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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 5 , PAGES 9 2 4 – 9 3 8

ON AN ALGORITHM FOR TESTING T4 SOLVABILITY
OF MAX-PLUS INTERVAL SYSTEMS

Helena Myšková

In this paper, we shall deal with the solvability of interval systems of linear equations in
max-plus algebra. Max-plus algebra is an algebraic structure in which classical addition and
multiplication are replaced by ⊕ and ⊗, where a⊕ b = max{a, b}, a⊗ b = a + b.

The notation A⊗ x = b represents an interval system of linear equations, where A = [A, A]
and b = [b, b] are given interval matrix and interval vector, respectively. We can define several
types of solvability of interval systems. In this paper, we define the T4 solvability and give an
algorithm for checking the T4 solvability.

Keywords: max-plus algebra, interval system, T4 vector, T4 solvability

Classification: 15A06, 65G30

1. INTRODUCTION

In many systems which we deal in engineering or physics with, the state varies continu-
ously through the time. A simple example is an electrical circuit, where the voltage at a
particular time may be described as a function of the continuous variable t representing
time: V = V (t). A change in voltage depending on the time is expressed by differential
equations. By contrast, many others systems, especially those which occur in a digital
signal processing or industrial are often more conveniently expressed in terms of events.
We may speak about discrete events systems in which the individual components move
from event to event rather than varying continuously through the time. Among inter-
esting real-life applications let us mention, e. g., a large scale model of Dutch railway
network or synchronizing traffic lights in Delft [11]. Behavior of such systems can be
described by systems of linear equations in the form A ⊗ x = b, where the ⊗-matrix
product is computed formally in the same way as the classical matrix product, just in-
stead of addition we use the operation ⊕ = max and instead of multiplication we use
the operation ⊗ = +.

However, when the matrix and vector entries are estimated incorrectly, the obtained
theoretical results may become useless in practice, due to imprecise results. A possible
method of restoring solvability is to replace the matrix A and vector b by a matrix
interval and a vector interval. Then we talk about an interval system of linear equations.
The theory of interval computations and in particular of interval systems in the classical
algebra is already quite developed, see e. g. the monograph [6] or [13, 14]. An interesting
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approach to interval computations was published in [5, 12]. In max-plus and max-min
algebra, interval systems of linear equations have been studied by K. Cechlárová and
R. A. Cuninghame-Green in [2, 3]. They dealt with the weak, strong and tolerance
solvability. In [7, 8], we studied the weak tolerance, weak control, control, universal
and weak universal solvability in max-plus and max-min algebra. The T1, T2 and T3
solvability have been studied in [9] only for the max-min case, because in max-plus
algebra they are trivial, so they do not have a practical importance. In this paper, we
define the T4 solvability and give necessary and sufficient condition in max-plus algebra.

There is also motivation coming from applications for the use of interval systems.
One of possible applications follows from the following example, taken from [11], but
slightly modified and generalized.

Example 1.1. There are two railway stations S1 and S2 in a metropolitan area, which
are interconnected by a railway system consisting of two inner circles and two outer
circles (see Figure 1). The number aij , i, j ∈ {1, 2} indicates the transit time from
station Sj to station Si including the time necessary for passengers to change over.

�
�� �
��
S1 S2

-
a21

�
a12

-a11 � a22

Fig. 1.

Suppose that there are four trains (two at each station) and two of them in the same
station Si leave simultaneously at the time xi. The time at which both trains are already
in station Si is equal to max{ai1 +x1, ai2 +x2}. Suppose that there are two schools near
the two stations that begin their daily programme at the times b1, b2. It is required to
find the departure times xi which allow the students to catch the beginning of classes,
i. e.,

max
j

(aij + xj) = bi (1)

for i = 1, 2. Using the symbols ⊕ and ⊗ for operations of maximum and addition,
respectively, we can rewrite (1) to the matrix form(

a11 a12

a21 a22

)
⊗

(
x1

x2

)
=

(
b1

b2

)
. (2)

The above described model system can be easily rewritten in general case of n stations.
If there is no traffic from station Sj to station Si we set aij = −∞.

2. PRELIMINARIES

By max-plus algebra we understand a triple (B,⊕,⊗), where

B = R ∪ {ε}, a⊕ b = max{a, b}, a⊗ b = a + b,

and ε = −∞. Denote by M and N the index sets {1, 2, . . . ,m} and {1, 2, . . . , n},
respectively. The set of all m×n matrices over B is denoted by B(m,n) and the set of
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all column n-vectors over B by B(n).
Operations ⊕ and ⊗ are extended to matrices and vectors in the same way as in classical
algebra. We shall consider the ordering ≤ on the sets B(m,n) and B(n) defined as
follows:

• for A,C ∈ B(m,n) : A ≤ C if aij ≤ cij for all i ∈ M, j ∈ N ,

• for x, y ∈ B(n) : x ≤ y if xj ≤ yj for all j ∈ N .

We shall use the monotonicity of ⊗ which means that for each A,C ∈ B(m,n) and
for each x, y ∈ B(n) the implication

if A ≤ C and x ≤ y then A⊗ x ≤ C ⊗ y

holds true.
In max-plus algebra we can write the system of equations (2) in the form

A⊗ x = b (3)

which represents a max-plus system of linear equations.
To give a necessary and sufficient condition for solvability of (3), we add some condi-

tions. We shall suppose that

i) bi > ε for all i ∈ M ,

ii) A contains no column with full ε-s.

To justify the first assumption, we show how to get rid of ε-s. Namely, denote by M0 the
set M0 = {i ∈ M ; bi = ε}. Then any solution x of (3) has xj = ε for each j ∈ N0, where
N0 = {j ∈ N ; aij 6= ε for some i ∈ M0}. Therefore it is possible to omit the equations
with indices from M0 and columns of A with indices from N0 and the solutions of the
original and reduced systems correspond to each other by setting xj = ε for j ∈ N0 in
the former.

To justify the second assumption denote by N1 = {j ∈ N ; aij = ε for each i ∈ M}.
Then xj can be arbitrary for each j ∈ N1. Therefore it is possible to omit the columns of
A with indices from N1 and the solutions of the original and reduced systems correspond
to each other by setting xj = x, x for all j ∈ N1, where x is an arbitrary element from B.

By now, we can define a principal solution of system (3) as follows:

x∗j (A, b) = min
i∈M

{bi − aij} (4)

for each j ∈ N .
The following assertions describe the importance of the principal solution for the

solvability of (3).

Lemma 2.1. (Cuninghame-Green [4], Zimmermann [15]) Let A ∈ B(m,n) and b ∈
B(m) be given.

i) If A⊗ x = b for x ∈ B(n), then x ≤ x∗(A, b).

ii) A⊗ x∗(A, b) ≤ b.
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Theorem 2.2. (Cuninghame-Green [4]) Let A ∈ B(m,n) and b ∈ B(m) be given.
Then the system A⊗ x = b is solvable if and only if x∗(A, b) is its solution.

Lemma 2.3. (Myšková [7]) Let A ∈ B(m,n), b, d ∈ B(m) be such that b ≤ d. Then
x∗(A, b) ≤ x∗(A, d).

Lemma 2.4. (Myšková [7]) Let b ∈ B(m), C, D ∈ B(m,n) be such that D ≤ C. Then
x∗(C, b) ≤ x∗(D, b).

3. INTERVAL SYSTEMS

In practice, the travelling times in Example 1.1 may depend on outside conditions,
so the values aij are from an interval of possible values, i. e., aij ∈ [aij , aij ] for each
i ∈ N, j ∈ N . Also we shall require the arrival times to be not precise values but they
are rather from given intervals, i. e., bi ∈ [bi, bi] for each i ∈ N .

Similarly to [2, 7, 8, 12] we define an interval matrix A and interval vector b as
follows:

A = [A,A] =
{

A ∈ B(m,n); A ≤ A ≤ A
}

and

b = [b, b] =
{

b ∈ B(m); b ≤ b ≤ b
}

,

where A,A ∈ B(m,n), A ≤ A and b, b ∈ B(m), b ≤ b.
Denote by

A⊗ x = b (5)

the set of all of max-plus systems of linear equations of the form (3) such that
A ∈ A, b ∈ b. We shall call (5) a max-plus interval system of linear equations. A
system of the form (3) is called a subsystem of (5) if A ∈ A, b ∈ b. We say, that interval
system (5) has the constant matrix if A = A and has the constant right-hand side, if
b = b.

To use the arguments from the previous section we shall suppose for interval system
(5) that

• bi 6= ε for each i ∈ M ,

• for each j ∈ N there exists i ∈ M such that aij 6= ε.

We can define several conditions which the given interval system is required to fulfill.
According to them we shall define several solvability concepts. Table 1 contains the list
of all up to now studied types of the solvability of (5) in max-plus algebra. There are
omitted solvability concepts which lead to trivial conditions.
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Solvability concept Definition
Weak solvability [2] (∃x∈B(n))(∃A∈A)(∃b∈b) : A⊗ x = b
Strong solvability [3] (∀A∈A)(∀b∈b)(∃x∈B(n)) : A⊗ x = b

Tolerance solvability [2] (∃x∈B(n))(∀A∈A)(∃b∈b) : A⊗ x = b
Weak tolerance solvability [7] (∀A∈A)(∃x∈B(n))(∃b∈b) : A⊗ x = b
Control solvability [8] (∃x∈B(n))(∀b∈b)(∃A∈A) : A⊗ x = b
Weak control solvability [8] (∀b∈b)(∃x∈B(n))(∃A∈A) : A⊗ x = b
Universal solvability [7] (∃x∈B(n))(∀b∈b)(∀A∈A) : A⊗ x = b
Weak universal solvability [8] (∀b∈b)(∃x∈B(n))(∀A∈A) : A⊗ x = b

Table 1.

4. T4 SOLVABILITY

In this section, we define the notions of T4 vector and T4 solvability of interval system
(5). We present a procedure for checking T4 solvability.

Definition 4.1.
i) A vector b ∈ b is called a T4 vector of interval system (5) if there exists x ∈ B(n)

such that A⊗ x = b for each A ∈ A.

ii) Interval system (5) is T4 solvable if there exists b ∈ b such that b is a T4 vector of
(5).

To give a necessary and sufficient condition for T4 solvability, we use a notion of a
universal solution, which has been studied by K. Cechlárová [2].
Recall, that a vector x ∈ B(n) is a universal solution of interval system (5) if A⊗ x = b
for each A ∈ A and for each b ∈ b.

Theorem 4.2. (Myšková [7]) Interval system (5) with the constant right-hand side
b = b = b has a universal solution if and only if

A⊗ x∗(A, b) = b (6)

and in this case x∗(A, b) is the maximum universal solution.

Lemma 4.3. A vector b ∈ b is a T4 vector of interval system (5) if and only if it satisfies
equality (6).

P r o o f . A vector b ∈ b is a T4 vector if and only if interval system (5) with the constant
right-hand side b = b = b has a universal solution, which is according to Theorem 4.2
equivalent to (6). �

For any fixed b ∈ b we denote

Mj(A) = {i ∈ M : aij = aij 6= ε}, Pj(A, b) = {i ∈ M : x∗j (A, b) = bi − aij}

and Lj(A, b) = Mj(A) ∩ Pj(A, b)

for each j ∈ N .



Max-plus interval systems 929

Lemma 4.4. A vector b ∈ b is a T4 vector of interval system (5) if and only if
∪j∈N Lj(A, b) = M.

P r o o f . Let b ∈ b be such that ∪j∈N Lj(A, b) = M. Then for each k ∈ M there exists
r ∈ N such that k ∈ Lr(A, b), i. e., akr = akr and x∗r(A, b) = bk − akr. Then

bk ≥ [A⊗ x∗(A, b)]k ≥ [A⊗ x∗(A, b)]k = max
j∈N

{akj + x∗j (A, b)}

≥ akr + x∗r(A, b) = akr + bk − akr = bk

holds true for each k ∈ M . We have A ⊗ x∗(A, b) = b, so the vector b is according to
Lemma 4.3 a T4 vector of (5).

For the converse implication suppose that for some b ∈ b there exists k ∈ M such
that k /∈ ∪j∈N Lj(A, b) which means that for each j ∈ N one of the following cases has
occurred:

akj < akj or x∗j (A, b) < bk − akj .

In the first case we get akj + x∗j (A, b) = akj + mini∈M{bi − aij} ≤ akj + bk − akj < bk.

In the second case akj + x∗j (A, b) < akj + bk − akj ≤ bk.
Then [A⊗ x∗(A, b)]k = maxj∈N{akj + x∗j (A, b)} < bk which implies that the vector b is
not a T4 vector of (5). �

Corollary 4.5. If ∪j∈N Mj(A) 6= M , then interval system (5) is not T4 solvable.

In the following we shall suppose that ∪j∈N Mj(A) = M .
For each i ∈ M denote by Ji the set Ji = {j ∈ N : aij = aij 6= ε}. Let p =

(p1, p2, . . . , pm) ∈ J1 × J2 × · · · × Jm be arbitrary but fixed. Denote by

A(p) ⊗ x = b (7)

an interval system with A(p) = [A(p), A
(p)

] where A
(p)

= A and A(p) = (a(p)
ij ) is defined

as follows:

a
(p)
ij =

{
aij for (i, j) = (i, pi), i ∈ M,
ε else. (8)

By (8), for a given p ∈ J1 × J2 × · · · × Jm the matrix A(p) has in each row exactly one
element equal to the corresponding element in A and the others are equal to ε.

Theorem 4.6. Interval system (5) is T4 solvable if and only if there exists an m-tuple
p ∈ J1 × J2 × · · · × Jm such that the interval system A(p) ⊗ x = b is T4 solvable.

P r o o f . If interval system (5) is T4 solvable then there exists a vector b such that b
is a T4 vector of (5). By Lemma 4.4, for each k ∈ M there exists rk ∈ N such that
k ∈ Lrk

(A, b), i. e., akrk
= akrk

and x∗rk
(A, b) = bk−akrk

. Then rk ∈ Jk for each k ∈ M .
Let us set r = (r1, r2, . . . , rm). For each k ∈ M we have

[A(r) ⊗ x∗(A
(r)

, b)]k = [A(r) ⊗ x∗(A, b)]k = akrk
⊗ x∗rk

(A, b) = akrk
+ bk − akrk

= bk.
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Since A(r) ⊗ x∗(A
(r)

, b) = b the interval system A(r) ⊗ x = b is T4 solvable with the
vector b as a T4 vector.

For the converse implication suppose that there exists an m-tuple p∈J1×J2×. . .×Jm

such that the interval system A(p) ⊗ x = b is T4 solvable, i. e., there exists b ∈ b such
that A(p) ⊗ x∗(A

(p
, b) = b. Then

b ≥ A⊗ x∗(A, b) ≥ A(p) ⊗ x∗(A
(p)

, b) = b

which implies A⊗ x∗(A, b) = b, so interval system (5) is T4 solvable and the vector b is
a T4 vector of (5). �

From the previous theorem it follows that for checking solvability of interval system
(5) it suffice to deal with T4 solvability of systems of the form (7).

Definition 4.7. The T4 sequence of interval system (7) is a sequence {b(k)}∞k=0 defined
as follows:

b(k) =

{
b for k = 0,

A(p) ⊗ x∗(A
(p)

, b(k−1)) for k ≥ 1.
(9)

Lemma 4.8. Let {b(k)}∞k=0 be the T4 sequence of interval system (7) and l ∈ N0 be
arbitrary. The following assertions hold true:

i) The sequence {b(k)}∞k=0 is non-increasing.

ii) If b(l+1) = b(l) then for each k ∈ N the equality b(l+k) = b(l) holds.

P r o o f .

i) By monotonicity of ⊗ we have

b(k+1) = A(p) ⊗ x∗(A
(p)

, b(k)) ≤ A
(p) ⊗ x∗(A

(p)
, b(k)) ≤ b(k).

ii) Suppose that b(l+1) = b(l). By mathematical induction on k we prove that for each
k ∈ N the equality b(l+k) = b(l) holds.

1. For k = 1 the equality b(l+1) = b(l) follows from the assumption.

2. We prove that if b(l+k) = b(l) then b(l+k+1) = b(l). We have

b(l+k+1) = A(p) ⊗ x∗(A
(p)

, b(l+k)) = A(p) ⊗ x∗(A
(p)

, b(l)) = b(l+1) = b(l).

�

Theorem 4.9. Let b ∈ b be a T4 vector of interval system (7). Then for each k ∈ N0

the inequality b ≤ b(k) is satisfied.

P r o o f . By mathematical induction on k
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1. For k = 0 the inequality b ≤ b = b(0) trivially holds.

2. We prove that if b ≤ b(k) then b ≤ b(k+1).
For the sake of a contradiction suppose that b ≤ b(k) and b � b(k+1), i. e., there
exists r ∈ M such that br > b

(k+1)
r . We get

br > [A(p) ⊗ x∗(A
(p)

, b(k))]r ≥ [A(p) ⊗ x∗(A
(p)

, b)]r

which implies A(p) ⊗ x∗(A
(p)

, b) 6= b, a contradiction.

�

Remark 4.10. We can define in the same way the T4 sequence for an arbitrary interval
system and the assertions of Lemma 4.8 and Theorem 4.9 hold true.

For a fixed p ∈ J1 × J2 × · · · × Jm denote by

C ⊗ x = b (10)

the interval system with C = [C,C], where C is obtained from A(p) by deleting all
columns A

(p)
j (where A

(p)
j denotes the jth column of A(p)) such that j ∈ L, where

L = {j ∈ N : a
(p)
ij = ε for each i ∈ M}.

Lemma 4.11. Let {b(k)}∞k=0 and {c(k)}∞k=0 be the T4 sequences of interval systems (7)
and (10), respectively. Then b(k) = c(k) for each k ∈ N0.

P r o o f . We prove the equality b(k) = c(k) by mathematical induction on k:

1. For k = 0 we have b(0) = c(0) = b.

2. Suppose that b(k) = c(k). Then for each i ∈ M we get

b
(k+1)
i = [A(p) ⊗ x∗(A

(p)
, b(k))]i =

⊕
j∈N

a
(p)
ij ⊗ x∗j (A

(p)
, b(k)) =

⊕
j∈N

a
(p)
ij ⊗ x∗j (A

(p)
, c(k))

=
⊕

j∈N−L

a
(p)
ij ⊗ x∗j (A

(p)
, c(k)) =

⊕
j∈N−L

cij ⊗ x∗j (C, c(k)) = c
(k+1)
i

because of x∗j (C, c(k)) = x∗j (A
(p)

, c(k)) for each j ∈ N − L.

�

Now we shall deal with the properties of the T4 sequence of interval system (10).
The size of interval matrix C is m× n∗, where n∗ = n− |L|. Let us define the equality
matrix E of the size m× n∗ as follows:

eij =

{
1 if cij = cij 6= ε,

0 otherwise,
(11)
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for each i ∈ M, j ∈ N∗ = {1, 2, . . . , n∗}. It is easy to see that there is exactly one unit
in each row and at least one unit in each column in E. Without lost of generality we
can suppose that

eij =
{

1 for j ∈ N∗, i ∈ {ij−1 + 1, . . . , ij},
0 otherwise,

where {ik}n∗

k=0 is an increasing sequence of indices with i0 = 0, in∗ = m.
For clarity, we use the notations x(k) instead of x∗(C, c(k)) and ci,j instead of cij .

From the equality c(k+1) = C ⊗ x(k) we get

c(k+1) = (c1,1 + x
(k)
1 , c2,1 + x

(k)
1 , . . . ci1,1 + x

(k)
1 , ci1+1,2 + x

(k)
2 , . . . ci2,2 + x

(k)
2 , . . . ,

cis−1+1,s + x
(k)
s , . . . , cis,s + x

(k)
s , . . . , cim−1+1,n∗ + x

(k)
n∗ , . . . , cm,n∗ + x

(k)
n∗ )T .

By (4) we get

x
(k+1)
j = min{(x(k)

1 + min
r∈{1,2,...,i1}

{cr,1 − cr,j}), (x(k)
2 + min

r∈{i1+1,...,i2}
{cr,2 − cr,j}), . . . ,

(x(k)
s + min

r∈{is−1+1,...,is}
{cr,s − cr,j}), . . . , (x(k)

n∗ + min
r∈{in∗−1+1,...,m}

{cr,n∗ − cr,j})}

min
s∈N∗

{= x(k)
s + min

r∈{is−1+1,...,is}
{cr,s − cr,j}}

= − max
s∈N∗

{−x(k)
s + max

r∈{is−1+1,...,is}
{cr,j − cr,s}},

or equivalently

− x
(k+1)
j = max

s∈N∗
{−x(k)

s + max
r∈{is−1+1,...,is}

{cr,j − cr,s}} (12)

for each j ∈ N∗. Let us define the difference matrix D = (djs) of the size n∗ × n∗ as
follows:

djs = max
r∈{is−1+1,...,is}

{cr,j − cr,s}. (13)

for each j, s ∈ N∗. Denote by x̂(k) the opposite vector to the vector x(k), i. e., x̂(k) =
−x(k). By now, we can write equality (12) in the form

x̂(k+1) = D ⊗ x̂(k),

which implies
x̂(k) = Dk ⊗ x̂(0) (14)

for each k ∈ N, where Dk denotes the kth power of D. Therefore the properties of the
sequence {x̂(k)}∞k=1 follow from the properties of the sequence {Dk}∞k=1.

We shall use known properties of the sequence of powers of matrices, studied in [10].
Now, we introduce necessary notions and recall known results.

Definition 4.12. Let A ∈ B(n, n). The digraph of matrix A, in notation G(A), is
a weighted digraph (N,E, v), with the vertex set N = {1, 2, . . . , n}, the arc set E =
{(i, j); i, j ∈ N, aij 6= ε} and a weight function v : E → B defined by v(i, j) = aij for
every (i, j) ∈ E.
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For any i, j ∈ N , we denote by WG(A)(i, j) the set of all walks in G(A), beginning in
vertex i and ending in vertex j. If w = (w0, w1, . . . , wr) ∈ WG(A)(i, j) is a walk in G(A)
of length r, then the weight of w is defined by the sum v(w) =

∑
1≤k≤r v(wk−1, wk). If

c is a cycle of positive length |c|, then c = w(c)/|c| denotes the cycle mean of c. The
maximal cycle mean is denoted by λ(A). We say, that c is a critical cycle, if c = λ(A).

Lemma 4.13. Let D be the matrix defined by (13). Then λ(D) ≥ 0.

P r o o f . By (13), we have dii = 0 for each i ∈ N∗. This follows that G(D) contains a
loop of weight zero at each vertex, i. e. there exist cycles in G(D) with the cycle mean
equal to zero. By definition of λ(D), we have λ(D) ≥ 0. �

We introduce the notion of an almost linear periodicity.

Definition 4.14. We say that a sequence a∗ = {a(r); r ∈ N} in B is almost linear
periodic, if there are q ∈ B, q 6= ε, p ∈ N and d ∈ N such that for every r > d

a(r+p) = a(r) + p× q (15)

where + and × are classical addition and multiplication, respectively. The element
q = lfac(a∗) is called the linear factor of a∗ and the smallest numbers d = ldef(A), p =
per(a∗) with the above properties are called the linear defect and linear period of a∗,
respectively.

Theorem 4.15. [10] Let A ∈ B(n, n) be a matrix with digraph G(A) = (N,E, v),
maximum cycle mean λ(A) and critical cycle c. Then the sequences a∗ij = {ar

ij ; r ∈ N}
and a∗ji = {ar

ji; r ∈ N} for each i ∈ c and each j ∈ N are almost linear periodic with
linear period p = |c|, linear defect d ≤ p · (n− 1) and linear factor q = λ(A).

Lemma 4.16. Let {b(k)}∞k=0 be a T4 sequence of interval system (7). The following
conditions are satisfied

i) If λ(D) > 0 then there exists r ∈ M such that the sequence {b(k)
r }∞k=0 is almost

linear periodic with linear factor q = −λ(D).

ii) If λ(D) = 0 then b(n∗+2) = b(n∗+1).

P r o o f .

i) If λ(D) > 0, then there is a cycle c of the length at least two with c = λ(D) in
G(D) (all cycles of length one have the cycle mean equal to zero). Let s ∈ N, s ∈ c.
By Theorem 4.15 the sequence d∗sj = {dr

sj ; r ∈ N} is almost linear periodic for each
j ∈ N∗ with linear period p = |c|, linear defect d ≤ p · (n∗ − 1) and linear factor
λ(D). This follows that for each k ∈ N, k > d we have dk+p

sj = dk
sj + p×λ(D). By

(14) we get

x̂(k+p)
s = [Dk+p ⊗ x̂(0)]s = max

j∈N∗
{dk+p

sj + x̂
(0)
j } = max

j∈N∗
{dk

sj + p× λ(D) + x̂
(0)
j }
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= p× λ(D) + max
j∈N∗

{dk
sj + x̂

(0)
j } = p× λ(D) + x̂(k)

s .

Then x
(k+p)
s = x

(k)
s + p × (−λ(D)) and consequently for each

k > d the equality c
(k+p+1)
r = c

(k+1)
r + p × (−λ(D)) holds true for each

r ∈ {is−1 + 1, is}, so the sequence {c(k)
r }∞k=0 is almost linear periodic with q =

−λ(D). According to Lemma 4.11 the sequence {b(k)
r }∞k=0 is almost linear periodic

with q = −λ(D), too.

ii) If λ(D) = 0 then there is a loop of weight zero at each node of G(D). So each node
lies on a critical cycle of length one. By Theorem 4.15 the sequences {dk

ij}∞k=1 are
almost linear periodic for each i, j ∈ N∗ with p = |c| = 1, q = λ(D) = 0 and
d ≤ n∗ − 1. Consequently the equality Dk+1 = Dk holds at least for each k ≥ n∗.
It implies x̂(n∗+1) = x̂(n∗) and consequently x(n∗+1) = x(n∗), c(n∗+2) = c(n∗+1)

which is equivalent to b(n∗+2) = b(n∗+1).

�

Corollary 4.17. If λ(D) > 0 then b(l+1) 6= b(l) for each l ∈ N0 .

P r o o f . According to Lemma 4.16i) we have b
(l+p)
r = b

(l)
r + p × (−λ(D)) for each

l > d which means that b(l+p) 6= b(l). Using Lemma 4.8ii) we get b(l+1) 6= b(l) for each
l ∈ N0. �

Theorem 4.18. Interval system (7) is T4 solvable if and only if there exists l ∈ N0

such that b(l+1) = b(l) and b(l) ∈ b.

P r o o f . If b(l+1) = b(l) ∈ b for some l ∈ N0 then A(p) ⊗ x∗(A
(p)

, b(l)) = b(l) ∈ b which
means that the vector b(l) is a T4 vector of (7), so interval system (7) is T4 solvable.

For the converse implication suppose that interval system (7) is T4 solvable and there
does not exist any l ∈ N0 such that b(l+1) = b(l) ∈ b. From Lemma 4.8 it follows that
we shall distinguish two cases.

Case 1. For each l ∈ N0 the inequality b(l+1) 6= b(l) holds.
Suppose that for each l ∈ N0 the inequality b(l+1) 6= b(l) is satisfied and there exists
a vector b ∈ b such that b is T4 vector of (7). According to Lemma 4.16ii) we have
λ(D) > 0 and by Lemma 4.16i) there exists r ∈ M such that the sequence {b(k)

r }∞k=0 is
almost linear periodic with linear factor q = −λ(D). It follows that there exists l∗ ∈ N0

such that b
(l∗)
r < br. Then br ≤ b

(l∗)
r < b, i. e., b /∈ b, a contradiction.

Case 2. There exists l ∈ N0 such that b(l+1) = b(l) and b(l) /∈ b.
Suppose that there exists l ∈ N0 such that b(l+1) = b(l) /∈ b and there exists a vector
b ∈ b such that b is the T4-vector of (7). The definition of the sequence {b(k)}∞k=0

and Lemma 4.8i) imply that b � b(l). This means that there exists an index r ∈ M

such that b
(l)
r < br. By Theorem 4.9 we get br ≤ b

(l)
r < br and consequently b /∈ b, a

contradiction. �
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Theorem 4.19. Interval system (7) is T4 solvable if and only if

b(n∗+2) = b(n∗+1) ∈ b.

P r o o f . Suppose that there exists a vector b ∈ b such that b is T4 vector of (7). By
Theorem 4.18 there exists l ∈ N0 such that b(l+1) = b(l). According to Lemma 4.16 we
have λ(D) = 0 which implies b(n∗+2) = b(n∗+1). By Theorem 4.9 we get b ≤ b ≤ b(n∗+1),
so b(n∗+1) ∈ b (the inequality b(n∗+1) ≤ b follows from (9).

For the converse implication suppose that b(n∗+2) = b(n∗+1) ∈ b. By Theorem 4.18
interval system (7) is T4 solvable. �

From Theorem 4.19 it follows that it suffices to compute n∗ + 2 members of the
sequence {b(k)}∞k=1 for checking the T4 solvability of (7). As for different p ∈ J1×J2×
. . .×Jm the number n∗ is changing we use the inequality n∗ + 2 ≤ n + 2 and for each
p ∈ M we restrict the number of members of the sequence {b(k)}∞k=1 by n + 2.

The previous assertions enable us to give the following algorithm for checking T4
solvability.

Algorithm T4.
Input: A, b
Output: ’yes’ in variable t4 if the given interval system is T4 solvable, and ’no’ in t4

otherwise

begin
Step 1. Find the sets J1, J2, . . . , Jm; P := J1 × J2 × · · · × Jm; t4 :=’no’
Step 2. If P = ∅ or t4 =’yes’ then go to end
Step 3. Choose arbitrary p ∈ P
Step 4. b(0) := b, k := 0
Step 5. If k = n + 2 then go to Step 9 else b(k+1) := A(p) ⊗ x∗(A

(p)
, b(k))

Step 6. If b � b(k+1) then go to Step 9
Step 7. If b(k+1) = b(k) then t4 :=’yes’; go to Step 9
Step 8. k := k + 1; go to Step 5
Step 9. P := P − {p}; go to Step 2
end

Now, we shall deal with the computational complexity of Algorithm T4. The most
time-consuming is Step 5 which requires O(m ·n) operations. The number of repetitions
of the loop 5–8 is bounded by n + 2, so the loop 5–8 requires O(m · n2) operations.
The complexity of whole algorithm is given by the number of repetitions of the loop 2–9
which is given by the cardinality of the set P which is bounded by nm so Algorithm T4
is not polynomial.

Remark 4.20. Using Algorithm T4 for the model system described in Example 1.1 we
can find the vector of arrival times b∗ ∈ b which can be achieved by suitable choice of
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the vector x of the departure times (for example the vector x∗(A, b∗)) independently of
the transit times between the stations, if such a vector of arrival times b exists.

Example 4.21. Let us take

A =


[18, 19] [20, 20] [14, 15] [18, 19] [10, 10]
[10, 10] [7, 8] [8, 9] [9, 10] [7, 12]
[10, 11] [10, 11] [9, 10] [12, 12] [8, 11]
[4, 5] [16, 17] [18, 18] [16, 16] [1, 10]

 , b =


[17, 25]
[8, 17]
[9, 16]
[11, 15]

 .

We have J1 = {2, 5}, J2 = {1}, J3 = {4}, J4 = {3, 4}, so P = {(5, 1, 4, 3),
(2, 1, 4, 3), (5, 1, 4, 4), (2, 1, 4, 4)}.
For p(1) = (5, 1, 4, 3) we have

A(p(1)) =


[ε, 19] [ε, 20] [ε, 15] [ε, 19] [10, 10]
[10, 10] [ε, 8] [ε, 9] [ε, 10] [ε, 12]
[ε, 11] [ε, 11] [ε, 10] [12, 12] [ε, 8]
[ε, 5] [ε, 17] [18, 18] [ε, 16] [ε, 1]

 .

The T4 sequence of the interval system A(p(1)) ⊗ x = b is

{b(k)}∞k=0 =


b(0)0BB@
25
17
16
15

1CCA ,

b(1)0BB@
15
15
11
15

1CCA , . . .

 .

Since b � b(1), the interval system A(p(1)) ⊗ x = b is not T4 solvable.
For p(2) = (2, 1, 4, 3) we have

A(p(2)) =


[ε, 19] [20, 20] [ε, 15] [ε, 19] [ε, 10]
[10, 10] [ε, 8] [ε, 9] [ε, 10] [ε, 12]
[ε, 11] [ε, 11] [ε, 10] [12, 12] [ε, 8]
[ε, 5] [ε, 17] [18, 18] [ε, 16] [ε, 1]

 .

The T4 sequence of the interval system A(p(2)) ⊗ x = b is

{b(k)}3
k=0 =


b(0)0BB@
25
17
16
15

1CCA ,

b(1)0BB@
18
15
11
15

1CCA ,

b(2)0BB@
18
9
11
15

1CCA
, b(k) = b(2) for k ≥ 3,

so interval system A(p(2)) ⊗ x = b is T4 solvable. By Theorem 4.6 the given interval
system A⊗ x = b is T4 solvable.

The following example describes the extreme case, due to the complexity of the Algo-
rithm T4.
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Example 4.22. Let us take

A =

 [14, 14] [12, 15] [36, 44]
[10, 19] [19, 19] [48, 48]
[1, 3] [42, 42] [46, 46]

 , b =

 [21.23]
[25, 50]
[28, 31]

 .

We have J1 = {1}, J2 = {2, 3}, J3 = {2, 3}, so P = {(1, 2, 2), (1, 2, 3), (1, 3, 2),
(1, 3, 3)}.

For p(1) = (1, 2, 2) we get b(1) = (23, 8, 31)T � b, so interval system A(p(1))⊗ x = b is
not T4 solvable.

For p(2) = (1, 2, 3) we get b(1) = (23, 8, 25)T � b, so interval system A(p(2))⊗ x = b is
not T4 solvable.

For p(3) = (1, 3, 2) we get the T4 sequence

{b(k)}5
k=0 =


b(0)0@ 23
50
31

1A ,

b(1)0@ 23
27
31

1A ,

b(2)0@ 22
27
31

1A ,

b(3)0@ 22
26
31

1A ,

b(4)0@ 21
26
31

1A ,

b(5)0@ 21
25
31

1A
.

Since we have n∗ = 3 and b(5) 6= b(4), by Theorem 4.19 interval system A(p(3))⊗ x = b
is not T4 solvable.

For p(4) = (1, 3, 3) we get b(1) = (23, 27, 25)T � b, so interval system A(p(2))⊗ x = b
is not T4 solvable.

Since there is no T4 solvable interval system A(p)⊗x = b, according to Theorem 4.6
interval system A⊗ x = b is not T4 solvable.

(Received January 20, 2012)
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