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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 4 , PAGES 6 0 0 – 6 3 6

SEVERAL APPLICATIONS OF DIVERGENCE
CRITERIA IN CONTINUOUS FAMILIES

Michel Broniatowski and Igor Vajda

This paper deals with four types of point estimators based on minimization of information-
theoretic divergences between hypothetical and empirical distributions. These were introduced

(i) by Liese and Vajda [9] and independently Broniatowski and Keziou [3], called here power
superdivergence estimators,

(ii) by Broniatowski and Keziou [4] , called here power subdivergence estimators,

(iii) by Basu et al. [2], called here power pseudodistance estimators, and

(iv) by Vajda [18] called here Rényi pseudodistance estimators.

These various criterions have in common to eliminate all need for grouping or smoothing in
statistical inference. The paper studies and compares general properties of these estimators
such as Fisher consistency and influence curves, and illustrates these properties by detailed
analysis of the applications to the estimation of normal location and scale.

Keywords: divergence,parametric estimation, robustness

Classification: 62B10, 62F10, 62F35

1. MOTIVATION

The aim of this paper is to introduce a general setting for various statistical criterions
which have been intensively used in the statistical literature in the recent decades. Many
authors have considered alternatives to the Maximum Likelihood (ML) paradigm for
parametric inference, mostly for reasons linked with robustness; it is well known that ML
estimators may lack robustness for simple classical models, such as the standard normal
one under simple sampling. Huber’s proposal in the 70’s, followed by many others, have
led to a wide literature, among others in relation with the so-called minimum divergence
approach, which is known to include ML as a special case, in connection with Kullback–
Leibler divergence. Invariance of divergence based methods with respect to smooth
changes in the scale of the variables have also been a strong argument in favor of these
new statistical criterions. These methods have in common with ML that they strongly
rely on the structure of the model; as such, robustness with respect to misspecification
or with respect to outliers cannot be guaranteed, although efficiency may hold; trade
off between these two basic properties of statistical inference is still a challenge, and
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attempts to derive a global class of statistical tools, including ML as a benchmark, is
a necessary step in this respect.

Meanwhile a strong obstacle for the definition of such tools has been observed: for
example the celebrated χ2 criterion cannot be defined between the empirical measure of
the data, which has finite support, and the plausible candidates in a continuous model;
this leads to the well known problem of grouping; in a similar way, most divergence based
criterions rely on smoothing techniques, so that the empirical measure is substituted by
some non parametric estimate of the underlying density prior to inference with respect
to a continuous model. This has been a serious obstacle for these methods.

Following parallel lines Liese and Vajda [9] and Broniatowski and Keziou [3] devel-
oped a variational form of divergence criterions which avoids the aforementioned obsta-
cle, therefore making grouping or smoothing unnecessary for parametric inference. The
present paper extends these results outside of the restricted field of divergences, and
includes other kinds of statistical criterions, such as the L2 one or the proposals by Basu
et al. [2] as special cases.

This paper is restricted to the case when the sampling is i.i.d. under a given model
with continuous distributions. We have focussed on some classical properties of the
proposed estimators (mainly Fisher consistency and robustness through the Influence
Function approach); this is clearly very partial, and we did not develop all the asymptotic
properties of those estimates. Some reason for this is the following: divergence based
approach in inference is not connected only with properties under i.i.d. sampling. It can
be seen that according to the sampling, and without referring to any robustness property,
there is a strong connection between the sampling scheme and the statistical criterion
to be used, whatever the model; this is well known for the ML paradigm: mimicking
the observed data set under i.i.d. sampling according to the most likely member of
the model turns out to optimize the Kullback–Leibler divergence between the model
and the empirical measure, which leads to ML estimators. A similar development can
be achieved for other sampling schemes (sample survey ones, weighted bootstrap and
others), each one leading to a divergence based procedure. It is also the role of this
paper to introduce various notions for future work in this direction.

2. BASIC CONCEPTS AND RESULTS

Let φ : (0,∞) 7→ R be a twice differentiable strictly convex function with φ(1) = 0 and
(possibly infinite) continuous extension to t = 0+ denoted by φ(0), and let Φ be the
class of all such functions. For every φ ∈ Φ we consider the adjoint function

φ∗(t) = tφ(1/t) where φ∗ ∈ Φ, (φ∗)∗ = φ. (1)

For every φ ∈ Φ we consider φ-divergence of probability measures P and Q on a mea-
surable space (X ,A) with densities p, q w.r.t. a dominating σ-finite measure λ. In this
paper we deal with P, Q which are either measure-theoretically equivalent (i. e. satisfy-
ing pq > 0 λ-a. s., in symbols P ≡ Q) or measure-theoretically orthogonal (i. e. satisfying
pq = 0 λ-a. s., in symbols P⊥Q). Thus, by Liese and Vajda [8] or [9], for all P,Q under
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consideration

Dφ(P,Q) =


∫
φ (p/q) dQ if P ≡ Q,

φ(0) + φ∗(0) if P⊥Q,
(2)

where the range of values is

0 ≤ Dφ(P,Q) ≤ φ(0) + φ∗(0) (3)

and Dφ(P,Q) = 0 iff P = Q or Dφ(P,Q) = φ(0) + φ∗(0) if (for φ(0) + φ∗(0) < ∞ iff)
P⊥Q. Another important property is the skew symmetry

Dφ(Q,P ) = Dφ∗(P,Q). (4)

We shall deal mainly with the power divergences

Dα(P,Q) := Dφα
(P,Q) of real powers α ∈ R (5)

for the power functions φα ∈ Φ defined by

φα(t) =
tα − αt+ α− 1

α(α− 1)
if α(α− 1) 6= 0 (6)

and otherwise by the corresponding limits

φ0(t) = − ln t+ t− 1, φ1(t) = φ∗0(t) = t ln t− t+ 1. (7)

It is easy to verify for all α ∈ R the relation

φ∗α = φ1−α so that Dα(Q,P ) = D1−α(P,Q).

For P ≡ Q we get from (2) and (5) – (7)

Dα(P,Q) =


1

α(α−1)

[∫
(p/q)α dQ− 1

]
if α(α− 1) 6= 0,∫

ln(p/q) dP = D0(Q,P ) if α = 1,
(8)

and for P⊥Q similarly

Dα(P,Q) =

{
1/α(1− α) if 0 < α < 1,

∞ otherwise.
(9)

The special cases D2(P,Q) or D1(P,Q) are sometimes called Pearson or Kullback diver-
gences and D−1(P,Q) = D2(Q,P ) or D0(P,Q) = D1(Q,P ) reversed Pearson or reverse
Kullback divergences, respectively.
The φ-divergences and power divergences will be applied in the standard statistical
estimation model with i.i.d. observations X1, . . . , Xn governed by Pθ0 from a family
P = {Pθ : θ ∈ Θ} of probability measures on (X ,A) indexed by a set of parameters
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Θ ⊂ Rd. The parameter θ0 is assumed to be identifiable and the family P measure-
theoreticaly equivalent in the sense

Pθ 6= Pθ0 and Pθ ≡ Pθ0 for all θ, θ0 ∈ Θ with θ 6= θ0. (10)

Further, the family is assumed to be continuous (nonatomic) in the sense

Pθ({x}) = 0 for all x ∈ X , θ ∈ Θ (11)

and dominated by a σ-finite measure λ with densities

pθ = dPθ/dλ for all θ ∈ Θ. (12)

In this model the parameter θ0 is assumed to be estimated on the basis of observations
X1, . . . , Xn by measurable functions θn : Xn 7→ Θ called estimates. Collection of esti-
mates for various sample sizes n is an estimator. Estimators are denoted in this paper
by the same symbols θn as the corresponding estimates.

The assumed strict convexity of φ(t) at t = 1 together with the identifiability of
θ0 assumed in (10) means that Dφ(Pθ, Pθ0) ≥ 0 for all θ, θ0 ∈ Θ with the equality
iff θ = θ0. In other words, the unknown parameter θ0 is the unique minimizer of the
function Dφ(Pθ, Pθ0) of variable θ ∈ Θ,

θ0 = argminθD(Pθ, Pθ0) for every θ0 ∈ Θ. (13)

Further, the observations X1, . . . , Xn are in a statistically sufficient manner represented
by the empirical probability measure

Pn =
1
n

n∑
i=1

PXi
, (14)

where Px denotes the Dirac probability measure with all mass concentrated at x ∈ X .
The empirical probability measures Pn are known to converge weakly to Pθ0 as n→∞.
Therefore by plugging in (13) the measures Pn for Pθ0 one intuitively expects to obtain
the estimator

θn = θn,φ := argminθDφ (Pθ, Pn) , (15)

which estimates θ0 consistently in the usual sense of the convergence θn → θ0 for n→∞.
However, the reality is different: the problem is that for the continuous family P under
consideration and the discrete family Pemp of empirical distributions (14)

Pθ⊥Pn ⇒ Dφ(Pθ, Pn) = φ(0) + φ∗(0) when Pθ ∈ P and Pn ∈ Pemp. (16)

This means that the estimates θn proposed in (15) are trivial, with the argmin = Θ.
In the following two sections we list and motivate several modifications of the minimum
divergence rule (15) which allow to bypass the problem (16). Some of them are new
and some known from the previous literature. We illustrate the general forms of these
estimators by applying them to the basic standard statistical families and investigate
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their robustness. The model of robust statistics is richer than the standard statistical
model defined by the triplet

(X ,A,Q) with Q = P ∪ Pemp

introduced above. Namely in addition to the hypothesis that the observationsX1, . . . , Xn

are i.i.d. by Pθ0 ∈ P the model of robust statistics admits the alternative that the ob-
servations are distributed by a probability measure P0 /∈ P with density

dP0

dλ
= p0.

Throughout this paper we assume that P0 is measure-theoretically equivalent with the
probability measures from P and we consider the probability measures

P ∈ P and Q ∈ Q = P+ ∪ Pemp where P+ = P ∪ {P0}. (17)

Measures P,Q are either measure-theoretically equivalent (if Q ∈ P+) or measure-
theoretically orthogonal (if Q ∈ Pemp). Therefore the φ-divergences Dφ(P,Q) are well
defined by (2) for all pairs P,Q considered in this paper. Further, we denote by L1(Q)
the set of all absolutely Q-integrable functions f : X 7→R and put for brevity

Q · f =
∫
f dQ for f ∈ L1(Q). (18)

In the rest of this section we introduce basic concepts and results of the robust statistics
needed in the sequel. Let us consider the Dirac probability measures δx ∈ Pemp, x ∈ X
and denote by C(Q) the set of the convex mixtures

Qx,ε = (1− ε)Q+ εδx for all x ∈ X , Q ∈ Q and 0 ≤ ε ≤ 1. (19)

Further, consider a mapping M(Q, θ) : C(Q) ⊗ Θ → R differentiable in θ ∈ Θ for each
Q ∈ C(Q) with the derivatives

Ψ(Q, θ) =
d
dθ
M(Q, θ) (20)

and let T (Q) ∈ Θ solve the equation Ψ(Q, θ) = 0 in the variable θ ∈ Θ forQ ∈ C(Q). The
following definition and theorem deal with the general M -estimators

θn = argminθM(Pn, θ) i. e. θn = T (Pn) for Pn ∈ Pemp.

Both the definition and theorem are variants of the well known classical results of robust
statistics, see e. g. Hampel et al. [7].

Definition 2.1. If for some Q ∈ P+ the limits

IF(x;T,Q) = lim
ε↓0

T (Qε,x)− T (Q)
ε

(21)

exist for all x ∈ X then (21) is called influence function of the estimator θn on X at Q.
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In the following theorem we consider the functions

ψ(x, θ) = Ψ(δx, θ) (22)

and assume the existence of the derivatives

ψ̊(x, θ) =
(

d
dθ

)t

ψ(x, θ) on X ⊗Θ (with t for transpose) (23)

as well as the expectations

I(Q) = Q · ψ̊(x, T (Q)), Q ∈ P+. (24)

Following e. g. Hampel et al. [7] we have

Theorem 2.1. If the influence function (21) exists then it is given by the formula

IF(x;T,Q) = −I(Q)−1ψ(x, T (Q)) (25)

for the inverse matrix (24).

The estimator θn = T (Pn) is said to be Fisher consistent if

T (Pθ) = θ for all θ ∈ Θ. (26)

In the following Corollary and in the sequel, we put

IF(x;T, θ) = IF(x;T, Pθ) and I(θ) = I(Pθ) (cf. (24)). (27)

Corollary 2.1. The influence function of a Fisher consistent estimator at Q = Pθ is

IF(x;T, θ) = −I(θ)−1ψ(x, θ). (28)

3. SUBDIVERGENCES AND SUPERDIVERGENCES

Throughout this section we use the likelihood ratios `θ,θ̃ = pθ/pθ̃ well defined a. s. on
X in the statistical model under consideration, the nonincreasing functions

φ#(t) = φ(t)− tφ′(t) for every φ ∈ Φ, (29)

where φ′ denotes the derivative of φ, and we restrict ourselves to the families P such
that{

φ
(
`θ,θ̃

)
, φ′

(
`θ,θ̃

)
, φ#

(
`θ,θ̃

)}
⊂ L1(Q) for all θ, θ̃ ∈ Θ and Q ∈ Q. (30)

Obviously, this assumption automatically holds for all Q = Pn ∈ Pemp. Finally, for all
pairs θ, θ̃ ∈ Θ we consider the functions Lφ(θ, θ̃) = Lφ(θ, θ̃, x) of the variable x ∈ X
defined by the formula

Lφ(θ, θ̃) = Pθ · φ′(`θ,θ̃) + φ#(`θ,θ̃).
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Due to (30), the functions Lφ(θ, θ̃) are Q-integrable for all Q ∈ Q. Consider the family
of finite expectations

D
¯φ,θ̃

(Pθ, Q) = Q · Lφ( θ, θ̃) = Pθ · φ′(`θ,θ̃) +Q · φ#(`θ,θ̃), (Pθ, Q) ∈ P ⊗Q (31)

parametrized by (φ, θ̃) ∈ Φ⊗Θ. Broniatowski and Keziou [3] and Liese and Vajda [9]
independently established a general supremal representation of φ-divergences Dφ (P,Q)
which implies the following result.

Theorem 3.1. For each (Pθ, Pθ0) ∈ P ⊗ P and φ ∈ Φ, the φ-divergence Dφ (Pθ, Pθ0)
is maximum of the finite expectations D

¯ φ,θ̃ (Pθ, Pθ0) over θ̃ ∈ Θ attained at the unique
point θ̃ = θ0. In other words,

Dφ (Pθ, Pθ0) ≥ D
¯φ,θ̃

(Pθ, Pθ0) for all θ, θ0 ∈ Θ, (32)

where the equality holds iff θ̃ = θ0.

P r o o f . For the sake of completeness we present the simple proof of Liese and Vajda.
For fixed s > 0, the strictly convex function φ(t) is strictly above the straight line
φ(s) + φ′(s)(t− s) except t = s, i. e.

φ(t) ≥ φ(s) + φ′(s)(t− s)

with the equality only for t = s. Putting in this inequality t = `θ,θ0 , s = `θ,θ̃
and integrating both sides over Pθ0 we get (32) including the iff condition for the
equality. �

Theorem 3.1 implies the formula

Dφ (Pθ, Q) = max
θ̃∈Θ

D
¯φ,θ̃

(Pθ, Q) for all (Pθ, Q) ∈ P ⊗ P (33)

which justifies us to interpret D
¯φ,θ̃

(Pθ, Q) as subdivergences of Pθ, Q with parameters
(φ, θ̃) ∈ Φ⊗Θ.
Now we introduce the family of suprema

D̄φ (Pθ, Q) := sup
θ̃∈Θ

D
¯φ,θ̃

(Pθ, Q) for all (Pθ, Q) ∈ P ⊗Q (34)

parametrized by φ ∈ Φ. This family extends the φ-divergences Dφ (P,Q) from the
domain P ⊗ P to P ⊗Q allowing therefore Q to be discrete. Indeed, by Theorem 3.1,

D̄φ (Pθ, Q) = Dφ (Pθ, Q) for all (Pθ, Q) ∈ P ⊗ P. (35)

This justifies us to interpret D̄φ (Pθ, Q) as superdivergences of (Pθ, Q) ∈ P ⊗Q with
parameters φ ∈ Φ.
Note that (35) need not hold for Q /∈ P because if Q = Pn ∈ Pemp then the super-
divergence values D̄φ (Pθ, Pn) differ from the constant divergence values Dφ (Pθ, Pn) ≡
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φ(0) + φ∗(0) (cf. (16)).
The subdivergences D

¯φ,θ̃
(Pθ, Pn) and superdivergences D̄φ (Pθ, Pn) can replace the di-

vergencesDφ (Pθ, Pn) as optimality criteria in definition ofM -estimators. Let us consider
the families of functionals T̃φ,θ : Q 7→ Θ and Tφ : Q 7→ Θ defined by

T̃φ,θ(Q) = argmaxθ̃ D
¯φ,θ̃

(Pθ, Q) for (φ, θ) ∈ Φ⊗Θ (36)

and
Tφ(Q) = argminθ D̄φ (Pθ, Q) for φ ∈ Φ (37)

respectively. Replacing the general argument Q by Pn defined by (14) we obtain the
maximum subdivergence estimators (briefly, the maxD

¯φ
-estimators)

θ̃φ,θ,n = T̃φ,θ(Pn) = argmaxθ̃ D
¯φ,θ̃

(Pθ, Pn) (38)

= argmaxθ̃
[
Pθ · φ′(`θ,θ̃) + Pn · φ#(`θ,θ̃)

]
(cf. (31))

= argmaxθ̃

[
Pθ · φ′

(
pθ
pθ̃

)
+

1
n

n∑
i=1

φ#

(
pθ(Xi)
pθ̃(Xi)

)]
(39)

with escort parameters θ ∈ Θ, and the minimum superdivergence estim-
ators (briefly, the minD̄φ-estimators)

θφ,n = Tφ(Pn) = argminθ D̄φ (Pθ, Pn) = argminθsupθ̃ D
¯φ,θ̃

(Pθ, Pn) (cf. (34)) (40)

= argminθsupθ̃
[
Pθ · φ′(`θ,θ̃) + Pn · φ#(`θ,θ̃)

]
(cf. (31))

= argminθsupθ̃

[
Pθ · φ′

(
pθ
pθ̃

)
+

1
n

n∑
i=1

φ#

(
pθ(Xi)
pθ̃(Xi)

)]
. (41)

Theorem 3.2. The maxD
¯φ

-estimators are as well as the minD̄φ-estimators are Fisher
consistent.

P r o o f . By (33) and (35),

T̃φ,θ(Pθ0) = argmaxθ̃ D
¯φ,θ̃

(Pθ, Pθ0) for (φ, θ) ∈ Φ⊗Θ (42)

and
Tφ(Pθ0) = argminθ D̄φ (Pθ, Pθ0) for φ ∈ Φ (43)

which completes the proof. �

The minD̄φ-estimators θφ,n in (40) were proposed independently by Liese and Va-
jda [9] under the name modified φ-divergence estimators and Broniatowski and
Keziou [3] under the name minimum dual φ-divergence estimators. The maxD

¯φ
-

estimators θ̃φ,θ,n in (38) were proposed by Broniatowski and Keziou [4] and called dual
φ-divergence estimators by them. Both types of these estimators were in the cited pa-
pers motivated by the mentioned Fisher consistency and by the property easily verifiable
from (39) and (41), namely that φ(t) = − ln t implies

θ̃φ,θ,n = argmaxθ̃ Σni=1 ln pθ̃(Xi) and θφ,n = argmaxθ Σni=1 ln pθ(Xi), (44)
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where the left equality holds for all escort parameters θ ∈ Θ. In other words, the
logarithmic choice φ(t) = − ln t reduces all the variants of the maxD

¯φ
-estimator as well

as the minD̄φ-estimator to the MLE. It is challenging to investigate the extent to which
the maxD

¯φ
-estimators θ̃φ,θ,n and the minD̄φ-estimator θφ,n as extensions of the MLE

are efficient and robust under various specifications of φ, θ and φ respectively.
In this paper we restrict ourselves to special subclasses of the power divergencesDα(P,Q)
:= Dφα(P,Q) defined by (6) – (8). For the power functions φα from (6), (7) we get the
functions

φ̊α(t) := tφ′α(t) =


tα−t
α−1 for α 6= 1,

limα→1
tα−t
α−1 = t ln t for α = 1,

(45)

and

φ#
α (t) = φα(t)− φ̊α(t) =


1
α (1− tα) for α 6= 0,

limα→0
1
α (1− tα) = − ln t for α = 0. (46)

They lead to the maxD
¯α

-estimators (briefly, power subdivergence estim-
ators)

θ̃α,θ,n = argmaxθ̃

[
Pθ̃ · φ̊α

(
pθ
pθ̃

)
+ Pn · φ#

α

(
pθ
pθ̃

)]
(47)

with power parameters α ∈ R and escort parameters θ ∈ Θ and to the minD̄α-estimators
(briefly, power superdivergence estimators)

θα,n = argminθsupθ̃

[
Pθ̃ · φ̊α

(
pθ
pθ̃

)
+ Pn · φ#

α

(
pθ
pθ̃

)]
(48)

with power parameters α ∈ R. If the argmaxima in (47) exist then

θα,n = argminθ

[
Pθ̃α,θ,n

· φ̊α

(
pθ

pθ̃α,θ,n

)
+ Pn · φ#

α

(
pθ

pθ̃α,θ,n

)]
. (49)

The next two subsections deal correspondingly with the maxD
¯α

-estimators and minD̄α-
estimators. In both sections are considered the power parameters α ≥ 0. Since φ0(t) =
− ln t, we see from (44) that

θ̃0,θ,n = argmaxθ̃ Σni=1 ln pθ̃(Xi) and θ0,n = argmaxθ Σni=1 ln pθ(Xi) (50)

are the MLE’s. If α > 0 then by (45) – (48),

θ̃α,θ,n = argminθ̃ Mα,θ(Pn, θ̃) (51)

and
θα,n = argmaxθinf θ̃ Mα,θ(Pn, θ̃) ≡ argmaxθ Mα,θ(Pn, θ̃α,θ,n), (52)
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where

Mα,θ(Q, θ̃) =
1

1− α
Pθ̃ ·

(
pθ
pθ̃

)α
+

1
α
Q ·
(
pθ
pθ̃

)α
if α > 0, α 6= 1

(53)

= Pθ · ln
pθ̃
pθ

+Q · pθ
pθ̃

if α = 1

for all Q ∈ Q.
Throughout both subsections we restrict ourselves to the densities pθ twice differentiable
with respect to θ ∈ Θ ⊂ Rd, we put

sθ =
d
dθ

ln pθ and s̊θ =
(

d
dθ

)t

sθ (54)

and suppose that the functions Mα,θ(Q, θ̃) of (53) are twice differentiable in the vector
variable θ̃, with the differentiation and integration interchangeable in (53). Moreover,
we suppose that the derivatives

Ψα,θ(Q, θ̃) =
d
dθ̃
Mα,θ(Q, θ̃) = Pθ̃ ·

(
pθ
pθ̃

)α
sθ̃ −Q ·

(
pθ
pθ̃

)α
sθ̃ (55)

admit solutions of the equations Ψα,θ(Q, θ̃) = 0 in the variable θ̃ ∈ Θ for Q ∈ Q.

3.1. Power subdivergence estimators

In this subsection we study the maxD
¯α

-estimators θ̃α,θ,n with the divergence power
parameters α ≥ 0 and the escort parameters θ ∈ Θ. As said above, for α = 0 they
coincide with the MLE’s (50). Therefore we restrict ourselves to α > 0 and to the
definition formula (51), (53).
By assumptions, the argminima

T̃α,θ(Q) = argminθ̃ Mα,θ(Q, θ̃), α > 0, Q ∈ Q cf. (36)) (56)

solve the equations Ψα,θ(Q, θ̃) = 0 in the variable θ̃ ∈ Θ and, in particular, θ̃α,θ,n =
T̃α,θ(Pn) are for all α > 0 solutions of the equations

Pθ̃ ·
(
pθ
pθ̃

)α
sθ̃ −

1
n

n∑
i=1

(
pθ(Xi)
pθ̃(Xi)

)α
sθ̃(Xi) = 0 (57)

in the variable θ̃ ∈ Θ.
The next Theorem explicits the influence functions of the maxD

¯α
-estimators θ̃α,θ,n. Its

proof is provided in Broniatowski and Vajda [6]. For a complete discussion on scale and
location robustness of maxD

¯α
-estimators θ̃α,θ,n see Toma and Broniatowski [13]. Let us

quote that the family of maxD
¯α

-estimators θ̃α,θ,nestimators are shown to be robust in
many cases under heavy tailed models, as is also seen by simulation for various sample
sizes and various types of contamination.
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Theorem 3.1.1. The influence functions of the maxD
¯α

-estimators θ̃α,θ,n under consid-
eration are at Pθ0 given by the formula

IF(x; T̃α,θ, θ0) = Iα,θ(θ0)−1

[(
pθ(x)
pθ0(x)

)α
sθ0(x)− Pθ0 ·

(
pθ
pθ0

)α
sθ0

]
if α > 0 (58)

IF(x; T̃0,θ, θ0) = I(θ0)−1sθ0(x) otherwise, (59)

where

Iα,θ(θ0) = Pθ0 ·
(
pθ
pθ0

)α
stθ0sθ0 if α > 0, (60)

I(θ0) = Pθ0 · stθ0sθ0 if α = 0. (61)

If the escort parameter θ coincides with the true parameter θ0 then

IF(x; T̃α,θ0 , θ0) = I(θ0)−1sθ0(x) for all α ≥ 0.

The following examples provide some insight on the Fisher consistency of Power
subdivergence estimators. This property may be lossed under misspecification, due to
the fact that they may not be free with respect to the value assumed for some known
parameter in the model, showing a loss of consistency under misspecification. We also
evaluate the influence functions of the scale and location parameters.

Example 3.1.1. Power subdivergence estimators in normal family. Let the
observation space (X ,A) be the Borel line (R,B) and P = {Pµ,σ : µ ∈ R, σ > 0} the
normal family with parameters of location µ and scale σ (i. e. variances σ2). We are
interested in the maxD

¯α
-estimates (µ̃α,µ,σ,n, σ̃α,µ,σ,n) with power parameters α ≥ 0 and

escort parameters (µ, σ) ∈ R⊗ (0,∞)}.
If α = 0 then these estimators reduce for all escort parameters µ, σ to the well known
MLE’s

(µ̃0,µ,σ,n, σ̃0,µ,σ,n) =

 1
n

n∑
i=1

Xi,

√√√√ 1
n

n∑
i=1

(Xi − µ̃0,n)
2

 (62)

For 0 < α < 1 the function (53) takes on the form

Mα,µ,σ(Q, µ̃, σ̃) =
1

1− α
Pµ̃,σ̃ ·

(
pµ,σ
pµ̃,σ̃

)α
+

1
α
Q ·
(
pµ,σ
pµ̃,σ̃

)α
(63)

where (
pµ,σ(x)
pµ̃,σ̃(x)

)α
=
(
σ̃

σ

)α
exp

{
α (x− µ̃)2

2σ̃2
− α (x− µ)2

2σ2

}
, (64)

and

Pµ̃,σ̃ ·
(
pµ,σ
pµ̃,σ̃

)α
= exp

{
− α(1− α)(µ− µ̃)2

2[ασ̃2 + (1− α)σ2]
− ln

√
ασ̃2 + (1− α)σ2

σ̃ασ1−α

}
. (65)
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Using the likelihood ratio function (64) and the score function

sµ,σ(x) =

(
x− µ

σ2
,
1
σ

[(
x− µ

σ

)2

− 1

])
(66)

one obtains for all α > 0 the derivative

Ψα,µ,σ(Q, µ̃, σ̃)=
(

d
dµ̃
,

d
dσ̃

)
Mα,µ,σ(Q, µ̃, σ̃)=Pµ̃,σ̃ ·

(
pµ,σ
pµ̃,σ̃

)
αsµ̃,σ̃−Q·

(
pµ,σ
pµ̃,σ̃

)
αsµ̃,σ̃ (67)

and the maxD
¯α

-estimators as the argminima

(µ̃α,µ,σ,n, σ̃α,µ,σ,n)=argminµ̃,σ̃

[
1

1− α
Pµ̃,σ̃ ·

(
pµ,σ
pµ̃,σ̃

)α
+

1
αn

n∑
i=1

(
pµ,σ(Xi)
pµ̃,σ̃(Xi)

)α]
(68)

or, equivalently, as solutions of the equations

Pµ̃,σ̃ ·
(
pµ,σ
pµ̃,σ̃

)α
sµ̃,σ̃ −

1
n

n∑
i=1

(
pµ,σ(Xi)
pµ̃,σ̃(Xi)

)α
sµ̃,σ̃(Xi) = 0. (69)

By Theorem 3.1.1, the influence functions of these estimators at Pµ0,σ0 are

IF (x; T̃α,µ,σ, µ0, σ0)

= Iµ,σ(µ0, σ0)−1

[(
pµ,σ(x)
pµ0,σ0(x)

)α
sµ0,σ0(x)− Pµ0,σ0 ·

(
pµ,σ
pµ0,σ0

)α
sµ0,σ0

]
for

Iµ,σ(µ0, σ0) = Pµ0,σ0 ·
(
pµ,σ
pµ0,σ0

)α
stµ0,σ0

sµ0,σ0 . (70)

Example 3.1.2. Power subdivergence estimators of location. Let in the frame
of previous example P = {Pµ : µ ∈ R} be the standard normal family with the location
parameter µ and scale σ = 1. Then the function (63) takes on the form

Mα,µ(Q, µ̃) =
1

1− α
(ηα,µ(µ, µ̃))α−1 +

1
α
Q · ηα,µ(x, µ̃) (71)

for α > 0, α 6= 1 where

ηα,µ(x, µ̃) = exp {α(µ̃− µ)(µ̃+ µ− 2x)/2} , x ∈ R.

The maxD
¯α

-estimates µ̃α,µ,n of location µ0 with the divergence parameters 0 ≤ α < 1
and escort parameters µ ∈ R are the MLE’s

µ̃0,µ,n = X̄n =
1
n

n∑
i=1

Xi (72)
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if α = 0. Otherwise they are the minimizers

µ̃α,µ,n = argminµ̃Mα,µ(Pn, µ̃) (73)

or, equivalently, solutions of the equations

Ψα,µ(Pn, µ̃) = 0

in they variable µ̃ ∈ R for

Ψα,µ(Q, µ̃) =
d
dµ̃
Mα,µ(Q, µ̃)

= Q · (µ̃− x)ηα,µ(x, µ̃)− α(µ̃− µ)ηα−1
α,µ (µ, µ̃). (74)

Let T̃α,µ(Q) be the solution of the equation Ψα,µ(Q, µ̃) = 0 in the variable µ̃ ∈ R and
let Qµ0 denote the shift of the distribution Q by µ0. Then

Qµ0 · (µ̃− x)ηα,µ(x, µ̃) = Q · (µ̃− µ0 − x)ηα,µ−µ0(x, µ̃− µ0))

so that T̃α,µ(Qµ0) = µ0 + T̃α,µ−µ0(Q). This means that the estimators (73) are Fisher
consistent in the normal family Pσ =

{
Pµ0,σ = N(µ0, σ

2) : µ0 ∈ R
}

with σ > 0 fixed if
and only if the solution T̃α,µ(P0,σ) of the equation

P0,σ · (µ̃− x)ηα,µ(x, µ̃)− α(µ̃− µ)ηα−1
α,µ (µ, µ̃) = 0 (75)

in the variable µ̃ satisfies the condition

T̃α,µ(P0,σ) = 0 for all µ ∈ R. (76)

By evaluating the function P0,σ · (µ̃− x)ηα,µ(x, µ̃) of variables σ, µ, µ̃ and inserting it in
(75), one can verify that (76) holds if and only if σ = 1. The “if” part follows from the
Fisher consistency of T̃α,µ established in Theorem 3.2 which implies

T̃α,µ(P0,1) ≡ T̃α,µ(P0) = 0 for P0,1 ≡ P0 ∈ P and all µ ∈ R.

The “only if” assertion indicates a relatively easy loss of consistency of the maxD
¯α

-
estimators; this is due to the fact that the estimators are designed precisely making use
of σ = 1, indicating that they are not free of the scale parameter.
The estimators µ̃α,X̄n,n with the adaptive MLE escort parameters X̄n are Fisher con-
sistent under all hypothetical models Pµ,σ = N(µ, σ2), σ > 0 . More generally, the
adaptive estimators

θ̃α,τn,n with the MLE escorts τn = θ̃0,n given by (44) (77)

are Fisher consistent under the hypothetical models Pθ0 .
Let us turn to the influence curves IF(x;Tα,µ, µ0), 0 < α < 1 at the data source Pµ0 .
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Here stµ0
(x)sµ0(x) = s2µ0

(x) = (µ0 − x)2 so that, by (27) and (70),

Iα,µ(µ0) = Iα,µ(Pµ0) = Pµ0 ·
(
pµ
pµ0

)α
s2µ0

=
1√
2π

∫
(µ0 − x)2 exp

{
−α(x− µ)2 + (1− α)(x− µ0)2

2

}
dx (78)

=
[
1 + α2(µ0 − µ)2

]
exp

{
α(α− 1)(µ0 − µ)2

2

}
.

If we put

ψα,µ(x, µ0) = Ψα,µ(δx, µ0)
= (µ0 − x)ηα,µ(x, µ0)− α(µ0 − µ)ηα−1

α,µ (µ, µ0) (cf. (74))

then, by (70),

IF(x;Tα,µ, µ0) = −ψα,µ(x, µ0)
Iα,µ(µ0)

=
(x− µ0)eα(µ0−µ)(µ0+µ−2x)/2 + α(µ0 − µ)eα(α−1)(µ0−µ)2/2

[1 + α2(µ0 − µ)2] eα(α−1)(µ0−µ)2/2
. (79)

This formula remains valid also for α = 0 because then it reduces to the well known
influence function

IF(x;MLE,µ0) = x− µ0

of the MLE = T0,µ which is not depending on the escort parameter µ. We see that
the influence curve (79) is unbounded for all µ, µ0 ∈ R and 0 ≤ α < 1. For 0 <
α < 1 and the escort parameters µ different from the true µ0 the influence functions
IF(x;Tα,µ, µ0) contain the constant terms IF(µ0;Tα,µ, µ0) 6= 0 and, moreover, increase
to infinity exponentially for x→∞ or x→ −∞. Therefore Tα,µ are strongly non-robust,
as is the classical ML estimate in this case.

Example 3.1.3. Power subdivergence estimators of scale. Let in the frame of
Example 3.1.1, P = {Pσ : σ > 0} be the standard normal family with the location
parameter µ = 0 and scale σ and let us consider the maxD

¯α
-estimators σ̃α,σ,n of scale

σ0 with the divergence parameters 0 ≤ α < 1 and escort parameters σ > 0. For α = 0
they reduce to the standard deviations

σ̃0,σ,n =

(
1
n

n∑
i=1

(
Xi − X̄n

)2)1/2

and otherwise they are of the form

σ̃α,σ,n = Tα,σ(Pn) for Tα,σ(Q) = argminσ̃Mα,σ(Q, σ̃), Q ∈ Q

where
Mα,σ(Q, σ̃) = M̃α,σ(Q, σ̃/σ)
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for (cf. (63))

M̃α,σ(Q, s) =
sα

(1− α)
√
αs2 + 1− α

+
∫
sα

α
exp

{
αx2

[
s−2 − 1

]
2σ2

}
dQ(x).

One can show that

ψα,σ(x, σ̃) =
d
dσ̃
Mα,σ(δx, σ̃) =

1
σ

(
d
ds
M̃α,σ(δx, s)

)
s=σ̃/σ

= − 1
σ

[
sα−1

(
α
(
s2−1

)
(αs2+1−α)3/2

+
[( x
σs

)2

− 1
]
eαx

2[s−2−1]/2σ2

)]
s=σ̃/σ

(80)

= −
(
σ̃

σ

)α−1
(

α
(
σ̃2 − σ2

)
[ασ̃2+(1−α)σ2]3/2

+
1
σ

[(x
σ̃

)2

− 1
]
eαx

2[σ̃−2−σ−2]/2
)
.

By differentiating this expression with respect to σ̃, we obtain the matrix

Iα,σ(σ̃) := Iα,σ(Pσ̃) =
(
σ̃

σ

)α−1 2σ4 + α2(σ̃2 − σ2)2

σ̃[ασ̃2 + (1− α)σ2]5/2
. (81)

Hence, by Theorem 3.1.1, the influence function of maxD
¯α

-estimators at the data gen-
erating distributions Pσ0 are for all 0 < α < 1

IF(x; T̃α,σ, σ0) = −ψα,σ(x, σ0)
Iα,σ(σ0)

= ∆α,σ(x;σ0) +
ασ0

(
σ2

0 − σ2
) [
ασ2

0 + (1− α)σ2
]

2σ4 + α2(σ2
0 − σ2)2

, (82)

where

∆α,σ(x;σ0) =

[
ασ2

0 + (1− α)σ2
]5/2 [(x/σ0)

2 − 1
]
exp

{
αx2

[
σ−2

0 − σ−2
]
/2
}

σ [2σ4 + α2(σ2
0 − σ2)2] /σ0

. (83)

This formula remains valid also for α = 0 since in this case (82) reduces to the well
known influence function

IF(x;MLE, σ0) =
σ0

[
(x/σ0)

2 − 1
]

2

obtained from the limit values

ψ0,σ(x, σ0) = −
[
(x/σ0)

2 − 1
]
/σ0 and I0,σ(σ̃) = 2/σ2

0

which do not depend on the escort parameter . We see from the formula (83) that the
influence curve is unbounded for all σ, σ0 > 0 and α ≥ 0. For α > 0 and σ 6= σ0 we
get IF(σ0; T̃α,σ, σ0) 6= 0. If moreover σ < σ0 then IF(x; T̃α,σ, σ0) increases to infinity
exponentially fast for |x| → ∞. Thus T̃α,σ with α > 0 and σ 6= σ0 are strongly non-
robust.
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Example 3.1.4. Power subdivergence estimator in Pareto family. It is hard
to find simpler nontrivial examples of the maxD

¯α
-estimators than the estimators of

location (72), (73) from Example 2.1.2. Another relatively simple example is the family
of maxD

¯α
-estimators in the Pareto model with the family of measures P = {Pθ : θ > 0}

defined on the interval X = (1,∞) by the densities

pθ(x) =
θ

xθ+1
. (84)

with the mean values finite equal θ/(θ− 1) in the domain θ > 1 and variances finite and
equal θ/[(θ− 2)(θ− 1)2] in the domain θ > 2. As before, the estimates θ̃α,θ,n depend on
the divergence parameters α ≥ 0 and escort parameters θ > 0. By (50), for α = 0 we
get the MLE estimates

θ̃0,θ,n = argmaxθ̃ Σni=1 ln pθ̃(Xi) =

(
1
n

n∑
i=1

lnXi

)−1

.

For 0 < α < 1 we can use the criterion function

Mα,θ(Q, θ̃) =
1

1− α
Pθ̃ ·

(
pθ
pθ̃

)α
+

1
α
Q ·
(
pθ
pθ̃

)α
, Q ∈ Q (85)

of (53), or its derivative

Ψα,θ(Q, θ̃) =
d
dθ̃
Mα,θ(Q, θ̃) = Pθ̃ ·

(
pθ
pθ̃

)α
sθ̃ −Q ·

(
pθ
pθ̃

)α
sθ̃ (86)

given by (55), where in the present situation

Pθ̃ ·
(
pθ(x)
pθ̃(x)

)α
=

θαθ̃1−α

αθ + (1− α)θ̃
, and sθ(x) =

1
θ
− lnx.

Substituting these expressions in (85), (86) we get the desired asymptotic characteristics
of the maxD

¯α
-estimators θ̃α,θ,n obtained as argminima of the functions Mα,θ(Pn, θ̃) or,

equivalently, as solutions of the equations Ψα,θ(Pn, θ̃) = 0 in the variable θ̃. Further, by
(22),

ψα,θ(x, θ̃) = Ψα,θ(δx, θ̃) = Pθ̃ ·
(
pθ
pθ̃

)α
sθ̃ −

(
pθ(x)
pθ̃(x)

)α
sθ̃(x)

and using Theorem 3.1.1 one easily obtains the influence functions of the estimators
θ̃α,θ,n under consideration.

3.2. Power superdivergence estimators

In this subsection we deal with the minD̄α-estimators θα,n with the power parameters
α ≥ 0. For α = 0 they coincide with the MLE’s (50). Therefore we consider α > 0
when these estimators are defined by (52) and (53). Restrict ourselves for simplicity
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to 0 < α < 1 and denote the function Ψα,θ(Q, θ̃) from (55) in previous subsection
temporarily by Ψ̃α,θ(Q, θ̃), i. e. let

Ψ̃α,θ(Q, θ̃) = Pθ̃ ·
(
pθ
pθ̃

)α
sθ̃ −Q ·

(
pθ
pθ̃

)α
sθ̃.

Further, let T̃α,θ(Q) be solution of the equation Ψ̃α,θ(Q, θ̃) = 0 in variable θ̃, i. e.

Ψ̃α,θ(Q, T̃α,θ(Q)) = 0 for all θ ∈ Θ. (87)

Finally, let Mα,θ(Q, T̃α,θ(Q)) be the function of variable θ ∈ Θ obtained by inserting
θ̃ = T̃α,θ(Q) in the function Mα,θ(Q, θ̃) defined in (53). According to (52) and (53), the
maximizers

Tα(Q) = argmaxθ Mα,θ(Q, T̃α,θ(Q)) (88)

generate the minD̄α-estimators θα,n under consideration in the sense that θα,n = Tα(Pn).
In the following theorem we consider the score function sθ = p̊θ/pθ and we put for brevity
τ̃α,θ = T̃α,θ(Q). The proof is in Broniatowski and Vajda [6].

Theorem 3.2.1. For all 0 < α < 1 the maximizers (88) solve the equations Ψα(Q, θ) =
0 in variable θ ∈ Θ for the function

Ψα(Q, θ) =
d
dθ

Mα,θ(Q, τ̃α,θ) =
α

1− α
Pτ̃α,θ

·
(

pθ
pτ̃α,θ

)α
sθ +Q ·

(
pθ
pτ̃α,θ

)α
sθ. (89)

Consequently the corresponding minD̄α-estimators θα,n = Tα(Pn) are solutions of
the equations

α

1− α
Pτ̃α,θ

·
(

pθ
pτ̃α,θ

)α
sθ +

1
n

n∑
i=1

(
pθ(Xi)
pτ̃α,θ

(Xi)

)α
sθ(Xi) = 0. (90)

Corollary 3.2.1. The influence functions IF(x;Tα, θ) of all minD̄α-estimators θα,n =
Tα(Pn) with power parameters 0 < α < 1 at Pθ ∈ P coincide with the influence function

IF(x;T0, θ) = I(θ)−1sθ(x) (cf. (27) and (28)) (91)

of the MLE θ0,n = T0(Pn).

P r o o f . By Theorem 3.2, the maxD
¯α

-estimators θ̃α,θn = T̃α,θ(Pn) are Fisher consistent.
Hence for Q = Pθ0 we get τ̃α,θ := T̃α,θ(Pθ0) = θ0 in (89). Consequently it follows from
(22) and (89) that the ψ-functions

ψα(x, τ̃α,θ) ≡ Ψα(δx, τ̃α,θ) =
α

1− α
Pτ̃α,θ

·
(
pθ0
pτ̃α,θ

)α
sθ0 + δx ·

(
pθ0
pτ̃α,θ

)α
sθ0

of these estimators reduce for all 0 < α < 1 to the score function sθ0(x) which is the
ψ-function of MLE T0. Similarly, we get from (27) and (24) for all 0 < α < 1 the
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matrix I(θ0) = Pθ0 · stθ0sθ0 corresponding to the MLE. Therefore the influence functions
of all minD̄α-estimators under considerations reduce to the influence MLE function (91)
which completes the proof. �

Formulas for the minD̄α-estimators of the normal location and/or scale are seen from
the examples of Subsection 3.1.

4. DECOMPOSABLE PSEUDODISTANCES

The φ-divergences Dφ(P,Q), φ ∈ Φ can be characterized by the information processing
property, i. e. by the complete invariance w.r.t. the statistically sufficient transforma-
tions of the observation space (X ,A). This property is useful but probably not unavoid-
able in the minimum distance estimation based on similarity between theoretical and
empirical distributions. Hence we admit in the rest of the paper general pseudodistances
D(P,Q) which may not satisfy the information processing property.

Definition 4.1. We say that D : P ⊗ P+ 7→ R is a pseudodistance of probability
measures P ∈ P = {Pθ : θ ∈ Θ} and Q ∈ P+if

D(Pθ, Pθ̃) ≥ 0 for all θ, θ̃ ∈ Θ with D(Pθ, Pθ̃) = 0 iff θ = θ̃. (92)

An additional restriction imposed in this section on pseudodistances D(P,Q) will be
the decomposability.

Definition 4.2. A pseudodistance D on P ⊗ P+is a decomposable if there exist
functionals D0 : P 7→ R, D1 : P+ 7→ R and measurable mappings

ρθ : X 7→R, θ ∈ Θ (93)

such that for all θ ∈ Θ and Q ∈ P+ the expectations Q · ρθ exist and

D(Pθ, Q) = D0(Pθ) + D1(Q) +Q · ρθ. (94)

Definition 4.3. We say that a functional TD : Q 7→ Θ for Q = P+ ∪ Pemp defines
a minimum pseudodistance estimator (briefly, minD-estimator)if D(Pθ, Q) is
a decomposable pseudodistance on P ⊗ P+ and the parameters TD(Q) ∈ Θ minimize
D0(Pθ) +Q · ρθ on Θ, in symbols

TD(Q) = argminθ
[
D0(Pθ) +Q · ρθ

]
for all Q ∈ Q. (95)

In particular, for Q = Pn ∈ Pemp

θD,n := TD(Pn) = argminθ

[
D0(Pθ) +

1
n

n∑
i=1

ρθ(Xi)

]
if Pn =

1
n

n∑
i=1

δXi
. (96)

Theorem 4.1. Every minD-estimator

θD,n = argminθ

[
D0(Pθ) +

1
n

n∑
i=1

ρθ(Xi)

]
(97)
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is Fisher consistent in the sense that

TD(Pθ0) = argminθD(Pθ, Pθ0) = θ0 for all θ0 ∈ Θ. (98)

P r o o f . Consider arbitrary fixed θ0 ∈ Θ. Then, by assumptions, D1(Pθ0) is a finite
constant. Therefore (95) together the definition of pseudodistance implies

TD(Pθ0) = argminθ
[
D0(Pθ) +Q · ρθ

]
= argminθ

[
D0(Pθ) + D1(Pθ0) +Q · ρθ

]
= argminθD(Pθ, Pθ0) = θ0.

�

The decomposability of pseudodistance D(Pθ, Q) leads to the additive structure of
the criterion

D(Pθ, Pn) ∼ D0(Pθ) + Pn · ρθ = D0(Pθ) +
1
n

n∑
i=1

ρθ(Xi) (99)

in the definition (97) of the minD-estimators which opens the possibility to apply the
methods of the asymptotic theory of M -estimators (cf. Hampel et al. [7], van der Vaart
and Wellner [20], van der Vaart [19] or Mieske and Liese [10]).
The general min D-estimators and their special classes studied in Subsections 4.1, 4.2 be-
low were introduced in Vajda [18]. They contain as a subclass all the maxD

¯φ
-estimators

of Section 3. To see this suppose that the assumptions of Section 3 related to the es-
timators (101) hold and consider for arbitrary fixed (φ, τ) ∈ Φ ⊗ Θ the well defined
expressions

D0
φ,τ (Pθ) = − Pτ · φ′

(
pτ
pθ

)
, ρφ,τ,θ = − φ]

(
pτ
pθ

)
and

D1
φ,τ (Q) = − inf

θ

[
D0
φ,τ (Pθ) +Q · ρφ,τ,θ

]
.

Theorem 4.2. The sum

D(Pθ, Q) := D0
φ,τ (Pθ) + D1

φ,τ (Q) +Q · ρφ,τ,θ (100)

is a pseudodistance on P⊗P+ and the maximum subdivergence estimator

θφ,τ,n = argmaxθ

[
Pτ · φ′

(
pτ
pθ

)
+

1
n

n∑
i=1

φ]
(
pτ (Xi)
pθ(Xi)

)]
(101)

of Section 3 with the divergence parameter φ ∈ Φ and escort parameter τ ∈ Θ is the
minD-estimator for the decomposable pseudodistance (100).

P r o o f . Fix (φ, τ) ∈ Φ⊗Θ and let the assumptions of Section 3 related to the estimators
(101) hold. Then for any θ0 ∈ Θ

D(Pθ0 , Q) = D0
φ,τ (Pθ0) +Q · ρφ,τ,θ0 − inf

θ

[
D0
φ,τ (Pθ0) +Q · ρφ,τ,θ0

]
≥ 0.
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If Q ∈ P then, by (31) and (33),

Dφ,τ (Pθ0 , Q) = sup
θ

[
Pθ0 ·φ′

(
pτ
pθ0

)
+Q·φ]

(
pτ
pθ

)]
−Pθ0 ·φ′

(
pτ
pθ0

)
+Q·φ]

(
pτ
pθ0

)

= Dφ(Pθ0 , Q)−D
¯φ,τ

(Pθ0 , Q).

By Theorem 3.1, this difference is zero if and only if Q = Pθ0 which proves that (100) is
pseudodistance on P⊗P+. On the other hand, obviously, (101) satisfies

θφ,τ,n = argminθ
[
D0
φ,τ (Pθ) + Pn · ρφ,τ,θ

]
so that it is minD-estimator for the pseudodistance (100) which completes the proof.

�

The minimum superdivergence estimators θφ,n of Section 3 (the minD̄φ-estimators)
minimize the suprema

sup
τ

D(Pθ, Q) for Q = Pn

of the decomposable pseudodistance (100). However, the suprema of decomposable pseu-
dodistances are not in general decomposable pseudodistances. Therefore the standard
theory of M -estimators is not applicable to this class of estimators. An exception is the
MLE θφ0,n obtained for the logarithmic function φ0 given in (7).

4.1. Power pseudodistance estimators

In this subsection we study a special class of pseudodistances Dψ(Pθ, Q) defined on
P ⊗ P+ by the integral formula

Dψ(Pθ, Q) =
∫
ψ(pθ, q) dλ for pθ =

dPθ
dλ

, q =
dQ
dλ

, (102)

where ψ(s, t) are reflexive in the sense that they are nonnegative functions of arguments
s, t > 0 with ψ(s, t) = 0 iff s = t. If a function ψ is reflexive and also decomposable in
the sense

ψ(s, t) = ψ0(s) + ψ1(t) + ρ(s) t, s, t ≥ 0, (103)

for some ψ0, ψ1, ρ : (0,∞) → R then the corresponding ψ-pseudodistance (102) is a
decomposable pseudodistance satisfying

Dψ(Pθ, Q) = D0
ψ(Pθ) + D1

ψ(Q) +Q · ρθ (cf. (94)) (104)

for

D0
ψ(Pθ) =

∫
ψ0(pθ) dλ, D1

ψ(Q) =
∫
ψ1(q) dλ and ρθ = ρ(pθ). (105)
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Example 4.1.1. The φ-divergences Dφ(Pθ, Q) are special ψ-pseudodistances (102) for
the functions

ψ(s, t) = φ(s/t) t− φ′(1)(s− t), s, t > 0 (106)

since they are nonnegative and reflexive, and (106) implies Dψ(Pθ, Q) = Dφ(Pθ,
Q) for all P ∈ P, Q ∈ P+ when φ ∈ Φ and ψ are related by (106). However, the
functions (106) in general do not satisfy the decomposability condition (103) so that
the φ-divergences are not in general decomposable pseudodistances. An exception is the
logarithmic function φ = φ0 defined in (7) for which the minDφ0-estimator is the MLE.

Example 4.1.2. L2-estimator The quadratic function ψ(s, t) = (s − t)2 is reflex-
ive and also decomposable in the sense of (103). Thus it defines the decomposable
pseudodistance

Dψ(Pθ, Q) =
∫

(pθ − q)2 dλ = ‖pθ − q‖2

on P ⊗P+ for P+ ⊂ L2(λ). It is easy to verify that the decomposability in the sense of
(104) holds for

D0
ψ(Pθ) =

∫
p2
θ dλ, D1

ψ(Q) =
∫
q2 dλQ and ρθ = −2pθ.

The corresponding min Dψ-estimator defined by (97) is in this case the L2-estimator

θn = argminθ

[∫
p2
θ dλ− 2

n

n∑
i=1

pθ(Xi)

]
(107)

which is known to be robust but not efficient (see e. g. Hampel et al. [7]).

To build a smooth bridge between the robustness and efficiency, one needs to replace
the reflexive and decomposable functions ψ by families {ψα : α ≥ 0} of reflexive functions
decomposable in the sense

ψα(s, t) = ψ0
α(s) + ψ1

α(t) + ρα(s) t for all α ≥ 0 (cf. (103)) (108)

with the limits at 0 satisfying for some constant κ all s > 0 the conditions

ψ0
0(s) = lim

α↓0
ψ0
α(s) = κ s and lim

α↓0
ρα(s) = ρ0(s) = − ln s. (109)

Then for all α ≥ 0 and (Pθ, Q) ∈ P ⊗ P+ the family of ψα-pseudodistances

Dα(Pθ, Q) := Dψα(Pθ, Q), α ≥ 0 (110)

satisfies the decomposability condition

Dα(Pθ, Q) = D0
α(Q) + D1

α(Pθ) +Q · ρα,θ (cf. (94)) (111)

for

D0
α(Pθ) =

∫
ψ0
α(pθ) dλ, D1

α(Q) =
∫
ψ1
α(q) dλ and ρα,θ = ρα(pθ). (112)
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In other words, the pseudodistances Dα(Pθ, Q) defined by (110) are decomposable and
define in accordance with (97) the family of minDα-estimators

θα,n = arg minθ
[
D0
ψα

(Pθ) + Pn · ρα,θ
]

(113)

= argminθ

[∫
ψ0
α(pθ) dλ+

1
n

n∑
i=1

ρα(pθ(Xi))

]
, α ≥ 0. (114)

Here (109) guarantees that this family contains as a special case for α = 0 the efficient
but non-robust MLE

θ0,n = argminθ

[
const− 1

n

n∑
i=1

ln pθ(Xi)

]
(115)

while for α > 0 the θα,n’s are expected to be less efficient but more robust than θ0,n.

The rest of this subsection studies special family of decomposable pseudodistances
Dα(Pθ, Q). It is defined on P ⊗Q in accordance with (110) and (102) by the functions

ψα(s, t) = t1+α
[
αφ1+α

(s
t

)
+ (1− α)φα

(s
t

)]
, α ≥ 0 (116)

of variables s, t > 0 where φ1+α and φα are the power functions defined by (6), (7). These
functions satisfy (108), (109) as it is clarified by the next theorem. In this theorem and
in the sequel we use for the function (116) the relations

ψα(s, t) =
s1+α

1 + α
+ t1+α

(
1
α
− 1

1 + α

)
− tsα

α
(117)

=
s1+α − t1+α

1 + α
+ t

(
tα − 1
α

− sα − 1
α

)
(118)

when α > 0 and

ψ0(s, t) = s− t+ t ln t− t ln s (119)

= lim
α↓0

s1+α − t1+α

1 + α
+ t

(
tα − 1
α

− sα − 1
α

)
(120)

when α = 0.

Theorem 4.1.1. The power functions (116) are reflexive and decomposable in the sense
of (108) with

ψ0
α(s) =

s1+α

1 + α
, ψ1

α(t) =

 t
[
tα−1
α − tα

1+α

]
t ln t− t

and ρα(s) =

{
− sα−1

α if α > 0

− ln s if α = 0.
(121)

Moreover, this family is continuous in the parameter α ↓ 0 and satisfies (109) for κ = 1.
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P r o o f . Decomposition (108) for function ψα(s, t) of (116) into the components (121)
is clear from (118) when α > 0 and (119) when α = 0. The continuity in the parameter
α ↓ 0 and (109) for κ = 1 follow from (120). We shall prove the nonnegativity and
reflexivity. For arbitrary arguments s, t > 0 and fixed parameters a, b > 0 with the
property 1/a+ 1/b = 1 it holds

st ≤ sa

a
+
tb

b
(122)

where = takes place iff sa = tb. Indeed, from the strict concavity of the logarithmic
function we deduce the inequality

ln(st) =
1
a

ln sa +
1
b

ln tb ≤ ln
(
sa

a
+
tb

b

)
and the stated condition for equality. Substituting s→ sα, a→ (1+α)/α and b→ 1+α
for α > 0 we get

sαt ≤ s1+α

(1 + α)/α
+

t1+α

1 + α

with the equality condition sαa = tb, i. e. s1+α = t1+α. This implies that the function
ψα(s, t) is nonnegative and reflexive. �

By (110), (102) and Theorem 4.1.1, the power functions (116) generate

ψ0(pθ) =
1

1 + α
pαθ and ρα(pθ) =

{
− 1
αp

α
θ if α > 0

− ln pθ if α = 0
(123)

and define the family of decomposable pseudodistances

Dα(Pθ, Q) =
∫
ψα(pθ, q) dλ

=

{ 1
1+αPθ · p

α
θ + 1

α(1+α)Q · qα − 1
αQ·p

α
θ if α > 0

Q · (ln q − ln pθ) if α = 0

(124)

in (114). Relation of this family to the family of power divergences Dα(Pθ, Q) defined
by (5) is rigorously established in the next theorem. It refers to the auxiliary family of
functions

ϕα(s, t) = t
[
αφ1+α

(s
t

)
+ (1− α)φα

(s
t

)]
(125)

of arguments s, t > 0 parametrized by α ≥ 0.

Theorem 4.1.2. Decomposable pseudodistances (124) are for all (P,Q) ∈ P⊗P+ mod-
ifed power divergences Dα(P,Q) and D1+α(P,Q) in the sense that the pseudodistance
densities ψα(p, q) are weighted densities ϕα(p, q) of the mixed power divergences∫

ϕα(p, q) dλQ = αD1+α(P,Q) + (1− α)Dα(P,Q) (126)

with the power weights wα(q) = qα, i. e. ψα(p, q) = wα(q)ϕα(p, q) on (X ,A).
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P r o o f . By (125),∫
ϕα(p, q) dλ = α

∫
φ1+α(p, q) dλ+ (1− α)

∫
φα(p, q) dλ

= αD1+α(P,Q) + (1− α)Dα(P,Q). (127)

By (116), ψα(s, t) = tαϕα(s, t) so that, by the first equality in (124),

Dα(Pθ, Q) =
∫
ψα(pθ, q) dλ =

∫
wα(q)ϕα(p, q)) dλ.

This together with (127) implies the desired result. �

Due to Theorem 4.1.2, we call the pseudodistances Dα(P,Q) simply power
pseudodistances of orders α ≥ 0. The next theorem guarantees finiteness and con-
tinuity of these divergences. It is restricted to the families P satisfying for some β > 0
the condition

pβ , qβ , ln p ∈ L1(Q) for all P ∈ P, Q ∈ P+. (128)

Theorem 4.1.3. If (128) holds for some β > 0 then for all 0 ≤ α ≤ β, the modified
power divergences are well defined by (124) and finite, satisfying for all P ∈ P, Q ∈ P+

the continuity relation
lim
α↓0

Dα(P,Q) = D0(P,Q). (129)

P r o o f . By (118),

Dα(P,Q) =
1

1 + α
(P · pα −Q · qα) +Q ·

(
qα − 1
α

− pα − 1
α

)
.

By means of the indicator function 1 we can decompose

P · pα = P · (pα1(p ≤ 1)) + P · (pα1(p > 1))

where
lim
α↓0

P · (pα1(p ≤ 1)) = P · (1(p ≤ 1))

by the Lebesgue bounded convergence theorem for integrals and

lim
α↓0

P · (pα1(p > 1)) = P · (1(p > 1))

by the monotone convergence theorem for integrals. Therefore

lim
α↓0

P · pα = P · (1(p ≤ 1)) + P · (1(p > 1)) = 1.
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Similarly, limα↓0Q · qα = 1. The convergences

lim
α↓0

Q · q
α − 1
α

= Q · ln q and lim
α↓0

Q · p
α − 1
α

= Q · ln p

follow from the monotone convergence as well, because for every fixed t > 0

d
dα

tα − 1
α

=
1− tα(1− ln t)

α2
≥ 1− tαt−α

α2
= 0

so that the expressions (qα − 1)/α and (pα − 1)/α tend monotonically to ln q and ln p.
�

By (121) the expressions D0
ψα

(Pθ) considered in(113), (114) are now given by

D0
α(Pθ) =

1
1 + α

∫
p1+α
θ dλ for all α ≥ 0.

Therefore the formulas (113), (114) and (123) lead to the power pseudodistance
estimators (briefly, minDα-estimators)

θα,n =

 argminθ
[

1
1+α

∫
p1+α
θ dλ− 1

nα

∑n
i=1 p

α
θ (Xi)

]
if α > 0,

argmaxθ
1
n

∑n
i=1 ln pθ(Xi) if α = 0.

(130)

Here the upper objective function can be replaced by

1− α

α
+

1
1 + α

∫
p1+α
θ dλ− 1

nα

n∑
i=1

pαθ (Xi)

=
1

1 + α

∫
p1+α
θ dλ− 1

n

n∑
i=1

pαθ (Xi)− 1
α

− 1

which tends for α ↓ 0 to the lower criterion function. Therefore, if for a fixed n the
minima of all functions in (130) are in a compact subset of Θ and the MLE θn,0 is
unique then

lim
α↓0

θn,α = θn,0. (131)

Example 4.1.3. L2-estimator revisited. By (130), the minDα-estimator of order
α = 1 is defined by

θ1,n = argminθ

[∫
p2
θ dλ− 2

n

n∑
i=1

pθ(Xi)

]

so that it is nothing but the L2-estimator θn from Example 4.1.2. The family of esti-
mators θn,α from (130) smoothly connects this robust estimator with the efficient MLE
θn,0 when the parameter α decreases from 1 to 0.
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Remark 4.1.1. The special class of the minDα-estimators θα,n given by (130) was
proposed by Basu et al. [2] who confirmed their efficiency for α ≈ 0 and their intuitively
expected robustness for α > 0. These authors called θα,n minimum density power
divergence estimators without actual clarification of the relation of the “density power
divergences” Dα(P,Q) to the standard power divergences Dα(P,Q) studied in Liese
and Vajda [8] and Read and Cressie [11]. Theorem 3.1.2 which explains Dα(P,Q) as
a convex mixture of modified power divergences Dα(P,Q) and D1+α(P,Q) where the
modification means weighting of the power divergence densities by the power qα of the
second probability density, is in this respect an interesting new result.

Remark 4.1.2. The formula (130) can be given the equivalent form

θα,n = argmaxθ

{
1
n

∑n
i=1

1
α (pαθ (Xi)− 1)− 1

1+α

∫
p1+α
θ dλ if α > 0,

1
n

∑n
i=1 ln pθ(Xi)− 1 if α = 0.

(132)

If the integral does not depend on θ then (132) is equivalent to

θα,n = argmaxθ

{
1
n

∑n
i=1

1
α (pαθ (Xi)− 1) if α > 0,

1
n

∑n
i=1 ln pθ(Xi) if α = 0.

(133)

This subclass of general min Dα-estimators (132) was included in a wider family of
generalized MLE’s introduced and studied previously in Vajda ([14, 15]). However, the
whole class (132) was not introduced there.

If the statistical model 〈(X ,A);P = (Pθ : θ ∈ Θ)〉 is reparametrized by ϑ = ϑ(θ) then
the new minDα-estimates ϑαn are related to the original θα,n by ϑα,n = ϑ(θα,n). If the
observations x ∈ X are replaced by y = T (x) where T : (X ,A) 7→ (Y,B) is a measurable
statistic with the inverse T−1 then the densities

p̃θ =
dP̃θ
dλ̃

in the transformed model 〈(Y,B); P̃ = (P̃θ = PθT
−1 : θ ∈ Θ)〉 w.r.t. σ-finite dominating

measure λ̃ = λT−1 is related to the original densities pθ by

p̃θ(y) = pθ(T−1y)JT (y), (134)

where JT (y) = dλT−1/dλ̃ is a generalized Jacobian of the statistic T . If X , Y are
Euclidean spaces, λ is the Lebesque measure and the inverse mapping H = T−1 is
differentiable then JT (y) is the determinant

JT (y) =
∣∣∣∣ d
dy
H(y)

∣∣∣∣ .
The minDα-estimators are in general not equivariant w.r.t. invertible transformations
of observations T , unless α = 0. The following theorem generalizes similar result of
Section 3.4 in Basu et al. [2].
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Theorem 4.1.4. The minDα-estimates θ̃α,n in the above considered transformed model
coincide with the original minDα-estimates θα,n if the Jacobian JT of transformation is
a nonzero constant on the transformed observation space Y. Thus if X ,Y are Euclidean
spaces then the minDα-estimators are equivariant under linear statistics Tx = ax+ b.

P r o o f . For α = 0 the minDα-estimator is the MLE whose equivariance is well known.
For α > 0, by definition (130) and (134),

θ̃α,n = argminθ

[
1

1 + α

∫
Y
p̃1+α
θ dλ̃− 1

nα

n∑
i=1

p̃αθ (TXi)

]

= argminθ

[
1

1 + α

∫
p1+α
θ JT dλ− 1

nα

n∑
i=1

pθ(Xi)JT (TXi)

]
.

We see by comparison with (130) that θ̃α,n = θα,n if JT is a nonzero constant on Y. If
α = 0 then the estimator is MLE and its equivariance is well known. �

Next we derive the influence function of the min Dα-estimators θα,n of (130). Simi-
larly as in (54), we use

sθ =
d
dθ

ln pθ and s̊θ =
(

d
dθ

)t

sθ.

It holds θα,n = Tα(Pn) where Tα(Q) for Q ∈ Q solves the equation Ψα(Q, θ) ≡ Q ·
ψ(x, θ) = 0 for

ψα(x, θ) =
d
dθ

(
pαθ
α
− 1

1 + α

∫
p1+α
θ dλ

)
= pαθ (x) sθ(x)− Pθ · pαθ sθ. (135)

Since

ψ̊α(x, θ) =
(

d
dθ

)t

ψα(x, θ) = Πα,θ(x)− Pθ ·
(
Πα,θ + pαθ sθs

t
θ

)
(136)

for
Πα,θ = pαθ

(
αsθs

t
θ + s̊θ

)
, (137)

the matrix (24) is given for all Q ∈ P+ by the formula

Iα(Q) = Q ·Πα,τα
(x)− Pτα

·
(
Πα,τα + pατα

sταs
t
τα

)
for τα = Tα(Q) ∈ Θ (138)

In particular,
Iα(θ) ≡ Iα(Pθ) = −Pθ · pαθ sθstθ. (139)

By combining (135), (138) and (139) with Theorem 2.1 and Corollary 2.1, and taking
into account the Fisher consistency in Theorem 4.1, we obtain the following extension of
the influence function obtained in § 3.3 of Basu et al. [2] to arbitrary observation spaces
(X ,A).
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Theorem 4.1.5. If the influence function (21) at Q ∈ P+ or Pθ ∈ P exists for some
minDα-estimator θα,n = Tα(Pn) then it is given by the formula

IF(x;Tα, Q) = −Iα(Q)−1
[
pατα

(x) sτα(x)− Pτα · pατα
sτα

]
for τα = Tα(Q) (140)

or
IF(x;Tα, θ) = −Iα(θ)−1 [pαθ (x) sθ(x)− Pθ · pαθ sθ] (141)

respectively.

4.2. Applications in the normal family

Consider the general normal family of Example 3.1.1. By (132), minDα-estimator θα,n =
(µα,n, σα,n) is the MLE given by (62) when α = 0. Since∫

p1+α
θ dx =

∫ (
exp{−(x− µ)2/2σ2}

(2πσ2)1/2

)1+α

dx =
(1 + α)−1/2

(2πσ2)α/2
, (142)

we see from (132) that the minDα-estimates are for α > 0 given by

(µα,n, σα,n) = argmaxµ,σ

[
1
αn

n∑
i=1

exp
{
−α(Xi − µ)2/2σ2

}
(2πσ2)α/2

− (1 + α)−3/2

(2πσ2)α/2

]

= argmaxµ,σ
1
nσα

n∑
i=1

(
exp

{
−α (Xi − µ)2

2σ2

}
− α

(1 + α)3/2

)
. (143)

Notice that in practical applications, the trivial “solutions” (µα,n, σα,n) = (maxiXi, 0)
can be avoided by restricting the maximization to the scales bounded avay from zero.

Example 4.2.1. Power pseudodistance estimators of location. Consider the
normal family P = {Pµ : µ ∈ R} of Example 3.1.2 where Pµ are given by the densities
pµ(x) = p(x−µ) for the standard normal density p(x). This family satisfies the condition
of the formula (133) so that from (130) or (133) we obtain the minDα-estimators µα,n =
Tα(Pn) of location µ0 ∈ R in this family given by

µα,n = argmaxµ

{ ∑n
i=1 exp{−α(Xi − µ)2/2} if α > 0,

−
∑n
i=1(Xi − µ)2 if α = 0.

(144)

Equivalently, they can be obtained by inserting σ = 1 in (143). If α = 0 then µα,n is the
standard sample mean.
The estimators of location (144) were introduced and studied as part of larger class of
estimators by Vajda [15, 16, 17]. He proved that if the observations are generated by
Qµ0 ∈ P+ with density q(x− µ0) for unimodal q(x) symmetric about x = 0 then these
estimators consistently estimate µ0. For q differentiable with derivative q′ he found the
influence functions

IF(x;Tα, q) =
x exp{−αx2/2}∫

x exp{−αx2/2} q′(x) dx
for α ≥ 0. (145)
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This formula follows also from (139) and (140) where in this case

sµ(x) = x− µΠα,µ = pαµ

[
α (x− µ)2 − 1

]
and Pµ · pαµsµ = 0. (146)

Indeed, (146) implies Pµ · pαµsµ = 0 and pα0 (x)s0(x) = x exp{−αx2/2}. (2π)−α/2 so that
the numerator in (145) follows from (140). Using the identities

Pµ ·
(
Πα,µ + pαµs

2
µ

)
=
∫
p1+α
µ

[
(1 + α) (x− µ)2 − 1

]
dx = 0

and ∫
x p0(x) q′(x)dx+

∫
[p0(x) + xp′0(x)] q(x) dx = 0

we get from (146) and (138)

Iα(q) = (2π)−α/2
∫
x exp{−αx2/2} q′(x) dx

so that the denominator in (145) follows from (140).
The particular influence curve obtained in (145) for α = 1/5 very closely and smoothly
approximates the trapezoidal IF(x; 25A, q) of the estimator referred as the best under the
name Hampel’s choice 25A in the Princeton Robustness Study of Andrews et al. [1].
This study as well as the estimator of location 25A were influential and frequently cited
in the first decades of robust statistics. The asymptotic normality

√
n(µα,n − µ0) −→ N(0, σ2

α) for σ2
α =

∫
IF2(x;Tα, q)q(x)dx

in the data generating model Qµ0 was established in Vajda [15, 16, 17] too, and the
simulations presented there demonstrated that the estimator T1/5 overperformed the set
of 6 robust estimators of location including those considered as the most prominent at
that time.

Example 4.2.2. Power pseudodistance estimators of scale. Consider the normal
family P = {Pσ : σ > 0} of Example 3.1.3 where Pσ are given by the densities pσ(x) =
p(x/σ)/σ for the standard normal density p(x). If α = 0 then, by (132), the minDα-
estimator σα,n = Tα(Pn) is the standard MLE of scale given in (62). Otherwise we get
from (143) by inserting µ = 0

σα,n = argmaxσ
1

σα n

n∑
i=1

[
exp

{
−αXi

2

2σ2

}
− α

(1 + α)3/2

]
, α > 0. (147)

Taking into account here

1
n

n∑
i=1

exp
{
−αXi

2

2σ2

}
=
∫

exp
{
−αx

2

2σ2

}
dPn(x)
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we find more general formula

Tα(Q) = argminσMα(Q, σ) for Q ∈ P+,

where

Mα(Q, σ) =
1
σα

∫
exp

{
−αx

2

2σ2

}
dQ(x)− α

(1 + α)3/2
.

Referring to Broniatowski and Vajda [6] for details, it can be seen that for all σ > 0

IF(x;Tα, σ) =
(1 + α)5/2 σ
α2 + 2

[((x
σ

)2

− 1
)

exp
{
−αx

2

2σ2

}
+

α

(1 + α)3/2

]
(148)

from which we conclude that the minDα-estimators σα,n = Tα(Pn) of normal scale are
for all α > 0 robust in the sense that their absolute sensitivity to the observations x ∈ R
represented by

sup
x∈R

|IF(x;Tα, σ)| = max {− IF(0;Tα, σ), IF (σα;Tα, σ)} for σα = σ

√
2 + α

α

is bounded (cf. Hampel et al. [7]). However, they are not insensitive against extreme
outliers because

lim
|x|→∞

IF(x;Tα, σ) = IF(σ;Tα, σ) =
α(1 + α)σ
α2 + 2

. (149)

4.3. Rényi pseudodistance estimators

In this subsection we propose for probability measures P ∈ P and Q ∈ P+ considered
in the previous sections a family of pseudodistances Rα(P,Q) of a Rényi type of orders
α ≥ 0 which are not of the integral type as Dψ(P,Q) of (102) or Dα(P,Q) of (124). Our
proposal is based on the following theorem where

R0
α(P ) =

1
1 + α

ln(P · pα) and R1
α(Q) =

1
α(1 + α)

ln(Q · qα). (150)

See Broniatowski, Toma and Vajda [5] for statistical properties of minimum Rényi
pseudodistance estimators.

Theorem 4.3.1. Let the condition (128) hold for some β > 0. Then for all 0 < α < β

Rα(P,Q) =
1

1 + α
ln (P · pα) +

1
α(1 + α)

ln(Q · qα)− 1
α

ln(Q · pα) (151)

is a family of pseudodistances decomposable in the sense

Rα(P,Q) = R0
α(P ) + R1

α(Q)− 1
α

ln(Q · pα) (152)

for R0
α(P ),R1

α(Q) given by (150), and satisfying the limit relation

Rα(P,Q) → R0(P,Q) := Q ln q −Q ln p for α ↓ 0. (153)
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P r o o f . Under (128), the expressions ln(Q · qα), ln(Q · pα) and Q · ln p appearing in
(151) are finite so that the expressions Rα(P,Q) are well defined by (151). Taking α > 0
and substituting

s =
pα(∫

pαa dλ
)1/b , t =

q(∫
qb dλ

)1/b and a =
1 + α

α
, b = 1 + α

in the inequality (122), and integrating both sides by λ, we obtain the Hölder inequality∫
pαq dλ ≤

(∫
p1+α dλ

)α/(1+α)(∫
q1+α dλ

)1/(1+α)

with the equality iff pαa = qb λ-a. s., i. e. iff p = q λ-a. s. Since the expression (151)
satisfies for α > 0 the relation

Rα(P,Q) =
1
α

{
ln

[(∫
p1+α dλ

)α/(1+α)(∫
q1+α dλ

)1/(1+α)
]
− ln

∫
pαq dλ

}
,

(154)
we see that Rα(P,Q) is pseudodistance on the space P ⊗P+. The decomposability in
the sense of (152) on this space is obvious and the limit relation

R0(P,Q) = lim
α↓0

Rα(P,Q)

can be proved in a similar manner as in the proof of Theorem 4.1.3 �

There is some similarity between the decomposable pseudodistances Rα(P,Q), α > 0
of (151) and the Rényi divergences

Rα(P,Q) =
1

α− 1
ln (Q · (p/q)α) , α > 0 (cf. Rényi [12]).

Namely, rewriting the formula (154) into the form

Rα(P,Q) =
1

α+ 1
ln
Q ·
(
p1+α/q

)
Q · pα

+
1

α(α+ 1)
ln
Q · qα

Q · pα

and replacing the ratios of expectations by the expectations of ratios, we get for α > 0
the relation

Rα(P,Q) =
1

α+ 1
ln(Q · (p/q)) +

1
α(α+ 1)

ln(Q · (q/p)α) =
1

α+ 1
Rα+1(Q,P ) (155)

which can be extended to α = 0 by taking on both sides the limits for α ↓ 0. Therefore
the decomposable pseudodistances (151) are modified Rényi divergences and as such,
they are called Rényi pseudodistances.
Similarly as earlier in this section, we are interested in the estimators obtained by
replacing the hypothetical distribution Pθ0 in the Rα-pseudodistances Rα(Pθ, Pθ0) by
the empirical distribution Pn. In other words, we are interested in the family of Rényi
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pseudodistance estimators of orders 0 ≤ α ≤ β (in symbols, min Rα-estimators)
defined as θn,α = Tα(Pn) for Tα(Q) ∈ Θ with Q ∈ Q = P+ ∪ Pemp satisfying the
condition

Tα(Q) =

{
arg minθ 1

1+α ln (Pθ · pαθ )− 1
α ln(Q · pαθ ) if 0 < α ≤ β

arg minθ − lnQ · pθ if α = 0.
(156)

The upper formula is for

Cθ(α) = (Pθ · pαθ )α/(1+α) ≡
(∫

p1+α
θ dλ

)α/(1+α)

(157)

equivalent to

Tα(Q) = arg max
θ
Mα(Q, θ) for Mα(Q, θ) =

Q · pαθ
Cθ(α)

. (158)

Alternatively, we can write

θn,α =

{
arg maxθ Cθ(α)−1 1

n

∑n
i=1 p

α
θ (Xi) if 0 < α ≤ β

arg maxθ 1
n

∑n
i=1 ln pθ(Xi) if α = 0.

(159)

For α ≈ 0 ↓ 0 the approximations Cθ(α) ≈ 1 and

1
α

(
1
n

n∑
i=1

pαθ (Xi)− 1

)
=

1
n

n∑
i=1

pαθ (Xi)− 1
α

≈ 1
n

n∑
i=1

ln pαθ (Xi)

indicate that the upper criterion function in (159) tends to the lower MLE criterion for
α ↓ 0. If Cθ(α) does not depend on θ then the minRα-estimates reduce to the min
Dα-estimates considered in (133) of Remark 4.1.2, i. e.,

θα,n = argmaxθ

{
1
n

∑n
i=1 p

α
θ (Xi) if 0 < α < β,

1
n

∑n
i=1 ln pθ(Xi) if α = 0.

(160)

If the extremal points of all functions in (159) are in a compact set of Θ then

lim
α↓0

θn,α = θn,0. (161)

In the next theorem and its proof we use the auxiliary expressions

sθ =
d
dθ

ln pθ, s̊θ =
(

d
dθ

)t

sθ (cf. (54))

and

cθ(α) =
∫
p1+α
θ sθ dλ∫
p1+α
θ dλ

, c̊θ(α) =
(

d
dθ

)t

cθ(α) and τα = Tα(Q).



632 M. BRONIATOWSKI AND I. VAJDA

Theorem 4.3.2. If the influence function (21) at Q ∈ P+ or Pθ ∈ P exists for some
minRα-estimator θα,n = Tα(Pn) then it is given by the formula

IF(x;Tα, Q) = −Iα(Q)−1 [pτα(x) (sτα(x)− cτα(α))] (162)

or
IF(x;Tα, θ) = −Iα(θ)−1 [pθ(x) (sθ(x)− cθ(α))] (163)

for the matrices

Iα(Q) =
∫ [̊

sτα − c̊τα(α)− αpατα
(sτα − cτα(α)) (sτα − cτα(α))t

]
pατα

dQ (164)

or
Iα(θ) =

∫ [̊
sθ − c̊θ(α)− αpαθ (sθ − cθ(α)) (sθ − cθ(α))t

]
p1+α
θ dλ (165)

respectively.

P r o o f . By (158), Tα(Q) for Q ∈ Q minimizes Q · (pαθ /Cθ(α)) , i. e. solves the equation

Ψα(Q, θ) ≡ Q ·ψ(x, θ) = 0 for

ψα(x, θ) ≡ Ψα(δx, θ) =
d
dθ

pαθ
Cθ(α)

=
αpαθ (sθ − cθ(α))

Cθ(α)
. (166)

Further,

Cθ(α) :=
(

d
dθ

)t

Cθ(α) = αCθ(α)ctθ(α)

so that

ψ̊α(x, θ) =
(

d
dθ

)t

ψα(x, θ)

=
Cθ(α)

[
α2pαθ s

t
θ (sθ − cθ(α)) + αpαθ (̊sθ − c̊θ(α))

]
− αpαθ (sθ − cθ(α))Cθ(α)

Cθ(α)

=
α2pαθ s

t
θ (sθ − cθ(α)) + αpαθ (̊sθ − c̊θ(α))− α2pαθ s

t
θ (sθ − cθ(α)) ctθ(α)

Cθ(α)
.

Therefore the matrix (24) is given for all Q ∈ P+ by the formula (164) and (27) is given
for Pθ ∈ P by (165). The rest is clear from Theorems 2.1 and 4.1, and from Corollary
2.1. �

4.4. Applications in the normal family

Consider the general normal family of Example 3.1.1 for which the condition (128) is
satisfied for all β > 0 and (142) implies

Cµ,σ(α) = Cσ(α) =
(

(1 + α)−1/2

(2πσ2)α/2

)α/(1+α)

=
σ−α

2/(1+α)

c(α)
(167)
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for all µ ∈ R and the function

c(α) = [(1 + α) (2π)α]α/2(1+α)
, α > 0.

By (159), the minRα-estimator θα,n = (µα,n, σα,n) is the standard estimator of location
and scale given by (62) if α = 0. For α > 0 we can use the relation

σα
2/(1+α)

σα
= σ−α/(1+α)

to get from (159) and (167) the highly nonstandard estimator

(µα,n, σα,n) = argmaxµ,σ

[
cα

nσα/(1+α)

n∑
i=1

exp
{
−α (Xi − µ)2

2σ2

}]
(168)

which in general differs from the minDα-estimator (143) as it will be seen in the sub-
model of scale below. Similarly as in the case of power pseudodistance estimator (143),
the trivial “solutions” (µα,n, σα,n) = (maxiXi, 0) can be avoided in practical applica-
tions by restricting the maximization to the scales bouded avay from zero.
The next example of the submodel of location illustrates the situation where these two
estimators coincide. Obviously, the constants cα = c(α)/(2π)α/2 play no role in the
maximization and can be replaced by 1.

Example 4.4.1. Rényi pseudodistance estimators of location. The normal
family of location introduced in Example 3.1.2 satisfies the condition of the formula
(133) so that from (130) or (133) we obtain the same minRα-estimators µα,n of location
µ0 ∈ R as in (144). Thus to these estimators applies all what was seen in Example 4.2.1.

Example 4.4.2. Rényi pseudodistance estimators of scale. Consider the normal
model of scale introduced in Example 3.1.3. If α = 0 then, by (132), the minRα-
estimator σα,n = Tα(Pn) is the standard MLE of scale given in (62). Otherwise by
(168),

σα,n = argmaxσ

[
cα

nσα/(1+α)

n∑
i=1

exp
{
−αXi

2

2σ2

}]
, α > 0 (cf. (168)). (169)

It is easy to see e. g. by putting n = 1 and αX2 = 2 that these estimates differ from the
Dα-estimates of scale given in(147). Here (158) for the Dirac δx implies

Mα(δx, σ) =
pασ(x)
Cσ(α)

=
cα

σα/(1+α)
exp

{
−αx

2

2σ2

}
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and by (20) and (22),

ψα(x, σ) =
d
dσ
Mα(δx, σ) = cα

d
dσ

[
σ−α/(1+α) exp

{
−αx

2

2σ2

}]

=
cα

σα/(1+α)

[
αx2

σ3
− α

1 + α

1
σ

]
exp

{
−αx

2

2σ2

}

=
αcα

σ1+α/(1+α)

[(x
σ

)2

− 1
1 + α

]
exp

{
−αx

2

2σ2

}
. (170)

This formula can be verified by checking the Fisher consistency known in general from
Theorem 4.1. One can find that∫ [(x

σ

)2

− 1
1 + α

]
exp

{
−αx

2

2σ2

}
pσ0(x)dx

=
σ√

σ2 + ασ2
0

[(
σ2

0

σ2 + ασ2
0

)2

− 1
1 + α

]
.

Since the right-hand side is zero if and only if σ = σ0, the verification is positive. From
(170) we evaluate after some effort the derivative

ψ̊α(x, σ) =
d
dσ
ψα(x, σ) =

d
dσ

cα
σ1+α/(1+α)

exp
{
−αx

2

2σ2

}[
α
(x
σ

)2

− α

1 + α

]

=
αcα

σ2+α/(1+α)
exp

{
−αx

2

2σ2

}
ηα

(x
σ

)
, (171)

where

ηα

(x
σ

)
=

[
α
(x
σ

)4

− 5α+ 3
1 + α

(x
σ

)2

+
2α+ 1

(1 + α)2

]
.

Thus, denoting for brevity

τα = Tα(Q) for Q ∈ P+

we obtain from (170), (171) and Theorem 2.1 the influence functions of the minDα-
estimators σα,n = Tα(Pn) at Q given for all α > 0 by

IF(x;Tα, Q) = − ψα(x, τα)∫
ψ̊α(x, τα)dQ

= − α

Υα(Q)

[((
x

τα

)2

− 1
1 + α

)
exp

{
−αx

2

2τ2
α

}]
, (172)
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where

Υα(Q) =
∫
ηα

(x
σ

)
exp

{
−αx

2

2τ2
α

}
dQ.

In the special case Q=Pσ the Fisher consistency implies that τα :=Tα(Pσ)=σ. We use
the relation

exp
{
−αx

2

2σ2

}
pσ(x) = pσα

(x)
1√

1 + α
for σα =

σ√
1 + α

to obtain

Υα(Pσ) =
1√

1 + α

∫
ηα

(x
σ

)
pσα

(x)dx

=
1

(1 + α)1/2

[
α
(σα
σ

)4

− 5α+ 3
1 + α

(σα
σ

)2

+
2α+ 1

(1 + α)2

]

=
1

(1 + α)5/2
[3α− (5α+ 3) + 2α+ 1] = − 2

(1 + α)5/2

independently of σ > 0. Therefore at the normal location Pσ we get for all σ > 0 the
influence functions

IF(x;Tα, Pσ) =
(1 + α)5/2 σ

2

[((x
σ

)2

− 1
1 + α

)
exp

{
−αx

2

2σ2

}]
. (173)

It is easy to verify that this is the influence function also in the MLE case α = 0.
In conclusion we see that the minRα-estimators σα,n = Tα(Pn) of normal scale are

for all α > 0 robust in the sense that their influence functions are bounded. They are
more robust against distant outliers than the corresponding min Dα-estimators studied
in the Subsections 4.1 and 4.2 because their influence function is redescending

lim
|x|→∞

IF(x;Tα, Pσ) = 0 (cf. (172)). (174)
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e-mail: michel.broniatowski@upmc.fr


		webmaster@dml.cz
	2013-09-24T12:33:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




