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Abstract. We give a sufficient condition on the coefficients of a class of infinite hori-
zon backward doubly stochastic differential equations (BDSDES), under which the infinite
horizon BDSDES have a unique solution for any given square integrable terminal values.
We also show continuous dependence theorem and convergence theorem for this kind of
equations.
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1. INTRODUCTION

Since the nonlinear backward stochastic differential equations (BSDEs in short)
were introduced by Pardoux and Peng [9], the theory of BSDEs has been developed
by many researchers in a series of papers (for example, Ma, Protter, and Yong [7],
El Karoui, Peng, and Quenez [6] and the references therein). These papers basically
study BSDEs for a fixed terminal time T > 0, i.e., in a finite time interval [0, 7. In
order to investigate the case of infinite time interval, i.e., T' = 0o, many researchers,
for example, Peng [12], Darling and Pardoux [5], Peng and Shi [14] and so on, present
many different assumptions. However, their results essentially require the terminal
values to be decay in infinite horizon. Later Chen and Wang [4] were the first to show
a kind of sufficient conditions on coefficients, under which for any square integrable
random variables £ as terminal values, BSDEs still have a unique pair of solutions
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for infinite horizon case. This result is pivotal for discussing the convergence of
g-martingales which were introduced by Peng [13].

After Pardoux and Peng [9] introduced the theory of BSDEs, they [10] brought
forward a new kind of BSDEs, that is a class of backward doubly stochastic differen-
tial equations (BDSDEs in short) with two different directions of stochastic integrals,
i.e., the equations involve both a standard (forward) stochastic integral dW; and a
backward stochastic integral dB;. They have proved the existence and uniqueness of
solutions to BDSDEs under uniformly Lipschitz conditions on coefficients on a finite
time interval [0,7]. That is, for a given terminal time 7" > 0, under the uniformly
Lipschitz assumptions on coefficients f, g, given ¢ € L2(Q, Fr, P; R¥), the following
BDSDE has a unique solution pair (yt, 2z¢) in the interval [0, T:

T T T
(1) Yt:f—i—/ f(s,YS,ZS)ds—i—/ g(s,YS,Zs)dBS—/ ZsdWy, t€]0,T).
t t t

Pardoux and Peng also showed that BDSDEs can produce a probabilistic repre-
sentation for certain quasilinear stochastic partial differential equations (SPDEs).
Many researchers do their work in this area (for example, V. Bally and A. Ma-
toussi [1], R. Buckdahn and J. Ma [2], [3], E. Pardoux [11], Peng and Shi [15], Zhu
and Han [17] and the references therein). Infinite horizon BDSDEs are also very
interesting, since they produce a probabilistic representation of certain quasilinear
stochastic partial differential equations. Recently, Zhang and Zhao [16] got station-
ary solutions of SPDEs and infinite horizon BDSDESs, but under the assumption that
the terminal value Tlgr(l)o e~ KTYr = 0. This paper intends to study the existence and
uniqueness of BDSDE (1) when T = oo, our method being different from Zhang
and Zhao. Due to sufficiently utilizing the properties of martingales, this method is
essential for the theory of BSDEs. In this paper we give a sufficient condition on co-
efficients f, g under which for any square integrable random variable £, BDSDE (1)
still has a unique solution pair when T' = oco. It is worth noting that in our argument,
we have to restrict g to be independent of z. For the case of g being dependent on z,
it is still an interesting open question. Our conditions are a special kind of Lipschitz
conditions, which even include some cases of unbounded coefficients. At the end we
will also give a continuous dependence theorem and a convergence theorem for this
class of equations.

The paper is organized as follows: in Section 2 we present the setting of problems
and the main assumptions; in Section 3 we prove the existence and uniqueness theo-
rem for BDSDEs; at the end we discuss the continuous dependence theorem and the
convergence theorem in Section 4.
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2. SETTING OF INFINITE HORIZON BDSDES

Notation. The Euclidean norm of a vector z € R¥ will be denoted by |z|, and
for a d x k matrix A, we define ||A|| = v/Tr AA*, where A* is the transpose of A.

Let (2, F, P) be a complete probability space, let {W;};>0 and {B;}:>0 be two
mutually independent standard Brownian motions with values in R¢ and R, respec-
tively, defined on (Q,F, P). Let N denote the class of P-null sets of F. For each
t € [0,00), we define

Foy=o{W,; 0<r <t}VN, FL =0{B, —By; t<r<oo}VN,
Fom= \ Foo Flo= () Fle

0<t<oo 0<t<oo

and
Fo=F VTP

t,007

t €0, 00].

Note that {Fg%; ¢t € [0,00]} is an increasing filtration and {FZ, ; ¢ € [0,00]} is
a decreasing filtration, and the collection {F;, t € [0,00]} is neither increasing nor
decreasing.
Suppose
F=Fo=F VFE o

For any n € N, let S?(R*; R™) denote the space of all {F;}-measurable n-dimen-
291/2
sional processes v with the norm ||v||g = [E (sup |v(s)|) ] < o0.
520

We denote similarly by M?(R*;R") the space of all (classes of dP ® dt a.e. equal)
{Fi}-measurable n-dimensional processes v with the norm

1/2

ol = £ [ oo as] <o

For any t € [0,00], let L2(€2, F;, P; R™) denote the space of all {F;}-measurable
n-valued random variables ¢ satisfying F|¢|? < oco.
We also denote

B2 ={(X,Y); X € S*(R";R"), Y € M*(RT;R™)}.
For each (X,Y) € B2, we define the norm of (X,Y) by
1Y) s = (XIS + 1Y 1302
Obviously B? is a Banach space.
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Consider the infinite horizon backward doubly stochastic differential equation

(2) yt:§—|—/ f(s,ys,zs)ds—l—/ g(s,ys)st—/ zsdW,, 0<t < oo,
t t t

where ¢ € L?(Q, F, P; R¥) is given. We note that the integral with respect to {B;}
is a “backward Ito integral” and the integral with respect to {W;} is a standard
forward It6 integral. These two types of integrals are particular cases of the Ito-
Skorohod integral, see Naulart and Pardoux. Our aim is to find some conditions
under which BDSDE (2) has a unique solution. Now we give the definition of a
solution of BDSDE (2).

Definition 1. A pair of processes (y,z): QxR* — R*¥x RF*4 is called a solution
of BDSDE (2), if (y,z) € B? and satisfies BDSDE (2).

Let
f: QxR x RF x RF*4 — RF

g: QxR x RF — REX!

satisfy the following assumptions:
(H1) For any w x t € Q x RT, (y,2) € R¥ x R¥>4_ f(.y,2) and g(-,y) are
{F:}-progressively measurable processes such that

00 2
E(/ f(t,0,0)dt) <o0; g(-,0) € M?(R*; RF).
0

(H2) f and g satisfy the Lipschitz condition with Lipschitz coefficients v :=
{v(t)} and w := {u(t)}, that is, there exist two positive non-random func-
tions {v(t)} and {u(t)} such that

[F(t g1, 20) = F(Ey2, 22)] < o(B)]yr — yol +u(t)[z1 — 22]l;
lg(t,51) = gt y2)|| < w(t)|yr — ol

for all (t,y;,2;) € RT x RF x RF*4 j =12,
(H3) [T v(t)dt < oo [;° u?(t)dt < oo.
3. EXISTENCE AND UNIQUENESS THEOREM

The following existence and uniqueness theorem is our main result.

Theorem 1. Under the above conditions, in particular (H1), (H2), and (H3),
Eq. (2) has a unique solution (y,z) € B?.
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In order to prove the existence and uniqueness theorem, we first give a priori
estimate.

Lemma 2. Suppose (H1), (H2), and (H3) hold for f and g. For any T € [0, o],
let Y € L3(Q, Fr, P;R¥), (Y, Z%) and (y*, 2%) € B? (i = 1,2) satisfy the equation

T T
(3) Y, =Y; +/ f(s,ys, z0)ds + / g(s,y.)dBs
t t

T
—/ ZidW,, 0<t<T < oo.
t

Then there is a constant C > 0 such that, for any 7 € [0,T],

Y =Yy, (20 = Z*) )|
< C[EY: =Y + (" = ") ), (21 = 21 m) || 3]
where l|; 1) = (fTT v(s)ds)? + fTT u*(s)ds and I, 7)(-) is an indicator function.

Proof. Without loss of generality, we assume that 7 = 0, T = oo, otherwise we
can replace f by fI; 1) and g by gl 1.

Set
Yt:Ytl_Y;Q; Zt:Ztl_ZtQa gt:ytl_tha 2t:'zt1_21525
fo=ftyt 2t) = Ftyd 2D, ge=g(tyl) — g(t,v?).
Then
. . T N T T .
(4) Y;=YT+/ fsds+/ gsst—/ Z,dw..
t t t

We define the filtration {G; }o<i<r by
G = Foh V Fole

Obviously G, is an increasing filtration. Since (Y,Z) € B2, {fg 7 dW,} is a G-
martingale. Thus from (4) it follows that

T T
Y, = B9 [YTJr/ fsds—l—/ gsst].
t t
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Note that

E</0w|fs|ds) B[ 0l us >||zs||>ds>2
<25 (swlil- [ ()d5)2+2E</000u2(8)d8'/000||2s|2d5>
<2[(/O°°v<s>ds) + [T as] 1 < .

B [Cladras< B [T lnfas s ([T as) il <o
0

Applying the Doob inequality and the B-D-G inequality, we can deduce

and

6) Y%= E(sup|vi])?
t>0

2
<2E (sup E9t {|YT| —|—/ FA ds}) +2F (sup E9 [

t>0 t>0

. 0 2 o)
<8E(|YT|+/ IfsldS) 2 [ g ds
0 0
. 0 2 0
<o+ B ( [ 171as) ) 28 [l s
0 0
A 0 2 o)

< 64 200) (BN 4 B( [ 1das) + B [T laPas).

0 0

where ¢y > 0 is a constant.
On the other hand, from (4) it follows that

(7) 12 = 5( [ Zaw.)
~ o0 AOO ° 2
_E<YT+/ f5d8+/ gsst>
0 0
—E‘Ego {YTJF/ des+/ ngBS}
0 0
A OO ~ OO 2
E(YT+/ fsds+/ gsst)
0 0
A~ <. 2 e
<ap(af+ ([ 184as) + [ la7as)
0 0

where (M) is the variation process generated by the martingale M.

/tTgsdBSDQ

2

646



Consequently, (6) and (7) imply that

1Y, 215 = Y15 + 12113

00 2 0o
< (19 + 2¢) <E|§7T|2+E</ |fs|ds> +E/ |§s|2ds>
0 0

< (57 4 6¢0) (E|Y7|* + 0,00 | (3, 2) 1 3)
= C(EIY7[* + 0,00 (8, 2) 1),
where C' = (57 + 6¢cp) is a constant and ljg ] = (fooo v(s)ds)? + fooo u?(s) ds.
For any 7,7 € [0,00], we set fi(t,ys,2:) = f(t,ye,2e) [z, and gi(t,y:) =
9(t,ye) -, - Then fi, and g; satisfy the assumptions (H1), (H2), and (H3), and

their Lipschitz constants are vI|, ), ul[; 7). Repeating the above process, we can
obtain the desired result. O

Now we give the proof of Theorem 1.

Proof. The proof of Theorem 1 is divided into two steps.
Step 1. We assume l[g o] = (fooo v(s)ds)? + fooo u?(s)ds < 1/2C. For any (y,2) €
B2, let

Mt;Egt[u/ f(s,ys,zs>ds+/ g(s,ys)st], 0<t< .
0 0

We will prove {M,} is a square integrable G;-martingale. From (H1)—(H3), it follows

that
)

o0
/ 9(s,ys) dBs
0

EQ&” /0 F(5,40, 25) ds + /0 o5, s, =) B,

<E(I£|+ / (5,0, 20) s +

>2
+op( [ oelnd ds)2

+o5( [ wu<s>||zs|ds)2 +68 [ (ol 07 + (o) s
<spleP +95( [ 17,00 ds>2 s [ v(s)ds>2 Tl

+9 [ s ol 6 [ o0 ds
0 0

2

<3EE? + 915(/0o 1£(5,0,0)| ds)
0

o0
+6/ W (s)ds - [yll3 < oo,
0
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which means {M;} is a square integrable G;-martingale. According to an obvi-
ous extension of Itd’s martingale representation theorem, there exists a unique G-
progressively measurable process Z; with values in R**? such that

(8) E/ |Z4)? dt < oo,
0

[e’e] ) t
Mt:EgO |:€+/ f(S,yS7Zs)d5+/ Q(S,ys)st] +/ ZsdWs, 0<t < o0,

0 0 0
Let
9 Y, =B [u/ f(s,ys,zs>ds+/ g(s,ysmBS], 0<t< ool

t t

Then it is not difficult to check that (8) and (9) are equivalent to

(10) Y;=£+/ f(s,y&zs)der/ g(s,ysmBs—/ Z,dW,, 0<t< oo,
t t t

We show that {Y;} and {Z;} are in fact F;-measurable. For Y;, this is obvious since
for each t,

Vi — B9 [5+ / F(5,50r20) ds + / g(s,ys)st} — B(©)F\ FD,),
t t

where © = £+ftoo f(s,ys, 25) ds—i—ftoo 9(s,ys) dBj is indeed fgf’oo \/ffoo—measurable.
Hence, F¢, is independent of F; V o(0), and

Yi = E(O©/F).

/ stW€:§+/ f(S,yaZs)dS‘f'/ Q(S,ys)st—Yt
t t t

and the right-hand side is F§',, v FZ, -measurable. Thus, from It6’s martingale
representation theorem, {Zs, s > t} is .7-'&‘; \Y ffoo—adapted. Consequently, Z; is
.7-'8’}/8 \/ffoo—measurable for any t < s, and, thus, Z; is F;-measurable. So (Y, Z) € B2
Therefore, equation (10) yields a mapping from B? to B2, and we denote it by ¢,
that is,

i (y,2) = (Y, 2).

If ¢ is a contractive mapping with respect to the norm || - || 5, then by the fixed-point
theorem there exists a unique (y,z) € B? satisfying (10), which is just the unique
solution to BDSDE (2).
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Now we are in the position to prove that ¢ is a contractive mapping. Suppose
(v, 2%) € B2?, let (Y%, Z%) be the map ¢ of (y',2%) (i = 1,2), that is

oy, 2 = (Y, ZY), i=1,2.

We denote

V=Y'-Y% Z=2'-2% g=y' -y zi=2:'-22
ft = f(tvylvzl) - f(t7y2722)7 gt = g(tayl) _g(tayQ)

By Lemma 2, we have

le(y',2") = e 25 = 1V, )1 < Clio oo 13 2)%-

Due to g o] < 1/2C, it follows that ¢ is a contractive mapping from B* to B.
Step 2. Since [;~ v(t)dt < oo; [;° u?(t)dt < oo, there exists a sufficiently large

constant 7' such that
oo 2 oo ) 1
v(s)ds —|—/ u“(s)ds < —.
([ eas) + [Tweas< g

fl (ta Y, Z) = I[T,oo] (t)f(ta Y, Z), gl(ta y) = I[T,oo] (t)g(ta y)v
then (H1)-(H3) hold for f; and g1, whose Lipschitz coefficients are (t) = Ij7 oo v(t)
and u(t) = Ij1,o0)u(t). Obviously,

Let

(/Oooﬁ(s)ds>2 +/Ooou2(s)ds %

By Step 1, there exists a unique (7, ) € B? satisfying

N

gt:u/ f1<s,gs,ss>ds+/ gl(s,gs)st—/ 5., 0<t< oo
t t t

For (g, ;) given as above, let us consider the infinite BDSDE
_ T .
Yt = ft f(svys + Ys, Zs +Zs)d5
T _ T _
+ft 9(s,7s + Js) dBs _ft zsdWs, 0<t<Ts
7:=0, 7, =0, t >T.

According to the results of Pardoux and Peng [10], the above BDSDE has a unique
solution (7,%) in [0,7], thus the above BDSDE has a unique solution such that
(7,z) = (0,0) for every t > T. Let

y=y+y, z=Z+2Z
It is easy to check that (yi, z¢) is the unique solution of (2). O
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4. CONTINUOUS DEPENDENCE THEOREM

In this section we will discuss the convergence of solutions of infinite horizon
BDSDEs. First we give the following continuous dependence theorem.

Theorem 3. Suppose &; € L2(Q, F, P;R¥) (i = 1,2), and (H1)—(H3). Let (v¢, 2°)
be the solutions of BDSDE (2) corresponding to the terminal data £ = &, £ = o,
respectively. Then there exists a constant C > 0 such that

(' =2, 2" = 2°)II% < OBlé — &f*.

Proof. Setj:=y*—y? 2:=2"— 22 Since (J;" v(s + [T u?(s)ds < oo,
we can choose a strictly increasing sequence 0 = tg < t; < ... < tn < tn+1 = oo such

that
tiv1 2 tit1 1
Utitina] = / v(s)ds +/ u (s)ds < ==, i=0,1,...,n
isbit ¢ + 2C

i

Applying Lemma 2, we have
H (Q; 2)I[ti7ti+1] ||?3 < CE|:gt1',+l |2 + Cl[ti7ti+1] ” (?j, 2)I[ti7ti+1] ||?3

. ...
< CE|yti+1 |2 + 5”(2/; Z)I[t‘ﬁ,ti+1]||23'

Thus
(11) ”(g 2)I[t7,t1+1 ”B 2CE|yt1+1|2
2 tit2
<ocr(( s ) + [ lalas)
tit1<s<tita tit1

:2C||(Z))é)I[ti+1,t1+2]||2B7 i:Oalv"'vn_]ﬂ
In particular, we have

(12) (5, 2) ¢, 001 | B < 2CE|&G — &

From (11) and (12), it follows that

(@215 < Z 1G5 ) et 1

< (20 + (202 + ...+ (20)"™E|& - &

C(20)™ — _
_2 ((220)_1 2 El& — &2 = CEl& — &)

Thus the desired result is obtained. O

Now we can assert the following convergence theorem for infinite horizon BDSDEs.
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Theorem 4. Suppose &,&; € L2(Q,F, P;RF) (i = 1,2,...), let (H1)—~(H3) hold
for f and g. Let (y',2") be the solutions of the following BDSDE:

(13) yz:&+/ f(s,y;,z;>ds+/ g(s,y@st—/ SdW,, 0<1< oo
t t t

If B|& — €| — 0 as i — oo, then there exists a pair (y,z) € B? such that ||(y* — v,
2'—2)||p — 0 asi — oo. Furthermore, (y, z) is the solution of the following BDSDE:

(14) yt:£+/ f(s,ys,zs)d8+/ g(s,ys)st—/ zgdW,, 0<t < o.
t t t

Proof. For any n,m > 1, let (y™,z") and (y™,2™) be the solutions of (13)
corresponding to &, and &,,, respectively. Due to Theorem 3, there exists a con-
stant C' > 0 such that

CE|&n — &ml?
2C(E|&, — E> + Elé — €]?) — 0 as n,m — oo,

Iy" —y™, 2" = 2")I%

which means that {(y%,2%),i = 1,2,...} is a Cauchy sequence in B?. Thus, there
exists a pair (y,2) € B? such that ||(y* — y, 2" — 2)||p — 0 as i — oo. Hence,

2
E

/t (f(S, ygv Z;) — [(5,ys,25)) ds

2

< ([T @t -+ u(o)let -zl as)
< 2[(/0°°v<s>ds>2+/0°°u2<s>ds] N =y = 2)E =0 asi— oo,
and

2
E

/too(g(sa y’;) - g(svys)) st

OO .
<E/ W (8)|yh — yal? ds
0
s (/ “Q(S)ds)'|(y"—y)ll23—>0, as i — oo.
0

Thus, for any ¢t € RT, [ f(s,y,20)ds — [ f(s,ys,2s)ds and [ g(s,y!)dBs —
[ 9(s,ys)dBs in L*(Q,F, P). Taking the limit on both sides of (13), we deduce
that (y, z) is the solution to BDSDE (14). The desired result is obtained. O
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The following corollary shows the relation between the solution of infinite horizon
BDSDE (2) and of the finite time BDSDE

T T
ZE}—T 737sd anBS
" [§]+/t f(syZ)s+/t 9(5,3:)

T
(15) —/ zedW,, 0<t<T < 0.
t

Corollary 5. Assume & € L%(Q,F, P;R¥), let (H1)—(H3) hold for f and g. Let
(y,2) be the solution of BDSDE (2). For any T > 0, let (yT, 27 be the solutions of
the finite time interval BDSDE (15). Then (y*,27) — (y,2) in B? as T — oo.

Proof. Note that E/7[¢] — ¢ in L?(Q,F,P;RF) as T — oco. The proof is
straightforward from Theorem 4. O
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