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DIVERSITY IN MONOIDS

Jack Maney, Kansas City, Vadim Ponomarenko, San Diego
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Abstract. Let M be a (commutative cancellative) monoid. A nonunit element q ∈ M

is called almost primary if for all a, b ∈ M , q | ab implies that there exists k ∈ N such

that q | ak or q | bk. We introduce a new monoid invariant, diversity, which generalizes
this almost primary property. This invariant is developed and contextualized with other
monoid invariants. It naturally leads to two additional properties (homogeneity and strong
homogeneity) that measure how far an almost primary element is from being primary.
Finally, as an application the authors consider factorizations into almost primary elements,
which generalizes the established notion of factorization into primary elements.
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1. Introduction

Throughout this paper, all monoids under consideration are commutative, and

(unless otherwise stated) cancellative, and multiplicative, with identity denoted by 1.

If M is a monoid, then M× denotes the set of units (or invertible elements) of M .

If π ∈ M \ M×, we say that π is an atom (or an irreducible element) of M if for all

a, b ∈ M , π = ab implies that a ∈ M× or b ∈ M×. The set of atoms of a monoid M

is denoted by A(M). We say that M is an atomic monoid if every nonunit ofM can

be written as a product of atoms. If S = {s1, s2, . . . , sk} is a finite subset ofM , then
we denote the product of the elements of S by

∏

S := s1s2 . . . sk. If A ⊆ M \ M×,

we denote the monoid generated by A to be [A], and we say that A is a generating

set of M if M = [A]. Thus, M is atomic if and only if M = [A(M) ∪ M×]. By N,

N0, and Sn we mean the set of natural numbers, nonnegative integers, and the group

of permutations on n letters, respectively.

Let M be a monoid. We establish some terminology regarding ideal-theoretic

properties of M (proofs of the following claims can be found in [6]). If A and B are
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(nonempty) subsets of M , then AB := {ab | a ∈ A, b ∈ B} and if x ∈ M , we denote

{x}A by xA. A subset I of M is called an ideal of M if IM = I.1 If I is an ideal of

M , then I = M if and only if I ∩M× 6= ∅. If I 6= M , we say that I is a proper ideal

of M . We call I a prime ideal of M if I is a proper ideal and M \ I is a submonoid

of M (equivalently, for all a, b ∈ M with ab ∈ I, we have a ∈ I or b ∈ I). A proper

ideal I is a primary ideal of M if and only if for all a, b ∈ M with ab ∈ I, either

a ∈ I or bk ∈ I for some k (or, equivalently, if ab ∈ I, then either a ∈ I, or b ∈ I

or there exist m, n ∈ N such that am ∈ I and bn ∈ I). We say that I is an almost

primary ideal if for all a, b ∈ M , ab ∈ I implies that for some n ∈ N, an ∈ I or

bn ∈ I. Every prime ideal is primary, and every primary ideal is almost primary, but

neither converse holds.

If I is an ideal of M , then the radical of I is

√
I := {x ∈ M : xn ∈ I for some n ∈ N}.

As in the case for ideals of a ring, it can be shown that the radical of a primary ideal

is prime, and that if I and J are ideals, then
√

IJ =
√

I ∩
√

J . It is easy to see that

I is almost primary if and only if
√

I is a prime ideal.

If p ∈ M , then it is apparent that p is prime if and only if pM is a prime ideal of

M . If q ∈ M , we say that q is a primary element of M if qM is a primary ideal of

M , and q is an almost primary element ofM if qM is an almost primary ideal ofM .

Following Halter-Koch in [5], we say thatM is a weakly factorial monoid (or WFM)

if every nonunit element of M can be written as a product of primary elements.

WFMs were named analogously after the weakly factorial domains introduced by

Anderson and Mahaney in [1]. If M is a WFM, and if x is a nonunit of M , then

(up to associates) there is only one factorization of x into primary elements with

mutually distinct radicals (such a factorization is called a reduced factorization—see

Section 4 for more details).

In this paper, we define and study a new type of monoid invariant, called diversity.

IfM is an atomic monoid, if we pick x, y ∈ M \M×, and if we write y = sa1

1 sa2

2 . . . san

n

with si ∈ M and ai ∈ N, then x divides a power of y if and only if x divides a power

of s1s2 . . . sn. So, to measure how “far” x is from being almost primary, we can look

for the largest value of n such that x divides a power of s1s2 . . . sn, but not a power

of any subproduct. This is what we will call the diversity of x.

Definition 1.1. Let M be a monoid.

(1) We say that x | S (in M) if x ∈ M , S is a finite subset of M , and if there exists

t ∈ N such that x | (
∏

S)
t
.

1Our notion of an ideal of a monoid is technically the concept of an s-ideal as defined
in [6].
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(2) We say that x strictly divides S, denoted x ‖ S if x | S but x ∤ T for all T ( S

(3) We define the diversity of x, denoted div(x), to be

div(x) = sup{|S| : S ⊆ M with x ‖ S}.

(4) We define the diversity ofM and the atomic diversity ofM , denoted by div(M)

and diva(M), respectively, by

div(M) = sup
x∈M

div(x), and diva(M) = sup
x∈A(M)

div(x).

If x is a unit, then x ‖ ∅ (since ∏ ∅ = 1), and hence div(x) = 0. Otherwise, x ‖ S

implies that the elements of S are pairwise nonassociate nonunits.

In Section 2, we present some preliminary results, including that, for x ∈ M ,

div(x) = 1 if and only if x is almost primary (Proposition 2.3). Further, if M is

atomic and if x ∈ M , we need only count sets S of atoms with x ‖ S to determine

div(x) (Corollary 2.5). We also show that div(x) is bounded above by both the tame

degree t(M, x) and ω(M, x), and that for v-Noetherian monoids (in particular, for

the multiplicative monoids of Notherian or Krull domains), the diversity of every

element is finite.

In Section 3, we introduce two additional properties, called “homogeneous” and

“strongly homogeneous” that lie between “almost primary” and “primary” and that

are also related to Definition 1.1. We show that all nonunit divisors of homogeneous

(strongly homogeneous) elements are themselves homogeneous (respectively, strongly

homogeneous) (Theorem 3.8)—a property that is not shared by almost primary

elements. An element x is homogeneous precisely when
√

xM is not only a prime

ideal, but maximal amongst radicals of principal ideals (Theorem 3.8). We also

show that div(x) is determined if x divides a set of strongly homogeneous elements

(Corollary 3.10).

Finally, in Section 4, we consider factorizations of elements into almost primary

elements. We find that such factorizations need not be unique; however, they are

unique up to length and radical (Proposition 4.3). Factorizations into homogeneous

elements are unique precisely when the homogeneous elements in question are pri-

mary (Theorem 4.5). Also, we show that every nonunit element ofM can be factored

into almost primary elements if and only if for every nonunit x ∈ M with div(x) > 2,

there exist nonunit y, z ∈ M such that x = yz and div(x) = div(y) + div(z) (or, in

other words, div(·) : M \M× → N+
0 is as close to a semigroup homomorphism as we

can hope—cf. Theorem 4.4).
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2. Preliminary results

Proposition 2.1. Let M be a monoid and let x, y ∈ M . Then div(xy) 6

div(x) + div(y).

P r o o f. Let S ⊆ M with xy ‖ S. There exist subsets Sx, Sy ⊆ S such that

x ‖ Sx and y ‖ Sy. Since xy | Sx ∪ Sy, we must have S = Sx ∪ Sy. Therefore,

div(x) + div(y) > |Sx| + |Sy| > |Sx ∪ Sy| = |S|,

and div(xy) 6 div(x) + div(y). �

If x or y is a unit, we have equality in Proposition 2.1. Otherwise, equality is

rare—in fact, for x ∈ M \ M× and n ∈ N, div(xn) = div(x) < n · div(x), as shown

in the following lemma.

Lemma 2.2. Suppose S = {s1, s2, . . . , sk} and x ∈ M . Then:

(1) x | S if and only if
√

s1M ∩√
s2M ∩ . . . ∩√

skM ⊆
√

xM .

(2) x ‖ S if
√

s1M ∩√
s2M ∩ . . . ∩√

skM ⊆
√

xM and if any
√

siM is omitted for

1 6 i 6 k, then the intersection is no longer contained in
√

xM .

(3) If x ‖ S, then
√

siM and
√

sjM are incomparable for each i 6= j.

(4) For all m ∈ N, x ‖ S if and only if xm ‖ S. Consequently, div(x) = div(xm).

P r o o f. We have x | {s1, s2, . . . , sk} if and only if xr = (s1s2 . . . sk)t for some

r ∈ M and t ∈ N, which is equivalent to s1s2 . . . sk ∈
√

xM , which is also equivalent

to
√

s1s2 . . . skM =
√

s1M ∩
√

s2M ∩ . . . ∩
√

skM ⊆
√

xM.

Thus, statement 1 is proved.

We see that 2 follows from 1 and the fact that
√

siM can be omitted (for some i)

if and only if x | S \ {si}.
We see that 3 follows directly from 2.

Finally, 4 follows from 2, the fact that
√

xM =
√

xmM , and the definition of

diversity. �

Proposition 2.3. Let M be a monoid and let x ∈ M . Then:

(1) If x ‖ S, then the elements of S are pairwise nonassociate, containing no units.

(2) div(x) = 0 if and only if x ∈ M×.

(3) div(x) = 1 if and only if x is an almost primary nonunit.

(4) If x ‖ S and y ∈ S, then neither x nor y divides S \ {y}.
(5) If x ‖ S and {y, z} ⊆ S, then x ‖ S ∪ {yz} \ {y, z}.
(6) If x | R and (

∏

R) | S, then x | S.

798



P r o o f. We will prove 3; the remaining parts are straightforward.

First, suppose that x is an almost primary nonunit, and x ‖ S. Write S =

{s1, s2, . . . , sk}. k > 0 since x is a nonunit. Pick r ∈ M and t ∈ N such that

xr = (s1s2 . . . sk)t = st
1s

t
2 . . . st

k. Since x is almost primary, we have x | (st
i)

m for

some i, m ∈ N. But then x | {si}, implying that k = 1 and div(x) = 1.

On the other hand, suppose that div(x) = 1. If we have a, b ∈ M with x | ab, then

x | {a, b}, therefore x | {a} or x | {b}, and hence x | am or x | bm for some m ∈ N.

Therefore x is almost primary, and a nonunit since div(x) > 0. �

Theorem 2.4. Let M be a monoid, and let A be a generating set of M . Then

for all x ∈ M , div(x) = sup{|S| : S ⊆ A with x ‖ S}.

P r o o f. Set α(x) = sup{|S| : S ⊆ A with x ‖ S}. By Definition 1.1, div(x) >

α(x), and if x ∈ M×, then div(x) = α(x) = 0. Suppose now that x /∈ M×. Now

choose S = {s1, s2, . . . , sk} ⊆ M with x ‖ S. Proposition 2.3 yields that S ∩ M×

is empty. For each i for 1 6 i 6 k, write si = ai1ai2 . . . aini
, where ni ∈ N and

each aij ∈ A. Then, setting T = {aij | 1 6 i 6 k, 1 6 j 6 ni}, we see that x | T .

Therefore there exists U ⊆ T such that x ‖ U .

We claim that for each i with 1 6 i 6 m, there exists some j with 1 6 j 6 ni such

that aij ∈ U . To see why this claim is true, suppose (without loss of generality) that

a1j /∈ U for all 1 6 j 6 n1. Then x | {aij : 2 6 i 6 k, 1 6 j 6 ni}, implying that
x | {s2, s3, . . . , sk}, a contradiction. Therefore α(x) > |U | > k. By considering all

such S, we have α(x) > div(x) and hence div(x) = α(x). �

Corollary 2.5. Let M be an atomic monoid. Then for all x ∈ M , div(x) =

sup{|S| : S ⊆ A(M) with x ‖ S}.

P r o o f. Since M is atomic, M = [A(M) ∪ M×]. We combine Theorem 2.4 and

Proposition 2.3.1. �

We now relate diversity to some other monoid invariants, beginning with the ω

invariant introduced in [2].

Definition 2.6. LetM be a monoid. For a, b ∈ M , let ω(a, b) denote the smallest

N ∈ N0 ∪ {∞} with the following property: for all n ∈ N0 and a1, a2, . . . , an ∈ M ,

if a = a1a2 . . . an and if b | a, then there exists a subset Ω ⊆ {1, 2, . . . , n} such that
|Ω| 6 N and b | ∏

i∈Ω

ai. For b ∈ M , we define

ω(M, b) = sup{ω(a, b) : a ∈ M} ∈ N0 ∪ {∞}.
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Proposition 2.7. Let M be a monoid, and let x ∈ M . Then div(x) 6 ω(M, x).

P r o o f. Let x ‖ {s1, s2, . . . , sk}. Then there exist t ∈ N and r ∈ M such

that xr = (s1s2 . . . sk)t. Therefore x divides a product of kt elements of M . If

ω(M, x) < k, then x would divide a proper subset of {s1, s2, . . . , sk}, a contradiction.
Thus, ω(M, x) > k, implying that div(x) 6 ω(M, x). �

It should be noted that if M is a v-Noetherian monoid as defined in [3] (in partic-

ular, the multiplicative monoid of a Noetherian or Krull domain is a v-Noetherian

monoid), then ω(M, x) < ∞ for all x ∈ M (cf. Lemma 3.5 of [4]). Also, if M is

atomic and if π is a non-prime atom of M , then ω(M, π) 6 t(M, π), where t(M, π)

denotes the tame degree of M with respect to π, as defined in [3]. This proves the

following corollary.

Corollary 2.8. Let M be an atomic monoid. Then:

(1) For every non-prime atom π ∈ M , div(π) 6 t(M, π).

(2) If M is not factorial, then diva(M) 6 t(M,A(M)), where t(M,A(M)) =

sup{t(M, π) : π ∈ A(M)}.
(3) If M is a v-Noetherian monoid, then div(x) < ∞ for every x ∈ M .

Note that if π is a prime element of M , then t(M, π) = 0 and div(π) = 1. To

show that the hypothesis of Corollary 2.8.3 is necessary, we produce an example of

a monoid with an element with infinite diversity.

Example 2.9. Let A be a countably infinite set with A = {x} ∪ {yij : i, j ∈ N0,

0 6 j 6 i}. Let F be the free monoid on this set, and let M be the monoid that

results from reducing F modulo the following relations for all n ∈ N:

xn+1 = yn0yn1 . . . ynn.

Then A = A(M) and M is atomic and half-factorial. However, for each n ∈ N, we

have x ‖ {yn0, yn1, . . . , ynn}. Therefore div(x) = ∞ (and M is not v-Noetherian).

The next two examples show that the diversity of a monoid is, in general, inde-

pendent of the catenary degree (as defined in [3]). Also, the first example shows that

we need not have equality in Proposition 2.7.

Example 2.10. Consider the following multiplicative submonoid of N, known

as the Hilbert monoid: H = 1 + 4N0. The atoms of H are either rational primes

congruent to 1 mod 4 (these atoms are prime in H) or of the form pq where p and

q are rational primes congruent to 3 mod 4 (these are the non-prime atoms of H).

Given an atom pq of the latter type, it is easy to see that div(pq) is 2 if p 6= q, and

1 otherwise. Therefore diva(H) = 2.
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Given distinct rational primes p1, p2, . . . , p2n, each congruent to 3 mod 4, we have

p1p2 . . . p2n ‖ {p2
1, p

2
2, . . . , p

2
2n}, whence div(H) = ∞. However c(H), the catenary

degree of H , is 2 (cf. [3]).

Further, if p is a rational prime congruent to 3 mod 4, then it is routine to check

that p2 is almost primary. If q is a rational prime other than p that is congruent to

3 mod 4, then p2 | (pq)(pq), but p2 ∤ pq. Therefore ω(H, p2) > 2 > 1 = div(p2).

Example 2.11. Let M = [2, 3] be the additive submonoid of N0 generated by 2

and 3. For all x ∈ M , x | {3}, thus div(M) = 1. However, c(M) = 3 (cf. [3]).

3. Homogeneous and strongly homogeneous elements

Diversity, as an invariant, cannot alone differentiate among prime, primary, or

almost primary elements, since div(x) = 1 for all three. However, it can differentiate

between almost primary and primary elements by the following criterion: if x, y ∈
M \M× with y primary, then x | {y} implies that y | {x}. However, such symmetry
need not hold for almost primary elements.

Example 3.1. Let M = {2a3b : a ∈ N, b ∈ N0} ∪ {1} be a multiplicative sub-
monoid of N. For any x ∈ M , x | {6}, whence div(M) = 1. Also, 2 | {6}, but 6 ∤ {2},
as no power of 2 is a multiple (in N) of 3.

The ability of y to divide {x} whenever x divides {y} will be of great concern to us,
so we establish some notation concerning this relation. This relation was previously

used by Halter-Koch for primary elements in [5].

Definition 3.2. Let M be a monoid and let x, y ∈ M . We say that y is related

to x, denoted by y ∼ x, if x | {y}.

Clearly, y ∼ x if and only if
√

yM ⊆
√

xM . Also, it is easy to see that ∼ is
a reflexive and transitive relation on M . As noted above, ∼ need not be symmetric.
We wish to study nonunits for which ∼ is symmetric, and also to generalize this
notion.

Definition 3.3. Let M be a monoid, and let x ∈ M .

(1) We say that x is homogeneous if div(x) = 1 and if for all y ∈ M , y | {x} implies
that x | {y} (or, equivalently, if x ∼ y, then y ∼ x).

(2) We say that x is strongly homogeneous if div(x) = 1 and if for all y ∈ M and

S ⊆ M with x ∈ S, we have y ‖ S implies x | {y}.
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Corollary 3.4. LetM be a monoid. The relation ∼ is an equivalence relation on
the set of homogeneous elements of M .

Proposition 3.5. Let M be a monoid and x ∈ M a nonunit. Then the following

implications hold for properties of x:

primary ⇒ strongly homogeneous ⇒ homogeneous ⇒ almost primary

P r o o f. Let x be primary and pick y ∈ M and S ⊆ M with x ∈ S and y ‖ S.

Then there exist t ∈ N and r ∈ M with yr = (
∏

S)t, and so xt | yr. As xt is primary

and xt ∤ r (or else y | S \ {x}), we see that xt | ym for some m ∈ N. Therefore x | {y}
and x is strongly homogeneous. The other implications are clear. 3.3. �

We now give examples to show that none of the implications above are reversible.

In Example 3.1 above, the element 6 is almost primary but not homogeneous.

Example 3.6. (An example of a strongly homogeneous element that is not pri-

mary.) LetM = Z\{0,−1} (under multiplication). The atoms ofM are of the form

±p, where p is a prime natural number. Note that no atom of M is primary. To see

why, if p and q are rational primes with |p| 6= |q|, then p | (−p)q. However, p ∤ −p

and p divides no power of q, implying that p is not primary.

We will now show that every atom of M is strongly homogeneous. Let p ∈ M be

an atom, and suppose that p | ab. Then, without loss of generality, we have p | a in

N, hence p | a2 in M , and p is almost primary.

Suppose now we have y ∈ M \ M× with y ‖ S and p ∈ S. Choose r ∈ M and

t ∈ N such that yr = (
∏

S)t. We have pt | yr. As above, if p | y in N, then p | y2 in

M , hence p | {y}. However, if p ∤ y in N, then pt | r in N. The only way to avoid pt

dividing r in M (and hence y | S \ {p}) is for r = −pt. But then r2 = p2t, implying

that y2—and hence y—divides S \ {p}.
Therefore every atom of M is strongly homogeneous, but not primary.

Example 3.7. (An example of an element that is homogeneous, but not strongly

homogeneous.) Consider the following multiplicative submonoid of N:

M = [{p1p2 : p1, p2 ∈ N are distinct odd primes}] ∪ 6N.

First, we observe thatM contains no power of any rational prime. With this, we will

show that 6 is homogeneous, but not strongly homogeneous. If 6 | ab (for a, b ∈ M),

then (without loss of generality) a is even, hence 6 divides a in N. Writing a = 6m

(m ∈ N), we see that a2 = 6(6m2) and 6 | a2 (in M), implying that 6 is almost

primary.

Also, if y ∈ M \ M× with y | {6}, then pick r ∈ M , t ∈ N such that yr = 6t. As

above, if y is even, then 6 | {y}. If y is odd, then, in N, we must have 2t | r, and

802



it must follow that, in N, y | 3t. However, y is then a power of 3, a contradiction.

Therefore 6 | {y} and 6 is homogeneous.
To see why 6 is not strongly homogeneous, note that 15 | {6, 35}, since (6 · 35)2 =

15·(6·490). However, 15 ∤ {6} (as no power of 6 is a multiple, in N, of 5) and 15 ∤ {35}
(as no power of 35 can be a multiple, in N, of 3). Thus 15 ‖ {6, 35}. However, 6 ∤ {15}
(as no power of 15 is even). Therefore 6 is not strongly homogeneous.

Theorem 3.8. Let M be a monoid, let x ∈ M . Then:

(1) For all y ∈ M , x ∼ y if and only if
√

xM ⊆ √
yM .

(2) Suppose that x is homogeneous. For all homogeneous y ∈ M , x ∼ y if and only

if
√

xM =
√

yM .

(3) x is homogeneous if and only if
√

xM is both a prime ideal and maximal amongst

radicals of proper principal ideals.

(4) x is strongly homogeneous if and only if div(x) = 1 and for all y, z ∈ M , we

have y ‖ {x, z} implies x | {y}.
(5) If x is homogeneous (strongly homogeneous), then xn is homogeneous (strongly

homogeneous) for all n ∈ N.

(6) If x is homogeneous (strongly homogeneous), then every nonunit divisor of x

is homogeneous (strongly homogeneous).

(7) If M is atomic with diva(M) = 1, then x is homogeneous if and only if x is

strongly homogeneous.

P r o o f. 1. This follows from the definitions.

2. This follows from (1) and Definition 3.3.

3. If x is homogeneous, then x is almost primary, whence
√

xM is prime. If√
xM ⊆ √

yM for some y ∈ M , then x ∈ √
yM implying that y | {x}. Thus x | {y}

and
√

xM =
√

yM . The argument is reversible.

4. Assume that there exists z ∈ M with z ‖ T , x ∈ T , and |T | > 3. Writing

T = {x, t1, t2, . . . , tk}, we see that z ‖ {x, t1t2 . . . tk}, and thus, by hypothesis, x | {z}.
Thus x is strongly homogeneous. The other implication is obvious.

5. The homogeneous statement follows from (3) and the fact that
√

xM =
√

xnM .

The strongly homogeneous statement follows from (4) via the sequence y ‖ {xn, z}
implies y ‖ {x, z} implies x | {y} implies xn | {y}.
6. Pick any nonunit z with z | x. Choose y ∈ M \ M× with y | {z}, and assume

that x is homogeneous. Then y divides a power of z, hence y divides a power of x

and y | {x}. Therefore x | {y}, so z | {y}.
Now, assume that x is strongly homogeneous. Let y ‖ S with z ∈ S. Set S′ =

S ∪ {x} \ {z}. Now y | S′, and there is T ⊆ S′ with y ‖ T . If x /∈ T , then y | S \ {z},
a contradiction. Hence x | {y} and so z | {y}.
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7. Let x be homogeneous. Pick y ∈ M with y ‖ S and x ∈ S. We observe that

every irreducible dividing y must also divide a singleton subset of S, and in fact,

there must be an irreducible divisor π of y such that π | {x} (otherwise, if every
irreducible divisor of y divides S \ {x}, then y | S \ {x}, a contradiction). As x is

homogeneous, we have x | {π}, hence x divides a power of y and x | {y}. Therefore
x is strongly homogeneous. The other implication is obvious. �

Lemma 3.9. LetM be a monoid, let x ∈ M , and suppose that x ‖ S and x | T . If

there exists s ∈ S that is strongly homogeneous, then there exist t ∈ T and a subset

S′ of S \ {s} such that x ‖ S′ ∪ {t}.

P r o o f. Writing S = {s, s1, s2, . . . , sk}, we see that x ‖ S implies that s | {x}.
Since x | T , we see that s | T , and (since div(s) = 1), s | {t} for some t ∈ T .

Pick a ∈ N and r ∈ M such that sr = ta, and pick α ∈ M and b ∈ N with xα =

(ss1s2 . . . sk)b. Then xαrb = tab(s1s2 . . . sk)b, implying that x | {t, s1, s2, . . . , sk}.
Thus, there exists R ⊆ {t, s1, s2, . . . , sk} such that x ‖ R. We must have t ∈ R,

otherwise x | S \ {s}, a contradiction. Therefore, R = S′ ∪ {t} for some subset S′

of S. �

Corollary 3.10. LetM be a monoid and let x ∈ M . If x ‖ S, and if each element

of S is strongly homogeneous, then div(x) = |S|.

P r o o f. Suppose x ‖ T . We write S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tm}.
Suppose that k 6 m. Repeatedly applying Lemma 3.9, we find T ′ ⊆ T such that

|T ′| 6 |S| and x ‖ T ′. Since x ‖ T , we must, in fact, have T = T ′, and therefore

m 6 k, implying that div(x) = k. �

We now give an example to show that “strongly homogeneous” cannot be replaced

by “homogeneous” in Lemma 3.9 or Corollary 3.10.

Example 3.11. Consider the following multiplicative subsemigroups of N:

A = [2, 3, 5, 7, 2 · 3 · 11, 5 · 7 · 13], and B = 2 · 3 · 5 · 7N,

and letM = A∪B. Note thatM is atomic, so for computing diversity, we need only

consider subsets of A(M).

We first show that div(2 · 3 · 11) = 1. Let 2 · 3 · 11 ‖ S. Then some s ∈ S ∩ A(M)

is a multiple (in N) of 11. If s = 2 · 3 · 11, then S = {s}, otherwise, s ∈ B, and hence

s = 2 · 3 · 5 · 7 · 11 · y for some y ∈ N. But then S = {s} again, since

(2 · 3 · 11)(2 · 3 · 5 · 7 · 11 · 5 · 7 · y2) = s2,
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and 2 · 3 · 11 | s2. Therefore, div(2 · 3 · 11) = 1. A similar argument shows that

div(5 · 7 · 13) = 1.

Further, we claim that 2 · 3 · 11 is homogeneous. Let x ‖ {2 · 3 · 11} for some
x ∈ M \ {1}. Then xr = (2 · 3 · 11)k for some r ∈ M and k ∈ N. However, (2 · 3 · 11)k

has unique factorization in M , since only atoms 2, 3, 2 · 3 · 11 divide as integers, but

in fact we must have k copies of 2 · 3 · 11 since that is the only source of rational

prime 11. Hence x = (2 · 3 · 11)j for some j ∈ N, 2 · 3 · 11 | x, and in particular

2 · 3 · 11 | {x}. Thus, 2 · 3 · 11 is homogeneous, and, similarly, so is 5 · 7 · 13.

We next observe that div(2 ·3 ·5 ·7) > 4, as 2 ·3 ·5 ·7 ‖ {2, 3, 5, 7}. However, we also
have 2·3·5·7 ‖ {2·3·11, 5·7·13}. Thus, the conclusion of Corollary 3.10 does not hold
forM . Further, 2·3·5·7 divides none of {2, 2·3·11}, {3, 2·3·11}, {5, 2·3·11}, {7, 2·3·11}
and hence the conclusion of Lemma 3.9 does not hold for M .

Proposition 3.12. Let S, T be subsets of M consisting of strongly homogeneous

elements. Suppose that x ‖ S and x ‖ T . Then |S| = |T | and {
√

sM : s ∈ S} =

{
√

tM : t ∈ T }.

P r o o f. By Corollary 3.10, |S| = div(x) = |T |. Choose s ∈ S. We have s | {x}
(since x ‖ S and s is strongly homogeneous) and x | T . As div(s) = 1, we have s | {t}
for some t ∈ T . Therefore,

√
tM ⊆

√
sM , and by Theorem 3.8,

√
tM =

√
sM . �

Corollary 3.13. Let M be atomic. Then the following assertions are equivalent:

(1) Every atom of M is homogeneous.

(2) For every x ∈ M and for sets S = {π1, π2, . . . , πn} and T = {ξ1, ξ2, . . . , ξm} of
pairwise nonassociate atoms of M , if x ‖ S and x ‖ T then |S| = |T | and for
each 1 6 i 6 n there exists a permutation σ such that

√
πiM =

√

ξσ(i)M .

P r o o f. Suppose first that every atom of M is homogeneous. Then every

atom of M is strongly homogeneous by Theorem 3.8.5. The conclusion follows from

Proposition 3.12.

Suppose now that the second condition holds. Choose π ∈ A(M). Taking S =

{π}, the hypothesis implies that π is almost primary and thus div(x) = 1. Now

choose y ∈ M \ M× with y | {π}. Factor y into atoms as y = ξ1 . . . ξk. Since y |
{ξ1, . . . , ξk}, by hypothesis there is ξi with

√
πM =

√
ξiM and hence

√
πM ⊇ √

ξiM .

By Theorem 3.8.1, π | {ξi} and so π | {y}. Hence π is homogeneous. �
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4. Factorization into almost primary elements

Proposotion 4.1. Let M be a monoid and let x ∈ M . Let x = y1y2 . . . yn for

yi ∈ M . Then x is homogeneous (strongly homogeneous) if and only if each yi is

homogeneous (respectively, strongly homogeneous) and yi are pairwise related (or

equivalently,
√

yiM =
√

yjM for all 1 6 i 6 j 6 n).

P r o o f. If x is homogeneous (strongly homogeneous), then each yi is homo-

geneous (strongly homogeneous) by Theorem 3.8.4. Also, for each 1 6 i 6 n,

xM ⊆ yiM , implying that
√

xM ⊆ √
yiM . By Theorem 3.8.1,

√
xM =

√
yiM .

On the other hand, if each yi is homogeneous and if
√

yiM =
√

yjM for each

1 6 i 6 j 6 n, then

√
xM =

√

y1y2 . . . ynM =
√

y1M ∩
√

y2M ∩ . . . ∩
√

ynM =
√

y1M.

So,
√

xM is prime and maximal amongst radicals of principal ideals, whence x is

homogeneous by Theorem 3.8.2.

Now, assume that each yi is strongly homogeneous and pairwise related. Then√
xM =

√
yiM for each i. Letting z ∈ M \M× with z ‖ S and S = {x, s1, s2, . . . , sk},

the fact that
√

xM =
√

yiM implies that x | {yi}, whence z | {yi, s1, s2, . . . , sk}. So,
yi | {z} for each i, implying that x | {z}. Therefore x is strongly homogeneous. �

Definition 4.2. Let M be a monoid, let x ∈ M , and suppose that

x = q1q2 . . . qn,

where each qi is almost primary. If
√

qiM and
√

qjM are incomparable for all i 6= j,

we say that the above factorization is a reduced factorization of x into almost primary

elements.

Clearly, if a nonunit element x of a monoidM can be factored into almost primary

elements, then we may find a reduced factorization of x into almost primary elements,

merely by consolidating almost primary divisors of x whose radicals are comparable.

In Theorem 1.5 of [5], Halter-Koch showed that reduced factorizations into primary

elements are unique up to associates. In other words, if

q1q2 . . . qn = r1r2 . . . rm

are reduced factorizations of some nonunit x into primary elements, then n = m and

there exists σ ∈ Sn such that qi is associate to rσ(i).

If we consider factorizations into almost primary elements, then we need not have

uniqueness. For example, consider Example 3.6. For distinct rational primes p, q ∈ N,
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there are two reduced factorizations of pq = (p)(q) = (−p)(−q). However, reduced

factorizations into almost primary elements are unique up to length and radicals, as

shown in the following.

Proposition 4.3. Let M be a monoid, let x ∈ M , and suppose that

q1q2 . . . qn = r1r2 . . . rm

are two reduced factorizations of x into almost primary elements. Then div(x) =

n = m and there exists σ ∈ Sn such that
√

qiM =
√

rσ(i)M .

P r o o f. As q1 is almost primary, we have (without loss of generality) that q1 | rk
1

for some k ∈ N. Thus,
√

r1M ⊆ √
q1M . However, r1 is almost primary, whence

r1 | qt
i for some i, 1 6 i 6 n. However, we then have

√
qiM ⊆ √

r1M ⊆ √
q1M ,

forcing i = 1 (as our factorizations of x are reduced). Therefore
√

q1M =
√

r1M .

Applying induction, we see that m = n and that we may pair up the q’s and r’s by

radicals.

To show that div(x) = n, we first note that div(x) 6
n
∑

i=1

div(qi) = n. Also,

x | {q1, q2, . . . , qn}, and if x | {q1, . . . , qi−1, qi+1, . . . , qn} for some 1 6 i 6 n, then

qi | qt
j for some t ∈ N and j 6= i. However, this would imply that

√

qjM ⊆ √
qiM ,

a contradiction. Therefore x ‖ {q1, q2, . . . , qn} and div(x) > n. �

This next theorem, informally speaking, considers conditions that are as close as

we can hope to div(·) : M \ M× → N ∪ {∞} being a homomorphism of semigroups.

Theorem 4.4. Let M be a monoid. For x ∈ M \ M×, the following assertions

are equivalent:

(1) If div(x) > 2, then there exist y, z ∈ M \ M× with x = yz and div(x) =

div(y) + div(z).

(2) x can be written as a product of div(x) almost primary elements.

(3) There exists a reduced factorization of x into almost primary elements. Ad-

ditionally, if M is atomic, then diva(M) = 1 if and only if 1–3 hold for every

x ∈ M \ M×.

P r o o f. (1 ⇒ 2): If div(x) = 1, there is nothing to prove. If div(x) = n > 2, we

may repeatedly apply 1 to obtain x = y1y2 . . . yn with div(yi) = 1. It then follows

that each yi is almost primary.

(2 ⇒ 3): Write x as a product of div(x) almost primary elements and, if necessary,

group factors with comparable radicals together.

(3 ⇒ 1): Suppose that x = q1q2 . . . qn is such a reduced factorization and that

n > 2. By Proposition 4.3, div(x) = n =
n
∑

i=1

div(qi).
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Now suppose 1–3 hold for all x ∈ M \M×. Let x ∈ M with div(x) > 2. By condi-

tion 1, x is reducible, hence diva(M) = 1. On the other hand, suppose diva(M) = 1.

Then every atom of M is almost primary. Hence every x ∈ M \M× can be factored

into almost primary elements, and thus has a reduced factorization into almost pri-

mary elements. �

Theorem 4.5. LetM be a monoid. Then, the following assertions are equivalent.

(1) Every nonunit element of M has a reduced factorization into primary elements

(i.e. M is a WFM).

(2) Given x ∈ M \ M×, there exist homogeneous q1, q2, . . . , qn (each with distinct

radicals) such that x = q1q2 . . . qn, where this factorization into homogeneous

elements is unique in the sense that if x = q′1q
′
2 . . . q′n is any reduced factorization

of x into almost primary elements, then there exists σ ∈ Sn such that qi is

associate to q′
σ(i).

P r o o f. (1 ⇒ 2): This follows from Theorem 1.5 of [5].

(2 ⇒ 1): It suffices to show that every homogeneous element is primary. Let

q ∈ M be homogeneous, and suppose that q | ab for some a, b ∈ M . We may assume

that a and b are nonunits of M (otherwise q | a or q | b). By the hypothesis, we have

reduced factorizations

a = a1a2 . . . am and b = b1b2 . . . bn

of a and b into homogeneous elements. Since q is almost primary, q | {ai} for some
i or q | {bi} for some j, i.e. either ai ∼ q or bj ∼ q. If q | {ai} and q | {bj} for
some i and j, then we are done, for q divides a power of a and a power of b. So,

without loss of generality, assume that a1 ∼ q and each bj is unrelated to q. Since

∼ is an equivalence relation on homogeneous elements and the factorization of a is
reduced, a1 and q are unrelated to all the bj and all the other ai. When we reduce

the factorization a1a2 . . . amb1b2 . . . bn of ab, we combine related elements, so a1 is

untouched. In other words, a1c1c2 . . . ct is a reduced factorization of ab into almost

primary elements, for some almost primary elements ck.

Write ab = qr. If r ∈ M×, then by the hypothesis, q is an associate of a1 and

all the ci are units, a contradiction. Therefore, we have a reduced factorization of

r1r2 . . . rs of r into homogeneous elements. Since no more than one of the ri can

share the same radical as q, either qr1r2 . . . rs is a reduced factorization of ab into

almost primary elements, or (without loss of generality) q ∼ r1 and (qr1)r2 . . . rs is

a reduced factorization of ab into almost primary elements. By the hypothesis, we

have that a1 is an associate of either q or qr1. In either case q | a1 and thus q | a.

We conclude that q is primary, and therefore M is weakly factorial. �
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