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Abstract. For the general modulo q > 3 and a general multiplicative character χ mod-
ulo q, the upper bound estimate of |S(m, n, 1, χ, q)| is a very complex and difficult problem.
In most cases, the Weil type bound for |S(m, n, 1, χ, q)| is valid, but there are some coun-
terexamples. Although the value distribution of |S(m, n, 1, χ, q)| is very complicated, it also
exhibits many good distribution properties in some number theory problems. The main pur-
pose of this paper is using the estimate for k-th Kloosterman sums and analytic method to
study the asymptotic properties of the mean square value of Dirichlet L-functions weighted
by Kloosterman sums, and give an interesting mean value formula for it, which extends
the result in reference of W.Zhang, Y.Yi, X.He: On the 2k-th power mean of Dirichlet
L-functions with the weight of general Kloosterman sums, Journal of Number Theory, 84
(2000), 199–213.

Keywords: general k-th Kloosterman sum, Dirichlet L-function, the mean square value,
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1. Introduction

Let q > 2 be an integer and χ a Dirichlet character modulo q. Then for any given

integers m and n, we define the general k-th Kloosterman sum S(m, n, k, χ; q) as

follows:

S(m, n, k, χ; q) =

q
∑

a=1

χ(a)e
(mak + nak

q

)

,

where a denotes the solution b of the congruence equation ab ≡ 1 (mod q). That is,

b is the inverse of a modulo q, and e(y) = e2πiy.
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The upper bound estimation of S(m, n, 1, χ; q) has been studied by many authors.

For example, A.Weil’s important work [10] gave the upper bound estimate

|S(m, n, 1, χ0; p)| 6 p
1
2 (m, n, p)

1
2 ,

where p is a prime, (m, n, p) denotes the greatest common divisor of m, n and p, χ0

denotes the principal character mod p.

H. Salié and others proved a similar estimate for the prime power case. T. Ester-

mann [7] gave the general conclusion:

|S(m, n, 1, χ0; q)| 6 d(q)q
1
2 (m, n, q)

1
2 ,

where d(q) denotes the Dirichlet divisor function.

The upper bound estimate

(1.1) |S(m, n, 1, χ; p)| ≪ (m, n, p)
1
2 p

1
2+ε

is due principally to A.Weil’s classical work [10], related results can also be found in

S.Chowla [2] and A.V.Malyshev [9].

For the general modulo q > 3 and a general multiplicative character χ modulo q,

the upper bound estimate of |S(m, n, 1, χ, q)| is a very complex and difficult problem,

see Lemma 12.2 and Lemma 12.3 in the book of H. Iwaniec and E.Kowalski [8]. In

most cases, the Weil type bound for |S(m, n, 1, χ, q)| is valid, but there are some

counterexamples, see Example 5.1 in T.Cochrane and Z. Zheng’s paper [4], other

related results can also be found in [3], [5], and [6].

Although the value distribution of |S(m, n, 1, χ, q)| is very complicated, it also

presents many good distribution properties in some number theory problems. For

example, Zhang Wenpeng, Yi Yuan and He Xiali [11] proved the asymptotic formula

∑

χ6=χ0

|S(m, n, 1, χ; q)|2|L(1, χ)|2 =
π
2

6
ϕ2(q)

∏

p|q

(

1 −
1

p2

)

+ O(q3/2+ε),

where
∏

p|q

denotes the product over all prime divisors of q, ε denotes any fixed positive

number.

This paper is inspired by [11]. We use the mean value theorem for Dirichlet L-

functions and the analytic method to study the asymptotic properties of the mean

value
∑

χ6=χ0

|S(m, n, k, χ; p)|2 · |L(1, χ)|2r,

and give a sharper asymptotic formula for it. That is, we shall prove the following:
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Theorem 1. Let p be an odd prime, k > 2 any fixed positive integer with k | p−1.

Then for any integers r, m, n with (mn, p) = 1, we have the asymptotic formula

∑

χ mod p

χ6=χ0

|S(m, n, k, χ; p)|2 · |L(1, χ)|2r = p2
∞
∑

n=1

d2
r(n)

n2
+ O(p2−1/k+ε),

where dr(n) denotes the general Dirichlet divisor function, defined by the coefficients

of ζr(s) =
∞
∑

n=1
dr(n)/ns with s > 1.

For the general k-th Gauss sums G(χ, m, k; q) =
q
∑

n=1
χ(n)e(mnk/q), we can also

get the following similar conclusion:

Theorem 2. Let p be an odd prime, k > 2 any fixed positive integer with k | p−1.

Then for any integers r, m with (m, p) = 1, we have the asymptotic formula

∑

χ mod p

χ6=χ0

|G(χ, m, k; p)|2 · |L(1, χ)|2r = p2
∞
∑

n=1

d2
r(n)

n2
+ O(p2−1/k+ε).

From our theorems we may immediately deduce the following two corollaries:

Corollary 1. Let p be an odd prime, k > 2 any fixed positive integer with k | p−1.

Then for any integers m, n with (mn, p) = 1, we have the asymptotic formulae

∑

χ mod p

χ6=χ0

|S(m, n, k, χ; p)|2 · |L(1, χ)|2 =
π
2

6
· p2 + O(p2−1/k+ε);(I)

∑

χ mod p

χ6=χ0

|G(χ, m, k; p)|2 · |L(1, χ)|2 =
π
2

6
· p2 + O(p2−1/k+ε).(II)

Corollary 2. Let p be an odd prime, k > 2 any fixed positive integer with k | p−1.

Then for any integers m, n with (mn, p) = 1, we have the asymptotic formulae

∑

χ mod p

χ6=χ0

|S(m, n, k, χ; p)|2 · |L(1, χ)|4 =
5π

4

72
· p2 + O(p2− 1

k +ε);(i)

∑

χ mod p

χ6=χ0

|G(χ, m, k; p)|2 · |L(1, χ)|4 =
5π

4

72
· p2 + O(p2− 1

k +ε).(ii)

657



2. Some lemmas

In order to complete the proof of our theorems, we need the following several

lemmas.

Lemma 1. Let p be an odd prime, k any fixed positive integer with k | p − 1.

Then for any integers m and n, we have the estimate

S(m, n, k, χ0; p) =

p−1
∑

a=1

e
(mak + nak

p

)

≪ k · (m, n, p)
1
2 p

1
2+ε.

P r o o f. Let χ1 be a character of order k mod p, that is, χk
1 = χ0 with k the

smallest possible, let χ0 be the principal character mod p. Then from the properties

of characters mod p and the estimate (1.1) we have

S(m, n, k, χ0; p) =

p−1
∑

a=1

(1 + χ1(a) + χ2
1(a) + . . . + χk−1

1 (a))e
(ma + na

p

)

=

k−1
∑

r=0

p−1
∑

a=1

χr
1(a)e

(ma + na

p

)

≪ k · (m, n, p)
1
2 p

1
2+ε.

This proves Lemma 1. �

Lemma 2. Let p be an odd prime, let χ be the Dirichlet character modulo p.

Then we have the estimate

p−1
∑

r=1

∣

∣

∣

∣

∑

χ6=χ0

χ(r)|L(1, χ)|2r

∣

∣

∣

∣

= O(p1+ε),

where χ0 denotes the principal character modulo p, and ε > 0 denotes any fixed

positive number.

P r o o f. See Lemma 5 of [11]. �

Lemma 3. Let p be an odd prime, let k be any fixed positive integer with

k | p − 1, and let χ0 denote the principal character modulo p. Then for any fixed

positive integer r, we have the asymptotic formula

∑

χ6=χ0

χ(p−1)/k=χ0

|L(1, χ)|2r =
p

k
·

∞
∑

n=1

d2
r(n)

n2
+ O(p1−1/k+ε),

where ε denotes any fixed positive number.
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P r o o f. Let A(y, χ) =
∑

N<n6y

χ(n)dr(n), then from the definition of Dirichlet

L-functions and Abel’s identity (see Theorem 4.2 of [1]) we have

(1.2) |L(1, χ)|2r =

∣

∣

∣

∣

∞
∑

n=1

χ(n)dr(n)

n

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∑

16n6N

χ(n)dr(n)

n
+

∫ ∞

N

A(y, χ)

y2
dy

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∑

16n6N

χ(n)dr(n)

n

∣

∣

∣

∣

2

+

(

∑

16n6N

χ(n)dr(n)

n

)(
∫ ∞

N

A(y, χ)

y2
dy

)

+

(

∑

16n6N

χ(n)dr(n)

n

)(
∫ ∞

N

A(y, χ)

y2
dy

)

+

∣

∣

∣

∣

∫ ∞

N

A(y, χ)

y2
dy

∣

∣

∣

∣

2

.

Let g be a primitive root of mod p. Taking N = p2r

, note that for any integer

1 6 s 6 k−1, if gs(p−1)/k ≡ r(s) mod p with 1 < r(s) 6 p−1, then rk(s) ≡ 1 mod p,

so r(s) > p1/k and r(s) > p1/k, where r(s)r(s) ≡ 1 mod p, and from the orthogonality

of the characters we have

(1.3)
∑

χ6=χ0

χ(p−1)/k=χ0

∣

∣

∣

∣

∑

16n6N

χ(n)dr(n)

n

∣

∣

∣

∣

2

=
∑

χ mod p

χ(p−1)/k=χ0

∣

∣

∣

∣

∑

16n6N

χ(n)dr(n)

n

∣

∣

∣

∣

2

+ O(pε)

=
∑

16m6N

∑

16n6N

dr(m)dr(n)

mn

∑

χ mod p

χ(p−1)/k=χ0

χ(mn) + O(pε)

=
p − 1

k

k−1
∑

s=0

∑

16m6N

∑

16n6N

mn≡gs(p−1)/k mod p

dr(m)dr(n)

mn
+ O(pε)

=
p − 1

k

(

∑

16m6N

∑

16n6N

mn≡1 mod p

dr(m)dr(n)

mn
+

k−1
∑

s=1

∑

16m6N

∑

16n6N

mn≡gs(p−1)/k mod p

dr(m)dr(n)

mn

)

+ O(pε)

=
p − 1

k

∞
∑

n=1

d2
r(n)

n2
+ O

(

p

k

k−1
∑

s=1

∑

16m6N

∑

16n6N

mn≡r(s) mod p

dr(m)dr(n)

mn

)

+ O(pε)

=
p − 1

k

∞
∑

n=1

d2
r(n)

n2
+ O

(

p

k

k−1
∑

s=1

∑

16n6N

∑

06l6N/p

dr(lp + nr(s))dr(n)

(lp + nr(s))n

)

+ O

(

p

k

k−1
∑

s=1

∑

16m6N

∑

06l6N/p

dr(lp + mr(s))dr(m)

(lp + mr(s))m

)

+ O(pε)

=
p − 1

k

∞
∑

n=1

d2
r(n)

n2
+ O(p1−1/k+ε).
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From Lemma 4 of [11] we know that

(1.4)
∑

χ6=χ0

|A(y, χ)|2 ≪ y2−4/2r+εp2.

Then applying the Cauchy inequality and (1.4) we can deduce that

(1.5)
∑

χ6=χ0

χ(p−1)/k=χ0

∣

∣

∣

∣

(

∑

16n6N

χ(n)dr(n)

n

)(
∫ ∞

N

A(y, χ)

y2
dy

)∣

∣

∣

∣

≪ pε

and

(1.6)
∑

χ6=χ0

χ(p−1)/k=χ0

∣

∣

∣

∣

∫ ∞

N

A(y, χ)

y2
dy

∣

∣

∣

∣

2

≪ pε.

Now combining (1.2), (1.3), (1.5) and (1.6) we may immediately deduce the asymp-

totic formula

∑

χ6=χ0

χ(p−1)/k=χ0

|L(1, χ)|2r =
p

k
·

∞
∑

n=1

d2
r(n)

n2
+ O(p1−1/k+ε).

This proves Lemma 3. �

3. Proof of the theorems

In this section, we shall complete the proof of our theorems. First we prove

Theorem 1. From the properties of the Dirichlet characters modp we have

(1.7)
∑

χ6=χ0

|S(m, n, k, χ; p)|2 · |L(1, χ)|2r

=

p−1
∑

r=1

p−1
∑

s=1

e
((rk − sk)m + (rk − sk)n

p

)

∑

χ6=χ0

χ(rs)|L(1, χ)|2r

=

p−1
∑

r=1

p−1
∑

s=1

e
(sk(rk − 1)m + sk(rk − 1)n

p

)

∑

χ6=χ0

χ(r)|L(1, χ)|2r

= ϕ(p)

p−1
∑

r=1
rk≡1 mod p

∑

χ6=χ0

χ(r)|L(1, χ)|2r

+

p−1
∑

r=1
(rk−1,p)=1

p−1
∑

s=1

e
(sk(rk − 1)m + sk(rk − 1)n

p

)

∑

χ6=χ0

χ(r)|L(1, χ)|2r .
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Using (7), Lemma 1, Lemma 2 and Lemma 3 we get

∑

χ6=χ0

|S(m, n, χ, p)|2|L(1, χ)|2r = kϕ(p)
∑

χ6=χ0

χ(p−1)/k=χ0

|L(1, χ)|2r

+ O

(

p
1
2 +ε

p−1
∑

r=1
(rk−1,p)=1

(mn(rk − 1), p)
1
2

∣

∣

∣

∣

∑

χ6=χ0

χ(r)|L(1, χ)|2r

∣

∣

∣

∣

)

= p2 ·
∞
∑

n=1

d2
r(n)

n2
+ O(p2−1/k+ε) + O

(

p
1
2+ε

p−1
∑

r=2

∣

∣

∣

∣

∑

χ6=χ0

χ(r)|L(1, χ)|2r

∣

∣

∣

∣

)

= p2 ·

∞
∑

n=1

d2
r(n)

n2
+ O(p2−1/k+ε) + O(p

3
2 +ε) = p2 ·

∞
∑

n=1

d2
r(n)

n2
+ O(p2−1/k+ε).

This proves Theorem 1. �

Using the method of proving Theorem 1 we can also deduce Theorem 2. This

completes the proof of our theorems. �
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