .

P r o o f. We divide ϕ into two parts, ϕ(u) = ϕ1(u) + ϕ2(u), where

ϕ1(u) =

∫ T

0

1

p(t)
|u̇(t)|p(t) dt and ϕ2(u) =

∫ T

0

F (t, u(t)) dt.

It is obvious that ϕ1 is convex and continuous by Lemma 2.10, then ϕ1 is weakly

lower semicontinuous by Theorem 1.2 in [12], and ϕ2 is weakly continuous, that is,

ϕ is the sum of two weakly lower semicontinuous functionals, which implies that ϕ is

weakly lower semicontinuous. �

Lemma 2.14 ([21]). J ′ is a bounded linear functional and a mapping of (S+) on

W
1,p(t)
T , that is, if un ⇀ u weakly inW

1,p(t)
T and lim sup

n→∞
(J ′(un)−J ′(u), un−u)) 6 0,

then un has a convergent subsequence, where J
′ is given by

(2.5) 〈J ′(u), v〉 =

∫ T

0

(|u̇(t)|p(t)−2u̇(t), v̇(t)) dt.

3. Main results and proofs of theorems

Our main results are the following theorems.

Theorem 3.1. Suppose that F (t, x) satisfies assumption (A), (1.5), and (1.7).

Assume that there exists γ(t) ∈ L1([0, T ],R) such that

(3.1) F (t, x) 6 γ(t)

for all x ∈ R
N and a.e. t ∈ [0, T ], and there exists g ∈ L1([0, T ],R+) such that

|∇H(t, x)| 6 g(t)

for all x ∈ R
N and a.e. t ∈ [0, T ]. Then system (1.1) has at least one solution

in W
1,p(t)
T .
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Theorem 3.2. Suppose that F (t, x) satisfies assumption (A), (1.6), and (1.7).

Assume that

|x|−q+αF (t, x) → −∞ as |x| → ∞

uniformly for a.e. t ∈ [0, T ], where α is the same as in (1.6). Then system (1.1) has

at least one solution in W
1,p(t)
T .

R em a r k 3.1. Theorem 3.1 and Theorem 3.2 generalize Theorem 1 and Theo-

rem 2 in [26], respectively.

Theorem 3.3. Suppose that F (t, x) satisfies assumption (A), (1.6), (1.7), and

(3.1). Assume that there exists a subset E of [0, T ] with meas(E) > 0 such that

(3.2) |x|−q+αF (t, x) → −∞ as |x| → ∞

for a.e. t ∈ E. Then system (1.1) has at least one solution in W
1,p(t)
T .

R em a r k 3.2. Theorem 3.3 is a more general result than Theorem 3.1 and The-

orem 3.2, which generalizes Theorem 3 in [26].

Theorem 3.4. Suppose that F = F1+F2, where F1 and F2 satisfy assumption (A)

and the following conditions:

(i) F1(t, ·) is (λ, µ)-subconvex with λ > 1/2 and 1/2 6 µ < 2p−−1λp− for a.e. t ∈

[0, T ], and there exist α ∈ [0, p− − 1), f, g ∈ L1([0, T ],R+) such that

|∇F2(t, x)| 6 f(t)|x|α + g(t)

for a.e. t ∈ [0, T ] and all x ∈ R
N .

(ii)

1

|x|q+α

[
1

µ

∫ T

0

F1(t, λx) dt+

∫ T

0

F2(t, x) dt

]
→ ∞ as |x| → ∞.

Then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .

Corollary 3.1. Assume that F = F1+F2, where F1 and F2 satisfy assumption (A)

and the following conditions:

(i) F1(t, ·) is subadditive for a.e. t ∈ [0, T ], and there exist α ∈ [0, p− − 1), f, g ∈

L1([0, T ],R+) such that

|∇F2(t, x)| 6 f(t)|x|α + g(t)

for a.e. t ∈ [0, T ] and all x ∈ R
N .
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(ii)

|x|−q+α

∫ T

0

F (t, x) dt→ ∞ as |x| → ∞.

Then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .

Corollary 3.2. Assume that F satisfies assumption (A) and the following condi-

tions:

(i) F (t, ·) is (λ, µ)-subconvex with λ > 1/2 and 1/2 6 µ < 2p−−1λp− for a.e.

t ∈ [0, T ].

(ii) ∫ T

0

F (t, x) dt→ ∞ as |x| → ∞.

Then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .

R em a r k 3.3. Theorem 3.4, Corollary 3.1, and Corollary 3.2 generalize Theo-

rem 1, Corollary 1, and Corollary 2 in [24], respectively.

Theorem 3.5. Assume that F = F1 + F2 satisfies assumption (A) and the

following conditions:

(i) F1(t, ·) is (λ, µ)-subconvex for a.e. t ∈ [0, T ], satisfies

F1(t, x) > (h(t), x) + γ1(t)

for a.e. t ∈ [0, T ] and all x ∈ R
n, where γ1 ∈ L1([0, T ],R) and h ∈ L1([0, T ],RN)

with
∫ T

0
h(t) dt = 0, and there exists g ∈ L1([0, T ],R) and D ∈ R such that

|∇F2(t, x)| 6 g(t)

for a.e. t ∈ [0, T ] and x ∈ R
n, and

∫ T

0

F2(t, x) dt > D

for all x ∈ R
N .

(ii)

1

µ

∫ T

0

F1(t, λx) dt+

∫ T

0

F2(t, x) dt→ ∞ as |x| → ∞.

Then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .
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Corollary 3.3. Assume that F satisfies assumption (A) and the following condi-

tions:

(i) F (t, ·) is (λ, µ)-subconvex for a.e. t ∈ [0, T ] and satisfies

F (t, x) > (h(t), x) + γ1(t)

for a.e. t ∈ [0, T ] and all x ∈ R
N , where γ1 ∈ L1([0, T ],R) and h ∈ L1([0, T ],RN)

with
∫ T

0
h(t) dt = 0.

(ii) ∫ T

0

F (t, x) dt→ ∞ as |x| → ∞.

Then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .

Theorem 3.6. Assume that F = F1 + F2 satisfies assumption (A) and the

following conditions:

(i) there exist γ1 ∈ L1([0, T ],R) and h ∈ L1([0, T ],RN) with
∫ T

0
h(t) dt = 0 such

that

F1(t, x) > (h(t), x) + γ1(t)

for a.e. t ∈ [0, T ] and all x ∈ R
N , and there exist g ∈ L1([0, T ],R) and D ∈ R

such that

|∇F2(t, x)| 6 f(t)|x|α + g(t)

for a.e. t ∈ [0, T ] and all x ∈ R
n.

(ii)

|x|−q+α

∫ T

0

F2(t, x) dt→ ∞ as |x| → ∞.

Then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .

R em a r k 3.4. Theorem 3.5, Corollary 3.3, and Theorem 3.6 generalize Theo-

rem 2, Corollary 3, and Theorem 3 in [24], respectively.

Because Theorem 3.3 is a more general result than Theorem 3.1 and Theorem 3.2,

we only need to prove Theorem 3.3, and our steps to prove Theorem 3.3 are organized

as follows. First, we show that the functional ϕ satisfies the conditions (PS), that

is, {un} has a convergent subsequence, whenever it satisfies that ϕ(un) is bounded

and ϕ′(un) → 0; second, we prove that ϕ satisfies the other conditions of the Saddle

Point Theorem (see Theorem 4.6 in [12]); after these two steps, by the Saddle Point

Theorem we know that ϕ has at least one critical point, which is a periodic solution

for system (1.1).
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P r o o f of Theorem 3.3. From (1.7) and Lemma 2.2 we obtain

∫ T

0

(∇G(u(t)), ũ(t)) dt(3.3)

=

∫ T

0

(∇G(u(t)) −∇G(ū), ũ(t)) dt

> − r

∫ T

0

|ũ(t)|β dt > −r

(∫ T

0

|ũ(t)|p
−

dt+ T

)

> − r

(
T p−

∫ T

0

|u̇(t)|p
−

dt+ T

)

> − rT p−
(∫ T

0

|u̇(t)|p(t) dt+ T

)
− rT

> −
1

p+

∫ T

0

|u̇(t)|p(t) dt− C2

for all u(t) ∈W
1,p(t)
T , and C2 is a positive constant.

It follows from (1.6), Lemma 2.7, and by the Young inequality that

∣∣∣∣
∫ T

0

(∇H(t, u(t)), ũ(t)) dt

∣∣∣∣(3.4)

6

∫ T

0

f(t)|ū+ ũ(t)|α|ũ(t)| dt+

∫ T

0

g(t)|ũ(t)| dt

6 2p−−1

∫ T

0

f(t)(|ū|α + |ũ(t)|α)|ũ(t)| dt+

∫ T

0

g(t)|ũ(t)| dt

6 2p−−1(|ū|α + ‖ũ‖α
∞)‖ũ‖∞

∫ T

0

f(t) dt+ ‖ũ‖∞

∫ T

0

g(t) dt

=
(
(C3)

1/p− ‖ũ‖∞
4C0

)(
(2p−+1)(C3)

−1/p−C0

∫ T

0

f(t) dt

)
|ū|α

+ 2p−−1‖ũ‖1+α
∞

∫ T

0

f(t) dt+ ‖ũ‖∞

∫ T

0

g(t) dt

6
p+ − 1

2p+

∫ T

0

|u̇(t)|p(t) dt+ C4|ū|
q+α

+ C5

(∫ T

0

|u̇(t)|p(t) dt

)(α+1)/p−

+ C6

(∫ T

0

|u̇(t)|p(t) dt

)1/p−

+ C7

for all u ∈ W
1,p(t)
T where C0 is the same as in Lemma 2.7 and C3 := (p+ − 1)/2p+,

and for some positive constants C4, C5, and C6.
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From (3.3) and (3.4) we have

‖ũn‖ > |〈ϕ′(un), ũn〉|(3.5)

>

∫ T

0

|u̇n(t)|p(t) dt+

∫ T

0

(∇F (t, un(t)), ũn(t)) dt

>

∫ T

0

|u̇n(t)|p(t) dt+

∫ T

0

(∇G(un(t)), ũn(t)) dt

+

∫ T

0

(∇H(t, un(t)), ũn(t)) dt

>
p+ − 1

2p+

∫ T

0

|u̇n(t)|p(t) dt− C4|ūn|
q+α

− C5

(∫ T

0

|u̇n(t)|p(t) dt

)(α+1)/p−

− C6

(∫ T

0

|u̇n(t)|p(t) dt

)1/p−

− C8

for all large n.

It follows from the Proposition 2.1 that there exists a constant C1 > 0 such that

(3.6) ‖ũn‖ 6 C1

((∫ T

0

|u̇(t)|p(t) dt

)1/p−

+ 1

)
.

By (3.5) and (3.6) we have

(3.7)

(∫ T

0

|u̇n(t)|p(t) dt

)1/q+

6 C9|ūn|
α + C10

for some positive constants C9, C10 and all large n, which implies that

‖ũn‖∞ 6 C11(|ūn|
q+α/p− + 1)

for all large n and some positive constant C11 by Lemma 2.7.

If (|ūn|) is unbounded, we may assume that going to a subsequence if necessary

(3.8) |ūn| → ∞ as n→ ∞.

Then we have

|un(t)| > |ūn| − |ũn(t)| > |ūn| − ‖ũn‖∞ > |ūn| − C9(|ūn|
q+α/p− + 1)
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for all large n and every t ∈ [0, T ] because of q+α/p− < 1, which implies that

(3.9) |un(t)| >
1

2
|ūn|

for all large n and every t ∈ [0, T ].

Set δ = (measE)/2. It follows from (3.2) and Lemma 2.11 that there exists a

subset Eδ of E with meas(E \ Eδ) < δ such that

|x|−q+αF (t, x) → −∞ as |x| → ∞

uniformly for all t ∈ Eδ, which implies that

(3.10) measEδ = measE − meas(E \ Eδ) > δ > 0

and for every N > 0, there exists M > 1 such that

(3.11) |x|−q+αF (t, x) 6 −N

for all |x| > M and all t ∈ Eδ. By (3.8) and (3.9) we have

(3.12) |un(t)| > M

for large n and every t ∈ [0, T ]. It follows from (3.1), (3.7), (3.10), (3.11), (3.12) that

ϕ(un) 6 (C9|ūn|
α + C10)

q+

+

∫

[0,T ]\Eδ

γ(t) dt−

∫

Eδ

N |un(t)|q
+α dt(3.13)

6 (C9|ūn|
α + C10)

q+

+

∫

[0,T ]\Eδ

γ(t) dt− 2−q+α|ūn|
q+αδN

for large n. Hence, we have

lim sup
n→∞

|ūn|
−q+αϕ(un) 6 Cq+

7 − 2−q+αδN,

and by the arbitrariness of N > 0, we have

lim sup
n→∞

|ūn|
−q+αϕ(un) = −∞,

which contradicts the boundedness of ϕ(un). Hence (|ūn|) is bounded, and ‖un‖ is

bounded by (2.3) and (3.7).
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The sequence {un} has a subsequence, also denoted by {un}, such that

(3.14) un ⇀ u weakly in W
1,p(t)
T and un → u strongly in C([0, T ],RN)

and ‖un‖∞ 6 C12 is bounded by Lemma 2.6, where C12 is a positive constant.

We conclude that

(3.15)

∣∣∣∣
∫ T

0

(∇F (t, un(t)), un(t) − u(t)) dt

∣∣∣∣ 6 a0T ‖un − u‖∞

∫ T

0

b(t) dt→ 0,

by (3.14) and assumption (A), where a0 = max
06s6C12

a(s).

By Lemma 2.12 we have

〈ϕ′(un), un − u〉 =

∫ T

0

[(|u̇n(t)|p(t)−2u̇n(t), u̇n(t) − u̇(t))(3.16)

+ (∇F (t, un(t)), un(t) − u(t))] dt,

and 〈ϕ′(un), un − u〉 → 0 by the assumption of ϕ′(un) → 0 and the boundness

of {‖un‖}.

Then it follows from (2.5), (3.15), and (3.16) that

〈J ′(un), un − u〉(3.17)

=

∫ T

0

(|u̇n(t)|p(t)−2u̇n(t), u̇n(t) − u̇(t)) dt

= 〈ϕ′(un), un − u〉 −

∫ T

0

(∇F (t, un(t)), un(t) − u(t)) dt→ 0.

Moreover, since J ′(u) is a bounded linear function, we get 〈J ′(u), un − u〉 → 0,

which combined with (3.17) implies that

(3.18) lim
n→∞

〈J ′(un) − J ′(u), un − u〉 = 0.

It follows from Lemma 2.14 and (3.18) that {un} admits a convergent subsequence.

We now prove that ϕ satisfies the other conditions of the Saddle Point Theorem.

Let W̃
1,p(t)
T be the subspace of W

1,p(t)
T given by

W̃
1,p(t)
T =

{
u ∈ W

1,p(t)
T :

∫ T

0

u(t) dt = 0

}
,

then we have

(3.19) ϕ(u) → ∞
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as ‖u‖ → ∞ in W̃
1,p(t)
T . In fact, it follows from Lemma 2.7 that

∣∣∣∣
∫ T

0

[H(t, u(t)) −H(t, 0)] dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫ 1

0

(∇H(t, su(t)), u(t)) ds dt

∣∣∣∣

6

∫ T

0

∫ 1

0

f(t)|su(t)|α|u(t)| dt+

∫ T

0

∫ 1

0

g(t)|u(t)| ds dt

6 ‖u‖α+1
∞

∫ T

0

f(t) dt+ ‖u‖∞

∫ T

0

g(t) dt

6 C13

(∫ T

0

|u̇(t)|p(t) dt

)(α+1)/p−

+ C14

(∫ T

0

|u̇(t)|p(t) dt

)1/p−

+ C15

for all u ∈ W̃
1,p(t)
T and some positive constants C13, C14, and C15.

By (1.7), Lemma 2.2, and (3.3) we have

∫ T

0

[G(u(t)) −G(0)] dt =

∫ T

0

∫ 1

0

(∇G(su(t)) −∇G(0), u(t)) ds dt

=

∫ T

0

∫ 1

0

1

s
(∇G(su(t)) −∇G(0), su(t)) ds dt

>

∫ T

0

∫ 1

0

1

s
(−rsβ |u(t)|β) ds dt

>
−rT p−

β

(∫ T

0

|u̇(t)|p(t) dt

)
− C16

for all u ∈ W̃
1,p(t)
T and some positive constant C16. Hence, we have

ϕ(u) −

∫ T

0

F (t, 0) dt =

∫ T

0

1

p(t)
|u̇(t)|p(t) dt+

∫ T

0

[F (t, u(t)) − F (t, 0)] dt

=

∫ T

0

1

p(t)
|u̇(t)|p(t) +

∫ T

0

[G(u(t)) −G(0)] dt

+

∫ T

0

[H(t, u(t)) −H(t, 0)] dt

>

( 1

p+
−
rT p−

β

)∫ T

0

|u̇(t)|p(t) dt− C13

(∫ T

0

|u̇(t)|p(t) dt

)(α+1)/p−

− C14

(∫ T

0

|u̇(t)|p(t) dt

)1/p−

− C15 − C16

for all u ∈ W̃
1,p(t)
T , which implies (3.19) by Proposition 2.1.
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Moreover, we have

ϕ(x) =

∫ T

0

F (t, x) dt 6

∫

[0,T ]\Eδ

γ(t) dt−

∫

Eδ

N |x|q
+α dt

6

∫

[0,T ]\Eδ

γ(t) dt−NM q+α measEδ

6

∫

[0,T ]\Eδ

γ(t) dt−N measEδ

for all |x| > M by (3.11), which implies that

(3.20) ϕ(x) → −∞

as |x| → ∞ in R
N by the arbitrariness of N .

We have proved that the fuctional ϕ satisfies all the conditions of the Saddle Point

Theorem, so we know that ϕ has at least one critical point by the Saddle Point

Theorem, which is a periodic solution of system (1.1). The proof is completed. �

Now we prove Theorem 3.4.

P r o o f of Theorem 3.4. Let γ = log2λ(2µ). Then 0 6 γ < p−. For |x| > 1 there

exists a positive integer n such that

n− 1 < log2λ |x| 6 n.

Then one has |x|γ > (2λ)(n−1)γ = (2µ)n−1 and |x| 6 (2λ)n. Hence we have

F1(t, x) 6 2µF1

(
t,
x

2λ

)
6 . . . 6 (2µ)nF1

(
t,

x

(2λ)n

)
6 2µ|x|γa0b(t)

for a.e. t ∈ [0, T ] and all |x| > 1 by (i) in Theorem 3.4 and assumption (A), where

a0 = max
06s61

a(s). Moreover, one obtains

(3.21) F1(t, x) 6 (2µ|x|γ + 1)a0b(t)

for a.e. t ∈ [0, T ] and all x ∈ R
N , where 0 6 γ < p−.
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It follows from (i) in Theorem 3.5 and from Lemma 2.7 that

∣∣∣∣
∫ T

0

[F2(t, u(t)) − F2(t, ū)] dt

∣∣∣∣ =

∣∣∣∣
∫ T

0

∫ 1

0

(∇F2(t, ū+ sũ(t), ũ(t)) ds dt

∣∣∣∣(3.22)

6

∫ T

0

∫ 1

0

f(t)|ū+ sũ(t)|α|ũ(t)| dt+

∫ T

0

∫ 1

0

g(t)|ũ(t)| ds dt

6 2p−−1(|ū|α + ‖ũ‖α
∞)‖ũ‖∞

∫ T

0

f(t) dt+ ‖ũ‖∞

∫ T

0

g(t) dt

=
(( 1

2p+

)1/p− ‖ũ‖∞
4C0

)(
(2p−+1)(2p+)1/p−C0

∫ T

0

f(t) dt

)
|ū|α

+ 2p−−1‖ũ‖α+1
∞

∫ T

0

f(t) dt+ ‖ũ‖∞

∫ T

0

g(t) dt

6
1

2p+

∫ T

0

|u̇(t)|p(t) dt+D0|ū|
q+α +D1

(∫ T

0

|u̇(t)|p(t) dt

)(α+1)/p−

+D2

(∫ T

0

|u̇(t)|p(t) dt

)1/p−

+D3

for all u ∈W
1,p(t)
T with the same C0 as in Lemma 2.7, and some positive constantsD0,

D1, D2, D3. Hence, we have

ϕ(u) >

∫ T

0

1

p(t)
|u̇(t)|p(t) dt+

1

µ

∫ T

0

F1(t, λū) dt−

∫ T

0

F1(t,−ũ(t)) dt

+

∫ T

0

F2(t, ū) dt+

∫ T

0

[F2(t, u(t)) − F2(t, ū)] dt

>
1

2p+

∫ T

0

|u̇(t)|p(t) dt−D0|ū|
q+α −D1

(∫ T

0

|u̇(t)|p(t) dt

)(α+1)/p−

−D2

(∫ T

0

|u̇(t)|p(t) dt

)1/p−

− (2µ‖ũ(t)‖γ
∞ + 1)

∫ T

0

a0b(t) dt

+
1

µ

∫ T

0

F1(t, λū) dt+

∫ T

0

F2(t, ū) dt−D4

>
1

2p+

∫ T

0

|u̇(t)|p(t) dt−D1

(∫ T

0

|u̇(t)|p(t) dt

)(α+1)/p−

−D2

(∫ T

0

|u̇(t)|p(t) dt

)1/p−

+ |ū|q
+α

{
1

|ū|q+α

[
1

µ

∫ T

0

F1(t, λū) dt+

∫ T

0

F2(t, ū) dt

]
−D0

}

−D5

(∫ T

0

|u̇(t)|p(t) dt

)γ/p−

−D6
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for all u ∈W
1,p(t)
T and some positive constants D5, D6, which implies that

ϕ(u) → ∞

as ‖u‖ → ∞ by Proposition 2.1. By Theorem 1.1 and Corollary 1.1 in [12], we

complete the proof. �

Next we prove Theorem 3.5.

P r o o f of Theorem 3.5. Let (uk) be a minimizing sequence of ϕ. It follows

from (i) of Theorem 3.5 and from Lemma 2.7 that

ϕ(uk) >
1

p+

∫ T

0

|u̇k(t)|p(t) dt+

∫ T

0

(h(t), uk(t)) dt+

∫ T

0

γ1(t) dt

+

∫ T

0

F2(t, ūk) dt+

∫ T

0

∫ 1

0

(∇F2(t, ūk + sũk(t), ũk(t)) ds dt

>
1

p+

∫ T

0

|u̇k(t)|p(t) dt+ ‖ũk‖∞

∫ T

0

h(t) dt− ‖ũk‖∞

∫ T

0

g(t) dt+D7

>
1

p+

∫ T

0

|u̇k(t)|p(t) dt−D8

(∫ T

0

|u̇k(t)|p(t) dt

)1/p−

−D9

for all k and some constants D8 and D9, which implies that (‖ũk‖∞) is bounded by

Lemma 2.7. On the other hand, in a way similar to the proof of Theorem 3.4, we

have ∣∣∣∣
∫ T

0

[F2(t, u(t)) − F2(t, ū)] dt

∣∣∣∣ 6 D10

((∫ T

0

|u̇(t)|p(t) dt

)1/p−

+ 1

)

for all u ∈W
1,p(t)
T and some positive constant D10, which implies that

ϕ(uk) >
1

p+

∫ T

0

|u̇k(t)|p(t) dt+
1

µ

∫ T

0

F1(t, λūk) dt−

∫ T

0

F1(t,−ũk(t)) dt

+

∫ T

0

F2(t, ūk) dt+

∫ T

0

[F2(t, u(t)) − F2(t, ūk)] dt

>
1

p+

∫ T

0

|u̇k(t)|p(t) dt− a(‖ũk‖∞)

∫ T

0

b(t) dt

−D10

((∫ T

0

|u̇k(t)|p(t) dt

)1/p−

+ 1

)

+
1

µ

∫ T

0

F1(t, λūk) dt+

∫ T

0

F2(t, ūk) dt

for all positive integers k. It follows from the boundedness of (ũk) that (ūk) is

bounded. Hence ϕ has a bounded minimizing sequence (uk). Now Theorem 3.5

follows from Theorem 1.1 and Corollary 1.1 in [12]. �
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P r o o f of Theorem 3.6. In view of the proofs of Theorem 3.4 and 3.5, the

conclusion of Theorem 3.6 holds. The proof is complete. �

4. Examples

In this section we give three examples to illustrate our results.

E x am p l e 4.1. In system (1.1), let p(t) = 4 + 2 cosωt, and let

G(x) = −
1

14T 2
|x1|

2 and H(t, x) = −|x|1+α,

where ω denotes the positive constant 2π/T , 0 < α < 1.

This shows that all conditions of Theorem 3.2 are satisfied, where

β = 2, p− = 2, q+ = 2.

By Theorem 3.2, system (1.1) has at least one periodic solution.

R em a r k 4.1. Here F satisfies the conditions of our Theorem 3.2, but for F (t, x)

the results mentioned in [21] do not hold because F (t, x) is neither generalized su-

perquadratic nor generalized subquadratic in x.

E x am p l e 4.2. In system (1.1), let p(t) = 6 + cosωt, and let

F1(t, x) = |x|4 and F2(t, x) = |sinωt||x|3,

where ω denotes the positive constant 2π/T . Then F1(t, x) is (1, 8) subconvex, and

|∇F2(t, x)| = 3|sinωt||x|2.

This shows that all conditions of Theorem 3.4 are satisfied, where

α = 2, p− = 5, q+ =
5

4
.

By Theorem 3.4, system (1.1) has at least one solution which minimizes ϕ onW
1,p(t)
T .

E x am p l e 4.3. In system (1.1), let p(t) = 6 + t, and let

F1(t, x) = (|x|2 + ln(1 + |x|2)) and F2(t, x) = (h(t), x),

where h ∈ L1([0, T ],RN) with
∫ T

0
h(t) = 0. Then F1(t, x) is (1/2, 1) subconvex and

F2(t, x) satisfies the other conditions of Theorem 3.5, so system (1.1) has at least

one solution which minimizes ϕ on W
1,p(t)
T .
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