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EMPIRICAL ESTIMATOR OF THE REGULARITY INDEX
OF A PROBABILITY MEASURE

Alain Berlinet and Rémi Servien

The index of regularity of a measure was introduced by Beirlant, Berlinet and Biau [1]
to solve practical problems in nearest neighbour density estimation such as removing bias or
selecting the number of neighbours. These authors proved the weak consistency of an estimator
based on the nearest neighbour density estimator. In this paper, we study an empirical version
of the regularity index and give sufficient conditions for its weak and strong convergence without
assuming absolute continuity or other global properties of the underlying measure.
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1. INTRODUCTION

The subject of this paper is related to the general problem of the estimation of small ball
probabilities. Beirlant et al. [1] introduced the notion of regularity index of a measure
to specify the rate at which the ratio of ball measures converges at a Lebesgue point.
Indeed, this index is the exponent appearing in the second order term of the expansion
of the small ball probability. Then, they defined an estimator of this index based on the
nearest neighbour density estimator and proved its weak consistency. This estimator
was applied to solve practical problems in nearest neighbour density estimation such
as removing bias or selecting the number of neighbours. More recently Berlinet and
Servien [3] proved that this regularity index was the key parameter governing the limit
distribution of nearest neighbour density estimators so that its estimation may be crucial
in the derivation of confidence intervals. In the present paper, we study an empirical
version of the regularity index and give sufficient conditions for its weak and strong
convergence. Unlike Beirlant et al. [1] we do not assume absolute continuity of the
underlying measure but only a pointwise property of small ball probabilities. Notation
and former results are given in the next section. Section 3 gathers the definition of
the estimator and its convergence properties. Section 4 is devoted to the proofs of the
theorems and examples are given in Section 5.
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2. NOTATION AND FORMER RESULTS

Let µ be a probability distribution and λ be the Lebesgue measure on Rd equipped with
the Euclidean norm ||.||. We denote by Bδ(x) the open ball with center x and radius
δ. To evaluate the local behaviour of µ(Bδ(x)) in relation to λ(Bδ(x)) one can consider
the ratio of these two quantities. If, for fixed x, the following limit

`(x) = lim
δ→0

µ(Bδ(x))
λ(Bδ(x))

(1)

exists and is finite, then x is called a Lebesgue point of the measure µ (see Dudley
[5] and Rudin [6]). This notion of Lebesgue point is essential to state elegant results
with few restrictions on the functions to be estimated. In Berlinet and Levallois [2],
examples where the density has a bad local behaviour at Lebesgue points are examined.
To evaluate rates of convergence or investigate asymptotic normality of estimators, not
only the convergence of the ratio of ball measures is required but also information on its
higher order behaviour. In this context, Berlinet and Levallois [2] define a ρ-regularity
point of the measure µ as any Lebesgue point x of µ satisfying∣∣∣∣µ(Bδ(x))

λ(Bδ(x))
− `(x)

∣∣∣∣ ≤ ρ(δ), (2)

where ρ is a measurable function such that limδ↓0 ρ(δ) = 0. To specify an exact rate of
convergence of the ratio of ball measures, Beirlant et al. [1] assumed that a more precise
relation than (2) holds at the Lebesgue point x; namely

µ(Bδ(x))
λ(Bδ(x))

= `(x) + Cxδαx + o(δαx) as δ ↓ 0, (3)

where Cx is a non-zero constant and αx is a positive real number. It is easy to show that
Equation (3) implies ρ-regularity at the point x with ρ(δ) = Dxδαx and Dx > Cx. The
constants Cx and αx are unique (provided they exist). Examples are provided in Section
5 with an absolute continuous measure and a measure with discrete part. The index αx

is a regularity index that controls the degree of smoothness of the symmetric derivative
of µ with respect to λ. The larger the value of αx, the smoother the derivative of µ is
at the point x. Beirlant et al.[1] showed the interest of estimating the regularity index
to solve practical problems in nearest neighbour density estimation, such as removing
bias or selecting the number of neighbours. More recently Berlinet and Servien [3]
analyzed the effect of the value of αx on limit distributions of nearest neighbour density
estimators. They gave a necessary and sufficient condition involving αx and the number
of neighbours to have a limit distribution for the estimator.
The link with the small ball probability is clear since Equation (3) is equivalent to the
expansion

P (‖X − x‖ ≤ δ) = Vdδ
d (`(x) + Cxδαx + o(δαx))

where X has probability distribution µ and Vd = πd/2/Γ(1+d/2) denotes the volume of
the unit ball in Rd. In other words, the second order term in the expansion of the small
ball probability of radius δ at x is equal, up to a multiplicative constant, to δd+αx .
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Hence it appears that to estimate αx one needs some information on the behaviour of
µ(Bδ(x)) as a function of δ. This is why the following theorem, proved by Beirlant et al.
[1] will be useful in the sequel.

Theorem 2.1. Suppose that x ∈ Rd is a Lebesgue point of µ with regularity index αx.
Then, for any τ > 1,

lim
δ→0

ϕτ2δ(x)− ϕτδ(x)
ϕτδ(x)− ϕδ(x)

= ταx

where we denote, for δ > 0,

ϕδ(x) =
µ(Bδ(x))
λ(Bδ(x))

.

Now let X1, . . . , Xn denote n independent random variables with distribution µ on
Rd, µ being unknown. Using the kn-nearest neighbour density estimator

fkn(x) =
kn

nVd

∥∥X(kn)(x)− x
∥∥d

where X(kn)(x) is the kth
n -nearest neighbour of x and Vd is the volume of the unit ball

in Rd, Beirlant et al. [1] introduced an estimator ᾱn,x of the regularity index inspired
by the above theorem by setting, for τ > 1,

ᾱn,x =
d

ln τ
ln

fbτ2knc(x)− fbτknc(x)
fbτknc(x)− fbknc(x)

, (4)

if [fbτ2knc(x)− fbτknc(x)]/[fbτknc(x)− fbknc(x)] > 1 and ᾱn,x = 0 otherwise, and proved
the weak consistency of ᾱn,x.
In the paper by Beirlant et al. [1] most results are stated under the assumption of
absolute continuity of the measure µ with respect to Lebesgue measure. This is required
for instance to get a beta distribution for the random variable µ

(
B[X(kn)(x)−x](x)

)
.

Our goal in the present paper is to define an empirical estimator inspired by the same
theorem. For this, we simply replace in the expression of ϕδ(x) the unknown quantity
µ(Bδ(x)) by its empirical counterpart. We prove the weak and strong consistency of the
resulting estimator under the sole assumption that Equation (3) holds true. The present
paper stays at a theoretical level, giving conditions on the deterministic sequence (δn)
to get consistency. This is a first step. Further work should lead to an automatic choice
of this sequence from the observed data.

3. THE EMPIRICAL ESTIMATOR AND ITS CONVERGENCE

Let (Xi)i≥1 be a sequence of independent real d-dimensional random vectors with dis-
tribution µ. The empirical measure µn associated with X1, . . . , Xn is defined by

µn(A) =
1
n

n∑
i=1

I(Xi∈A), A ⊆ Rd,
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where

I(Xi∈A) =
{

1 if Xi ∈ A
0 otherwise

and the associated empirical estimator of ϕδ(x) by

ϕn,δ(x) =
µn(Bδ(x))
λ(Bδ(x))

.

The following theorems state the weak and strong consistency of the empirical estimator
defined by

α̂n,x =
1

ln τ
ln

ϕn,τ2δn
(x)− ϕn,τδn(x)

ϕn,τδn(x)− ϕn,δn(x)
(5)

if
[
ϕn,τ2δn

(x)− ϕn,τδn(x)
]
/ [ϕn,τδn(x)− ϕn,δn(x)] > 1 and α̂n,x = 0 otherwise, (δn)

being a sequence of positive numbers which will be assumed to tend to zero.

Theorem 3.1. (Weak consistency) Suppose that x ∈ Rd is a Lebesgue point of µ
with regularity index αx. Then, under the conditions

lim
n→∞

δn = 0 and lim
n→∞

nδd+2αx
n = ∞

the empirical estimator α̂n,x converges to αx in probability.

As is usually the case almost sure consistency is obtained under stronger conditions
on the sequence (δn).

Theorem 3.2. (Strong consistency) Suppose that x ∈ Rd is a Lebesgue point of µ
with regularity index αx. Then, under the conditions

lim
n→∞

δn = 0 and lim
n→∞

nδ
2(d+αx)
n

lnn
= ∞

the empirical estimator α̂n,x converges to αx almost surely.

4. PROOFS

The weak (respectively strong) consistency of α̂n,x is equivalent to the weak (resp.
strong) consistency, for any τ > 0, of the ratio

Rn(δn) =
ϕn,τ2δn

(x)− ϕn,τδn(x)
ϕn,τδn

(x)− ϕn,δn
(x)

to ταx . Let us fix τ > 0 and set

Sn(δn) =
ϕn,τδn(x)− ϕn,δn(x)

ϕτδn(x)− ϕδn(x)
.
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We can write

ϕn,τ2δn
(x)− ϕn,τδn(x)

ϕn,τδn
(x)− ϕn,δn

(x)
=

ϕτ2δn
(x)− ϕτδn(x)

ϕτδn
(x)− ϕδn

(x)
ϕn,τ2δn

(x)− ϕn,τδn(x)
ϕτ2δn

(x)− ϕτδn(x)

×
(

ϕn,τδn(x)− ϕn,δn(x)
ϕτδn(x)− ϕδn(x)

)−1

or equivalently

Rn(δn) =
ϕτ2δn

(x)− ϕτδn(x)
ϕτδn(x)− ϕδn(x)

Sn(τδn)
Sn(δn)

.

Let us first look at the variance of Sn(δn). For this let us write

Sn(δn) = 1 +
An(τδn)−An(δn)

∆n

where
An(δn) = ϕn,δn(x)− ϕδn(x) and ∆n = ϕτδn(x)− ϕδn(x).

The following lemma gives the asymptotic variance of An(δn), the asymptotic covariance
of (An(τδn), An(δn)) and the asymptotic variance of Sn(δn).

Lemma 4.1. Suppose that x ∈ Rd is a Lebesgue point of µ with regularity index αx.
Then, under the condition

lim
n→∞

δn = 0

we have

lim
n−→∞

n δd
n E

[
(An(δn))2

]
=

`(x)
Vd

,

lim
n−→∞

n δd
n E [An(τδn)An(δn)] =

`(x)
τdVd

and

lim
n−→∞

n δd+2αx
n E

[
(Sn(δn)− 1)2

]
=

`(x)
(
τd − 1

)
τdVd C2

x(ταx − 1)2
.

P r o o f o f L e m m a 4.1. First note that Equation (3) implies that

∆n = ϕτδn(x)− ϕδn(x) = Cxδαx
n (ταx − 1) + o(δαx

n )

and

lim
n−→∞

δ2αx
n

∆2
n

=
1

C2
x(ταx − 1)2

.

Now, using the fact that the random variable nµn(Bδn(x)) has the binomial distribution
B(n, µ(Bδn(x))) we get

n δd
n E

[
(An(δn))2

]
=

δd
n µ(Bδn(x))(1− µ(Bδn(x)))

[λ(Bδn(x))]2

= [1− µ(Bδn
(x))]

µ(Bδn(x))
λ(Bδn(x))

1
Vd
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which gives the asymptotic variance of An(δn).

As Bδn
(x) ⊂ Bτδn

(x) the covariance

E ([µn(Bτδn(x))− µ(Bτδn(x))] [µn(Bδn(x))− µ(Bδn(x))])

is equal to
1
n

(1− µ(Bτδn(x))) µ(Bδn(x))

and therefore

n δd
n E [An(τδn)An(δn)] =

δd
n (1− µ(Bτδn(x))) µ(Bδn(x))

λ(Bτδn
(x)) λ(Bδn

(x))

= [1− µ(Bτδn
(x))]

µ(Bδn(x))
λ(Bδn

(x))
1

τdVd

which gives the asymptotic covariance of (An(τδn), An(δn)).
Changing δn into τδn as argument of An(.) gives

lim
n−→∞

n (τδn)d
E

[
(An(τδn))2

]
=

`(x)
Vd

.

Gathering the above results one gets

lim
n−→∞

n δd+2αx
n E

[
(Sn(δn)− 1)2

]
= lim

n−→∞
n δd+2αx

n E

[(
An(τδn)−An(δn)

∆n

)2
]

=
`(x)

(
τd − 1

)
τdVd C2

x(ταx − 1)2
.

This ends the proof of the lemma. �

Remark. Note that under the assumptions

lim
n→∞

δn = 0 and `(x) > 0

the condition
lim

n→∞
nδd+2αx

n = ∞

is not only sufficient but also necessary for the L2 convergence of (Sn(δn)) .

P r o o f o f T h e o r e m 3.1. Under the conditions of Theorem 3.1, (Sn(δn)) and
(Sn(τδn)) converge to the constant 1 in the L2 sense and therefore also in probabil-
ity. Thus, their ratio tends to 1 in probability. By Theorem 2.1 (Rn(δn)) tends to ταx

in probability. This ends the proof. �
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P r o o f o f T h e o r e m 3.2. As already said the conclusion of Theorem 3.2, is equivalent
to the following property: For any τ > 1,

lim
n→∞

ϕn,τ2δn
(x)− ϕn,τδn(x)

ϕn,τδn
(x)− ϕn,δn

(x)
= ταx almost surely.

From Hoeffding’s inequality (see [4]) for a binomial distribution we have

∀t > 0, P
(
|µn(Bδn

(x))− µ(Bδn
(x))| ≥ t

)
≤ 2 exp

(
−2nt2

)
.

Taking
ε > 0 and t = ελ(Bδn(x)) |∆n| ,

we get,

∀ε > 0, P
(∣∣∣∣An(δn)

∆n

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2n [ελ(Bδn

(x))∆n]2
)

.

By Borel–Cantelli lemma, we have the convergence

An(δn)
∆n

−→0 almost completely

if

∀ε > 0,

∞∑
n=1

exp
(
−2n [ελ(Bδn(x))∆n]2

)
< ∞. (6)

Now, set

γn =
V 2

d ∆2
n

δ2αx
n

.

As we have from Equation (3)

∆2
n = δ2αx

n (C2
x (ταx − 1)2 + o(1))

we have
γn = V 2

d (C2
x (ταx − 1)2 + o(1))

and the summand in Condition (6) writes

exp
[
−nδ2(d+αx)

n γn ε2
]

= exp

[
−nδ

2(d+αx)
n

lnn
γn ε2 lnn

]
=

1
nun

with (γn) tending to
γ = V 2

d C2
x (ταx − 1)2 > 0

as n tends to infinity and

un =
nδ

2(d+αx)
n

lnn
γn ε2.

The condition imposed on the sequence (nδ
2(d+αx)
n / lnn) implies that for any ε > 0,

the sequence (un) tends to infinity and therefore Condition (6) is satisfied. Thus
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(An(δn)/∆n) converges to 0 almost completely. In the same way one proves that
(An(τδn)/∆n) converges to 0 almost completely. It follows that

Sn(δn) = 1 +
An(τδn)−An(δn)

∆n

and (Sn(τδn)) converge to 1 almost completely. Finally, using Theorem 2.1, we get the
conclusion that α̂n,x converges to αx almost surely. �

5. EXAMPLES

5.1. An example with an absolutely continuous measure

First consider the measure µ, absolutely continuous with respect to the Lebesgue mea-
sure on R, with density

f(x) = 1−
√

2
3

+
√
|x| 1(−1/2,1/2)(x).

The distribution function F of µ is given by

F (x) =


0 if x ≤ −1/2,

(1/2) + (1−
√

2/3) x + (2/3) x
√
|x| if −1/2 ≤ x ≤ 1/2,

1 if x ≥ 1/2.

For x ∈ (0, 1/2) and δ > 0, δ small enough, one has

F (x + δ)− F (x− δ) = 2δ(1−
√

2/3) + (2/3)
[
(x + δ)(3/2) − (x− δ)(3/2)

]
.

For x ∈ (−1/2, 0) and δ > 0, δ small enough, one has

F (x + δ)− F (x− δ) = 2δ(1−
√

2/3) + (2/3)
[
−(−x− δ)(3/2) + (−x + δ)(3/2)

]
= 2δ(1−

√
2/3) + (2/3)

[
(−x + δ)(3/2) − (−x− δ)(3/2)

]
.

Now, for 0 < |u| < 1,

(1 + u)(3/2) = 1 +
3
2
u +

3
8
u2 − 1

16
u3 +

3
128

u4 + o(u4),

hence
(1 + u)(3/2) − (1− u)(3/2) = 3u− 1

8
u3 + o(u4)

and, for x 6= 0,

(x + δ)(3/2) − (x− δ)(3/2) = x(3/2)

[(
1 +

δ

x

)(3/2)

−
(

1− δ

x

)(3/2)
]

= x(3/2)

[
3
δ

x
− 1

8

(
δ

x

)3

+ o(δ4)

]
.
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If x > 0,

F (x + δ)− F (x− δ)
2δ

= (1−
√

2/3) + x(3/2)

[
1
x
− 1

24
1
x3

δ2

]
+ o(δ3)

F (x + δ)− F (x− δ)
2δ

= (1−
√

2/3) +
√

x− 1
24

1
x(3/2)

δ2 + o(δ3).

If x < 0,

F (x + δ)− F (x− δ)
2δ

= (1−
√

2/3) + (−x)(3/2)

[
1
−x

− 1
24

1
(−x)3

δ2

]
+ o(δ3)

F (x + δ)− F (x− δ)
2δ

= (1−
√

2/3) +
√
−x− 1

24
1

(−x)(3/2)
δ2 + o(δ3).

Thus, for x 6= 0,

F (x + δ)− F (x− δ)
2δ

− f(x) = − 1
24

1

|x|(3/2)
δ2 + o(δ3).

This implies Equation (3) with

αx = 2 and Cx = − 1
24

1

|x|(3/2)
.

Note that
lim

x−→0
Cx = −∞.

At the point x = 0 one uses the fact that for δ ∈ (0, 1) one has

F (δ)− F (−δ)
2δ

− f(0) =
2
3

√
δ

to conclude that Equation (3) holds with

α0 =
1
2

and C0 =
2
3
.

5.2. An example with a measure having a discrete part

Now, consider the discrete probability measure ν supported by the sequence

xi =
1
i
, i ∈ N∗,

with masses
ν ({xi}) =

1
i(i + 1)

.

For any δ ∈ (0, 1) , there exists a unique positive integer k(δ) such that

1
k(δ) + 1

≤ δ <
1

k(δ)
(7)
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and we have

ν [B(0, δ)] =
∑

i>k(δ)

1
i(i + 1)

=
1

k(δ) + 1

and
ν [B(0, δ)]
λ [B(0, δ)]

=
1

2δ (k(δ) + 1)
.

From the definition of k(δ) it follows that

lim
δ−→0+

k(δ) = ∞ and lim
δ−→0+

δk(δ) = 1−

thus

lim
δ−→0+

ν [B(0, δ)]
λ [B(0, δ)]

=
1
2
.

Now,
ν [B(0, δ)]
λ [B(0, δ)]

− 1
2

=
1− δ (k(δ) + 1)
2δ (k(δ) + 1)

and, from (7), we have

− 1
k(δ)

< 1− δ (k(δ) + 1) ≤ 0

and therefore

− δ1−α

δk(δ)
<

1− δ (k(δ) + 1)
δα

≤ 0, α ∈ (0, 1).

Finally, gathering the above results, one gets

∀α ∈ (0, 1),
ν [B(0, δ)]
λ [B(0, δ)]

=
1
2

+ o(δα).

The probability measure η = (µ + ν)/2 satisfies

η [B(0, δ)]
λ [B(0, δ)]

=
3
4
−
√

2
6

+
1
3
δ1/2 + o(δ1/2).

So, the measure η, which is clearly not absolutely continuous, satisfies Equation (3) at
the point x = 0 with

l(0) =
9− 2

√
2

12
, C0 =

1
3

and α0 =
1
2
.
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