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Abstract

Bad conditioned matrix of normal equations in connection with small
values of model parameters is a source of problems in parameter estima-
tion. One solution gives the ridge estimator. Some modification of it is
the aim of the paper. The behaviour of it in models with constraints is
investigated as well.
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1 Introduction

The linear model Y ~,, (X3, 0?I) is considered. Here Y is an n-dimensional
random vector (observation vector), X3 is the mean value of it, i.e. E(Y) = X33,
X is an n X k known matrix with the rank »(X) = k < n, 8 is an unknown
k-dimensional parameter which must be estimated and ¢? is an unknown pa-
rameter o2 € (0, 00).

The best linear unbiased estimator (BLUE) of 3 is B = (X’X)"1X’'Y and
its covariance matrix is Var(8) = ¢2(X'X)"L.

Let the spectral decomposition of the matrix X’X be

k
X'X =Y Afif] =FAF', f/f; = 6;; (the Kronecker delta)
=1

F = (fl, .. .,fk), A= Diag()\l, .. -7)\k)~

*Supported by the Council of the Czech Government MSM 6 198 959 214

73



74 Lubomir Kubacek

The problem occurs when A\p.x = max{\1,..., \;} differs significantly from
Amin = min{A, ..., A\t }, i.. Amax/Amin 1S large number. In this case variances
of the BLUEs of different linear functions of 3 can differ significantly as well
and it can be in some cases unacceptable. ~

It seems that the way out this problem is to use either the estimator 8 with
the property

~ ~

Var(3) + [B(B) - 8] [EB) - 8] <1 Var(B) (1)

(<, means the Loevner ordering positive semidefinite matrices), or the property
- - / - ~
Tr {Var(ﬂ)} + [E(ﬁ) - 5] [E(ﬁ) - ﬁ} <Tr {Var(ﬂ)} . 2)

The ridge estimator has the property (2) (see in more detail [3], [4]), however
not the property (1).

2 Some comments to the ridge estimator
In the first step let us try to find the estimator of 3 in the form AY, such that
V{h € R"} Var(W'AY) + b ;, = min{Var(h'BY) + b3 ,: B € M} (3)

where b, = E(WAY) — h'3 = h/(AX — I)8, MF*" is the class of k x n
matrices and I is the identity matrix.

Lemma 2.1 The random vector
B" =88 (XBAX +oI)7'Y,
satisfies (3).
Proof Let
&y (A) = 0’ AA'h + W' (AX - T)BB' (X'A’ — T)h.

Then (see [2], p. 285)

a‘I’;QA) = 20°hh’'A + 2hh'AXBA'X’ — 2hh/'B3'X' = 0
= A =88X(c’1+Xpa' X)L
thus 8* = BA'X/ (0?1 + XBB'X')"1Y. O

Remark 2.2 The random vector 3% has the covariance matrix

Var(8*) = 0?88'X(¢*1 + XBA'X') *X 306’



Ridge estimator revisited 75

and the bias

bs = E(B") — B = [B8'X'(c*T+X88'X) "' X - 1]8.
Thus

Var(8*) + bgbly = o [3'X'(c’1 + XBB'X') °X3]| 86
+[BX (o’ T+ XBB'X') X[ ‘B 2 [BX'(0*1+XBB'X') "' X8| 86" + BB’
and

Tr [ Var(8*)] + bjybs = 02 [3'X/ (0’1 + XBA'X') 2X8]|8'8
+[BX 0?1+ XBB'X)'XB]° 88— 2[3'X (c* 1+ XBA'X) X388+ 88
Since B'X/(XBB'X')~XB = 1, it is valid that
o? = 0= Tr[Var(8)] + bjbs = 0.

The vector 3" is of no use for an estimation. Even an attempt to use an iter-
ation is useless. If B is a starting vector in an iteration procedure for a determi-
nation of 3", then the first step leads to 3(;) = BoBo(a?T+XB,B,X)71Y. Tt is
valid that P{8{;, € M(B,)} = 1, since dimension of B(c°T+XB,B,X') 'Y is
one. An analogous situation occurs in the second and other steps, i.e. P{'B?i) €
M(By)} =1, i=2,3,... Thus the starting vector 3, determines the direction
of the vector 3" and it is not admissible.

Hoerl and Kennard [3], [4] solved the problem in more efficient way. They
minimized the function ¢(83) = B/B under the condition

(v —XB)'(y —XB) = (y - XB)'(y —XB) +d, d>0,
where 8 = (X’X)~1X'y is the value of t for which the function

o(t) = (y — Xt)'(y — Xt)

attains its minimum. They obtained the estimator ,B of the form [3 = (I +
X'X)7IX'Y (ridge estimator), where ¢ > 0 can be chosen in such a way that
Tr [Var(@)] + [E(B) — ﬁ]/[E(B) — @] is significantly smaller than Tr [Var(ﬁ)]
mainly in the case that ||3|| is relatively small with respect to o and the matrix
X'X is bad conditioned.

In [7] new reasons for utilization of the ridge estimator are given and in [5]
a general view on the philosophy of the ridge estimator is analyzed.

3 Modification

Let us try to find explicit value for ¢ in the expression for the ridge estimator.
The spectral decomposition of the matrix X’X from Introduction is used. The
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quantity Tr [Var(B)] + b/ﬁbﬁ is a function of ¢ and it can be expressed as

®(c) = Tr [ Var(B)] + bjybs = o Tr (eI + X'X) ' X'X (I + X'X) ']
+8'[(I+X'X) ' X' X 1] ’B=02Tr [(cFF'+FAF') 'FAF'(cFF'+FAF') ]

k k
+ B'[(cFF' + FAF)"'FAF —~FF]°8=0>) Mo 3 Af8)°
o (et X)? (et A)?

Thus

Z 20 (c(£!B)? — o?)
p (c+XN)

and in the case that 3 is approximately known, it is possible to solve the equation
Ni(c(£1B)? — o?)
§MelEB) — o)
‘ (c+ M)
=1

for c.
Let the function

B(t) = t'Dt + A[(y — Xt)'(y — Xt) — (y - XB)'(y - XB) —d] (4
instead the function
O(t) = t't + A[(y — Xt)'(y — Xt) — (y — XB)(y — XB) — d]

be considered. Her D is a positive definite matrix which will be determined
later.

Theorem 3.1 The solution of the optimization problem (4) is
t=(D+X'X) ' X'y,

where D = D/X. The MSE-optimum choice of the matriz D is

1 1
D:JQFDiag( >F’,
(f18)? (f.8)
Ay .., O
where X' X =FAF  F=(f,....f), A= ..........
07 R >\k

Proof Let U = Diag(ug,...,ur) and D = FUF’. Then the MSE of the
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estimator t can be written as
Tr [ Var(t)] + bjbs = 0 Tr { [F(U + A)F'] " 'FAF/[F(U + A)F'] ‘1}

+ 8 {FAF/[F(U+ A)F] " — FF' }{ [F(U+ A)F']'FAF - FF'}3

J%H[FDmg< >DMth””Aw

ul—&—)\l"”’uk—&-)\k

1 1
X Dia, ey F
g(u1+>\1 Uk+>\k) }

A1 AL
+ 4 |FDia o F FF}
ﬂ{ lg<ul+)\1 Uk+>\k)

k

. A1 Ak , , 0'2)\1‘ + (f/ﬂ 202

x |FD F' —FF = _
|: lag (U1+A17 7Uk+>\k) I6 Z (U7+ i)2

Here the relationship

[FU+A)F] ' =F(U+A)"'F

was taken into account.

The optimum entries uq, ..., u; of the matrix U can be now easily find.
§:2A+Pm
P (u; + A ’
PB(U) (B8 uius + Ni) — [0°\i + (£/8)7u?]
ou; o (uz + )\i)?’ '

Thus u; = 0?/(f/3)?,i=1,...,k and
1 1
DﬁFMa(WW>F.
S\ EB2 (582
O

Remark 3.2 The matrix D must be determined by the iteration. We start
with some ,8(0), then obtain the matrix D§0), by the help of it we obtain the

- (1
estimator ﬂ( ), etc. The choice of the matrix D from Theorem 3.1 gives

LN+ @B LB ()

Tr [ Var(t)] 4+ bjzbg = Z =0 T8 o
— — \i(£i8)? + o2
= (@ +A> =

what can be significantly smaller than Tr [ Var(3 )] =o? Zz 1 )\i
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4 Model with the type I constraints

The model is
YNn (Xﬁ,O'QI), g+G6:01

where (X, ;) =k <n, r(Ggr) = ¢ < k. The matrix X, the vector g and the
matrix G are given.

Obviously M(G’) € M(X’). In this case the BLUE of the parameter 3 is

~

B=(X'X)"'X'Y - (X'X)'G¢'[G(X'X)"'G'] T [(X'X) XY +g]

and its covariance matrix is

Var(3) = 02{(X’X)—1 _ (X/X)_lG’ [G(X’X)_lG’]_l

G(X’X)—l}
= 0'2 (MGW X/XM(;/)+ ,
where Mg = I — G'(GG’)"1G and * is notation for the Moore—Penrose gen-

eralized inverse (see [6]).
If the idea of Hoerl and Kennard is a little bit generalized, we seek for an

estimator 8 which satisfy the constraints g + G = 0 and also the constraints
(y —XB)(y - XB) = (y — XB)’(y - X,B) + d and at the same time it will
minimize the quantity B'ﬁB

Lemma 4.1 The estimator 3 is

Z‘). — (D + X/x)flle _ (D + X/x)flgl [G(D + X/x)flgljlil
x[GD +X'X)"'X'Y +g] = PfCDejé;X)(D +X'X)X'Y — Gy x0x08

/

where D = o%F Diag ((f%)z ey (f,ia.)2> F
1 k

Proof The auxiliary Lagrange function is

B(t) = 'Dt — A(y — Xt)'(y — Xt) — (y - XB) (y - XB) — d] + 2/ (Gt +g),

where ) is the Lagrange multiplier and & is a vector of the Lagrange multipliers.
Thus

0o(t —
% = 2Dt + A(—2X'y + 2X'Xt) + 2G'k = 0

= (D +X'X)t + G’; = X'y,

where D = D/ and

B=(D+X'X) XY~ (D+ X’X)*lG’;
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Further
0=g+GB=g+GD+XX) XY -GD+ X'x)"'a' s
= ; — [GD+X'X)"'¢] ' [GD +X'X)'X'Y +g]
=B =(D+XX)"XY - (D+XX)"'¢[GD+XX)"'e]

x[G(D +X'X)'X'Y +g]
_ {1 — (D+X'X)" G/ [G(D + X'X) Q'] _1G}(D +X/X) XY

~(D+X'X)"'¢'[G(D+X'X)"'G] g

_ p(D+X'X) -1 -
= PICeT(G) (D +XX)" XY — Gm(D+X’X)g’

where PfCDe;)é;X) is the projection matrix on Ker(G) = {u: u € R¥, Gu = 0}

in the norm given by the positive definite matrix D + X'X.
The bias of the estimator 3 is

bs = E(B) — B =P L V[(D+X'X)"1X'X - 1].

and

’ ’ /
Var(3) = o*PI 50 (D + XX) XKD + X'X) ! (PLFEY)

Since the bias of the estimator 3 = (D 4+ X'X)"'X'Y is
E(B)-pB=[D+XX)"'X'X 1|8,
p(D+X'X)

it is obvious that bg = Ker(G) [E (B) — ﬁ] and analogously for the covariance
matrix

=~ D+X'X ~ D+X'X !
Var(3) :P)(CJ(G) )Var(ﬁ) <P§Ce:_(G) )> .

Thus the estimator B from the model without constraints can be used in the

formula for the estimator ,B in the model with the type I constraints. The bias

and the covariance matrix are reasonably diminished by the projection matrix

P;C[;jé;X) which fully respects the constraints. O

5 Model with the type II constraints
The model considered is
YNn (X/BleQI)a g+G1/61+G2/62 :07

where r(X(mkl)) =k <n, T(Gl,(q,kl)v G2,(q,k2)) =q < k1 + ke, T(Gl(q,kz)) =
ks < q. The matrix X, the vector g and the matrices G;, Go are given.
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The BLUES of the vector parameters 3, and 3, are

~

B, = (X'X)"IX'Y — (X'X)"'&4 [1\/162(?.1()(’)()—1GJ11\/1(,~2]+
x [g+ G1(X'X)'X'Y],

Bo = —[(Gh) ey xrx)16y) [8+ G1(X'X) T X'Y]

(in more detail see [1]).
In both estimators the effect of the bad conditioned matrix X'X is fully

manifested.
The modification of the Kennard and Hoerl approach can be made in two

ways. ) .
The first one starts with a minimization of the quantity ,B/lﬁlﬂl and the
other starts with a minimization of the quantity 3/151,@1 + ,3/25232.

Let us consider the minimization of Blﬁl,él, i.e.

B(t1,t2) = t1 D1ty + A[(y — Xt1)'(y — Xt1) — (y — XB1) (y — XB,) — d]
72R/(g + Gyt + thg),

0D(t1,ts)  —
% = 2Dt; + A(—2X'y + 2X'Xt1) - 2Gik,
1
OD(tq,t0) ’
P2ELY2) . oglk.
Ot 2

Let D; = %ﬁl. Thus the following relationships can be written.
(D1 + AX'X)t; — \X'y — G,k = 0,
t; = (D) + X'X)"'X'y + (D + X’X)*G’l;,
g+ G (D) + X'X) X'y + G, (D; + X’X)’lG’lg 4+ Gty =0

(Gl(Dl + X'X)"1GY, G2> <1~e/>\> B <g+ G,(D; +X’X)1X’y>
! 0 t - 0 :
29 2

Regarding the Pandora-Box theorem [6], we obtain

() () (o),

[M¢, G (D + X'X)"'G Mg, ",

(G/Q);n[Gl(D1+X’X)*1G’1]’

_ /
[(Gé)m[G1(D1+X’X)’1G'1]] ’

_ !/ —1 —
_[(Gé)m[Gl(D1+X/X)*1G'1]] G1(Dy +X/X) G/l(G/Q)m[Gl(Dl'FX'X)*lG'l]'

Thus the following theorem can be stated.
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Theorem 5.1 In the reqular model with the type constraints II the estimators

6(1) and 62 minimizing the quantity ,6'1D1,81 and satisfying the constraints

(v - XBOY(y — XBY) — [(y — XBy)'(y — XBy) +d] =0

and _ _
g+GiAY +GBY =

are

31 = (D, + X'X)"'X'Y — (D, + X'X)"' G} [Mg, G (D; + X'X)"!
x G/Mg,] " [g+ G1(D; + X'X)"'X"Y],

Bl = ~[(GY) e (Draxx)- 1G’]] [g+Gi(D: +X'X)TIX'Y].

Since Bgl) can be written as

3l = (1 — (Dy + X'X) "' G| Mg, [Mg, G1(D; + X'X)—lc;'lMGz]*MGzGl)
x (D1 + X'X)"'X'Y — (D) + X'X)"'G} [Mg,G1 (D + X'X)"'G/Mg,] "
= PG (D1 + X'X)TIXTY — (D1 + X'X) 7L GY
x [Mg,G1 (D + X'X) "' G/ Mg,] g,
the bias of the estimator égl) is
E(égl)) - B = P}(CZi?J\iI(C;fC)Jl) [(Dl +X'X)7'X'X - I]/@r

The same reasoning for the utilization of the matrix

1 1
D, = ¢?F Dia, ( )F’
' S\ {87 (68,7

can be made as at the end of the section 4.

As far as the estimator ,3(21) is concerned, there exists just one solution of
the equation

g+ Glégl) + GQéél) =0
for ,[:‘351), since r(Gg) = ko < ¢q. Thus

B = ~(G4G2)1GL(G1 B + g)
[(G/)m[Gl(Dri-X/X) lG']] [Gl(D1+X/X)_1X/Y+g]
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Thus the matrix

) 1 1 ,
D, gQFDlag<(fllB1)2,..., (f}cﬂ1)2>F

can be used for the estimator Bél) as well.
Let us consider a little more general problem, i.e. a minimization of the
function ¢(tq,t2) = t) D1ty + t5 Doty under the conditions

[(y = Xt1)'(y = Xt1) = (y — XB,)'(y - XB,) — d],
Gty + Gaty + g=0.
The Lagrangian auxiliary function is
®(t1,t2) = t1 D1ty + t5Doty + A[(y — Xt1) (y — Xty)

—(y —XBy) (y — XB,) — d] + 2K"(G1ty + Gaty + g).

Then
D(ty, -
w = 2Dty + A(—2X'y + 2X'Xt) + 2G1 K,
1

OB (ty,t —

7( Ly 2) = 2D2t2 +2G/2H
Dt

and

R

t; = (D) + X'X)" ' X'y — (D, + X’X)_lGlx,

b, = —DglG;;,

where D; = D; /) and Dy = Dy/ .

Since
0=g+ G103, +G28, =g+ (D; + X’X)"'X'y
—[G1(D; + X'X) "G + GyD; ' G ’1;
we have
K

1= [G1(D1 + X'X)"'G] + G2D; ' G} ! [g+ Gi(D; + X'X)"'X'y].

The following theorem can be stated.

Theorem 5.2 In the regular model with the constraints 1T

YN'rL (X/B17021)7 g+Glﬁl+G2ﬂ2:O7
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where

r(Xpk,) = k1 <y 7(Goy (g Go(aike)) = @ < k1 + k2, 7(Goghs)) = k2 < g,

the estimators ,3(12) and Bg) minimizing the quantity

(BP)DiY + (BY)) DB
are
3% = (D) + X'X)"IX'Y — (D; + X'X) "G} [G4(D; + X'X) "G}
+G,yD; G g+ Gy (Dy + X'X) XY,
AP = —D;'G4[G1(Dy + X'X) LG} + GoD; ' G|
x [g+ Gi1(Dy + X'X)"'X'Y],

1

where Dy = D1/ and Dy = Do/ .

The problem of the MSE-optimization of the matrix Dy is out of the scope
of the paper. For the sake of simplicity the choice D; =1 can be used.

6 Numerical examples

Let singular value decomposition of the matrix X be

Xk = Jsay/s By I'T =T A2 = Diag (VA VEVOT), F=T

02 =1 and
0.5 Lo
— (04 X'X = Diag (4,4,0.1), D =FDiag | —=, ——, —— | F'.
s 0o |’ iag (4,4,0.1), 148 (0.52’0.42’0.22>
Thus

Var(8) = (X'X)~! = Diag(0.25,0.25, 10),
1 1 1
0.520.42" 0.22
x Diag (\/1 V4, \/0-1) J'y = Diag(0.250000,0.195122,0.012599)J"y,

-1
B=D+XX)"Xy= {Diag ( ) + Diag (4, 4, 0.1)]

Var(8) = Diag(0.062500,0.038073,0.000159)
E(B) = Diag(0.250000,0.195122, 0.012599)J'JA'/2F'3
= (0.250000, 0.156098,0.000797)".
The bias of B is

bz = (0.250000, 0.156098,0.000797)" — (0.5,0.4,0.2)’
= (—0.250000, —0.243902, —0.199203)".
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Thus
Tr [ Var(8)] = 10.5 and Tr [ Var(B)] +blsbs = 0.100732+0.161670 = 0.262402.

The effect of the optimization is expressive.
Let this model with constraints (2, —2,—1)3 = 0 be considered, i.e. g = 0
and G = (2,—2,—1). It is valid that

0.462415, 0.537585, 0.268793

PN = [ 0419579, 0.580421, —0.209789
0.085671, —0.085671, 0.957164
and
[ —0.250000 —0.300266
E(B)-p =Pl SV EB)-6] = PLIEY | ~0243902 | = | ~0.204670
~0.199203 —0.191192
Since ,
Var(8) = PLIE var(8) (POFE)
we have

Tr [Var(8)] + [E(B) — 8]’ [E(B) — 8] = 0.049099 + 0.168604 = 0.217703.
The covariance matrix of the BLUE is
Var(,g) = (X'X)"' - (X'X)'G'[G(X'X) ' G]
and thus

71G(XIX71)71

Tr [Var(fa)] = 2.110007.

what is essentially larger than 0.217703.
Let now the type II constraints be considered, e.g.

B=08,=(05, 04, 02)', G, =(2,-2,-1), Gy =2, g=—0.6, 3, =0.3.
Thus
B = B, — G Me, [Mc, G (D + X'X) ' G Mg, ] "M, (G153, +g)
=B, = (D; + X'X)"X'Y

since Mg, = 0 and

z ’ - 1 ~
85" = ~ (@) migu(xrx)16y) (B C1By) = 5[0.6 - (2, -2, -1)B,].

bl = EBY) - 8, = E(B,) — B, = (—0.250000, —0.243902, —0.199203)’,
Var(8") = Var(B ) = Diag(0.062500, 0.038073,0.000159),
Tr [ Var(81")] + (b5))bS) = 0.262402,

Var(B,) = Var(8,) = Diag(0.25,0.25, 10) = Tr [Var(fal)] =105
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-~
N

The difference Tr [ Var(3,)] — { Tr [Var(égl))] + (b(ﬁl1 )’b(ﬁll)} is the same as
in the first example.
Since

_ r 1 ~ -
[(Gé)m[cl(x/x)—lc/l]] = ) and (g + Glﬁl) = [ —0.6+(2,-2, _1)/31]7

we have ~ 1
(1 — —5 [~ 0.6+ (2,-2,-1)5]
and -
E (ﬁgl)) — B3 = 0.206496 — 0.3 = —0.093504 = b}).
Further
Var(35)) =
. P
= (2, -2, ~1) Diag(0.062500, 0.038073,0.000159) | ~2 | =0.100613.
1

Thus

T [var (5")] + (b(ﬁ?)Q — 0.109356

~
~

— / _ —

Var(ﬁz) = [(G/Q)m[Gl(X’X)flGll]] Gl(X/X) IG/l(Gé)m[Gl(X’X)flGﬂl] = 3
As far as the estimators 552) and 6252) (D3 =1) are concerned, we obtain
3P = (D) +X'X)"IX'Y — (D + X'X) 'G [G (D1 + X'X) "G + G, G|
x[g+ Gi(D; + X'X)'X'Y],

Var ( P) - {1 — (D) + X'X)'G} [G1(D; + X'X) 1G] + G, G}] ”Gl}

- _ /
x Var(ﬁl){l — (Dy + X'X)"'G} [G1(Dy + X'X) "G} + G2 GY] 1(;1}

0.050857, 0.008001, 0.000853
= | 0.008001, 0.032676, —0.000493 |,
0.000853, —0.000493, 0.000183
z ~ _ _ -1
E(BY) - 8= E(B,) - (D1 + X'X) G} [G1(Dy + X'X)7'G] + G2G)]

i —0.148785
x[g+GiE(B,)] — B, = | —0.322899 |,
~0.215333

T [Var (B2)] + (b)) ) = 0.083716 + 0.172769 = 0.256485.

The behaviour of ,(:351) and ,(Zigz) is similar; the MSEs of both estimators are
almost the same.
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The estimator 552) is

B = ~GH[G1 (D1 + X'X) LG + G2GY] B &+ G1(D1 + X'X) " IX'Y]

1 ~
=2 [-06+(2,-2,—1
4.930085[ +(2,-2, -1,
we have .
E (552)) — By = b = ~0.132460
and

Var ( 252)) =

0.062500, 0, 0 2
= 0.405673% (2, -2, —1) 0, 0.038073, 0O —2 | =0.066232.
0, 0, 0.000159 / \ —1

Thus
z 2
Var (8) + (b)) = 0066232 + 0.017546 = 0.083778

and Var(BQ) = 3, what is essentialy larger than 0.083778.
The MSE of tNhe estimator @2) equal to 0.083778 is smaller than the MSE
of the estimator Bél) equal to 0.109356.
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