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Abstract. Let k > 2 and define F (k) := (F
(k)
n )n>0, the k-generalized Fibonacci sequence

whose terms satisfy the recurrence relation F
(k)
n = F

(k)
n−1 + F

(k)
n−2 + . . .+ F

(k)
n−k, with initial

conditions 0, 0, . . . , 0, 1 (k terms) and such that the first nonzero term is F
(k)
1 = 1. The

sequences F := F (2) and T := F (3) are the known Fibonacci and Tribonacci sequences,
respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of

the Diophantine equation F
(k)
n = F

(l)
m . In this note, we use transcendental tools to provide

a general method for finding the intersections F (k) ∩F (m) which gives evidence supporting
the Noe-Post conjecture. In particular, we prove that F ∩ T = {0, 1, 2, 13}.

Keywords: k-generalized Fibonacci numbers, linear forms in logarithms, reduction
method

MSC 2010 : 11B39, 11D61, 11J86

1. Introduction

Several problems in number theory are actually questions about the intersec-

tion of two known sequences (or sets). Before giving examples, let us recall some

terminology: let F := (Fn)n>0 be the Fibonacci sequence, P := {p : p prime},
P := {yt : y, t ∈ Z, t > 1} (the perfect powers), F := {n! : n ∈ Z, n > 0},
R := {a(10n − 1)/9: 1 6 a 6 9, n ∈ Z, n > 0} (the repdigits or unidigital num-
bers). Below, we cite some results about the intersection of these sets:

⊲ Erdös and Selfridge [8] proved that F ∩ P = {1}.
⊲ In 2000, Luca [25] proved that F ∩R = {0, 1, 2, 3, 5, 8, 55}.
⊲ Luca [26] also proved that F ∩ F = {1, 2}.
⊲ In 2003, Bugeaud et al [4] showed that F ∩ P = {0, 1, 8, 144} (see [28] for a
generalization).
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⊲ Let (an)n>1 be the tower given by a1 = 1 and an = nan−1 , for n > 2. Luca and

the author [27] proved that {a1 + . . .+ an : n > 1} ∩ P = {1}.
However, some related questions are still open problems, as for instance the sets

P ∩ F and P ∩R are unknown.
Let k > 2 and denote F (k) := (F

(k)
n )n>0, the k-generalized Fibonacci sequence

whose terms satisfy the recurrence relation

(1.1) F (k)
n = F

(k)
n−1 + F

(k)
n−2 + . . .+ F

(k)
n−k,

with initial conditions 0, 0, . . . , 0, 1 (k terms) and such that the first nonzero term is

F
(k)
1 = 1.

The above sequence is one among the several generalizations of Fibonacci numbers.

Such a sequence is also called k-step Fibonacci numbers, the Fibonacci k-sequence, or

k-bonacci numbers. Clearly, for k = 2 we obtain the well-known Fibonacci numbers

and for k = 3, Tribonacci numbers.

Recall that Tribonacci numbers have a long history. For the first time, they were

studied in 1914 by Agronomoff [1] and subsequently by many others. The name

Tribonacci was coined in 1963 by Feinberg [9]. The basic properties of Tribonacci

numbers can be found in [18], [24], [36], [38]. For recent papers, we refer the reader

to [3], [19], [20], [33] and to the collection [21], [22], [23].

Recently, Alekseyev [2] described how to compute the intersection of two Lucas

sequences including the sequences of Fibonacci, Pell, Lucas and Lucas-Pell numbers.

In general, we refer the reader to [34], [35], [37] for results on the intersection of two

recurrence sequences.

In a very recent paper, Togbé and the author [29] proved that only finitely many

terms of a linear recurrence sequence whose characteristic polynomial has a dominant

root can be repdigits. As an application, since the characteristic polynomial of the

recurrence in (1.1), namely xk − xk−1 − . . . − x − 1, has just one root α such that

|α| > 1 (see for instance [39]), hence F (k)∩R is a finite set, for all k > 2. See also the

article [32] for some results on the set F (k) ∩ P and a conjecture on the intersection

F (k)∩F (m). We point out that this last intersection is, to the best of our knowledge,

not known even in the easiest case (k,m) = (2, 3), that is, for numbers that are both

Fibonacci and Tribonacci. A possible way to find this intersection is to look at the

Fibonacci and Tribonacci sequences modulo pt, where p is a prime number. We refer

the reader to [5], [13], [16], [17] for results of this nature. However, this approach

seems to be hard to work in practice. This observation prompted the author to look

for a more interesting and constructive approach which could be useful in the general

case.

It is important to notice that Mignotte (see [31]) showed that if (un)n>0 and

(vn)n>0 are two linearly recurrence sequences then, under some weak technical as-
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sumptions, the equation

un = vm

has only finitely many solutions in positive integersm,n. Moreover, all such solutions

are effectively computable. Therefore, it seems reasonable to think that F (k) ∩F (m)

is a finite set for all k 6= m.

The goal of this paper is to apply transcendental tools to provide a method for

studying the intersection F (k) ∩ F (m), for integers 2 6 k < m and determine com-

pletely this set for (k,m) = (2, 3) (confirming the expectation). More precisely, our

result is the following.

Theorem 1. The only solution of the Diophantine equation

(1.2) Fn = Tm

in positive integer numbers m and n with n > 3, is (n,m) = (7, 6). Hence, F ∩ T =

{0, 1, 2, 13}.

We organize this paper as follows. In Section 2, we will recall some useful properties

such as a result of Matveev on linear forms in three logarithms and the reduction

method of Baker-Davenport that we will use in the proof of Theorem 1. In Section 3,

we first use Baker’s method to obtain a bound for n, then we completely prove

Theorem 1 by means of the Baker-Davenport reduction method.

2. Auxiliary results

We recall the well-known Binet’s formula:

(2.1) Fn =
ϕn − (−ϕ)−n

√
5

for all n > 0,

where ϕ = (1 +
√

5)/2. It is almost unnecessary to stress that this is a very helpful

formula which moreover allows to deduce that

ϕn−2 < Fn < ϕn−1 for all n > 1.

In 1982, Spickerman [36] found the following “Binet-style” formula for the Tri-

bonacci sequence:

(2.2) Tn =
αn

−α2 + 4α− 1
+

βn

−β2 + 4β − 1
+

γn

−γ2 + 4γ − 1
for all n > 0,
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where α, β, γ are the roots of x3 − x2 − x− 1 = 0. Explicitly, we have

α =
1

3
+

1

3

(
19 − 3

√
33

)1/3
+

1

3

(
19 + 3

√
33

)1/3
,

β =
1

3
− 1

6

(
1 + i

√
3
)(

19 − 3
√

33
)1/3 − 1

6

(
1 − i

√
3
)(

19 + 3
√

33
)1/3

,

γ =
1

3
− 1

6

(
1 − i

√
3
)(

19 − 3
√

33
)1/3 − 1

6

(
1 + i

√
3
)(

19 + 3
√

33
)1/3

.

Another interesting formula due to Spickermann is

Tn = Round
[ α

(α− β)(α − γ)
αn

]
,

where, as usual, Round[x] is the nearest integer to x.

Since α−2 < α/(α − β)(α − γ) = 0.33622 . . . < α, the above identity yields the

bounds

αn−3 < Tn < αn+2 for all n > 1.

The Fibonacci and Tribonacci numbers can also be computed using the generating

functions

z

1 − z − z2
= 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + 13z6 + 21z7 + 34z8 + . . . ,(2.3)

z

1 − z − z2 − z3
= 1 + z + 2z2 + 4z3 + 7z4 + 13z5 + 24z6 + 44z7 + 81z8 + . . .(2.4)

In order to prove Theorem 1, we will use a lower bound for a linear form in

three logarithms à la Baker and such a bound was given by the following result of

Matveev [30].

Lemma 1. Let α1, α2, α3 be real algebraic numbers and let b1, b2, b3 be nonzero

rational numbers. Define

Λ = b1 logα1 + b2 logα2 + b3 logα3.

Let D be the degree of the number field Q(α1, α2, α3) over Q and let A1, A2, A3 be

positive real numbers which satisfy

Aj > max{Dh(αj), |logαj |, 0.16} for j = 1, 2, 3.

Assume that

B > max
{
1,max{|bj |Aj/A1; 1 6 j 6 3}

}
.
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Define also

C = 6750000 · e4(20.2 + log(35.5D2 log(eD))).

If Λ 6= 0, then

log |Λ| > −CD2A1A2A3 log(1.5eDB log(eD)).

As usual, in the above statement, the logarithmic height of an s-degree algebraic

number α is defined as

h(α) =
1

s

(
log |a| +

s∑

j=1

log max{1, |α(j)|}
)
,

where a is the leading coefficient of the minimal polynomial of α (over Z), (α(j))16j6s

are the conjugates of α and, as usual, the absolute value of the complex number

z = a+ bi is |z| =
√
a2 + b2.

After finding an upper bound on n which is generally too large, the next step is to

reduce it. For that, we need a variant of the famous Baker-Davenport lemma, which

is due to Dujella and Pethö [6]. For a real number x, we use ‖x‖ = min{|x−n| : n ∈
N} = |x−Round[x]| for the distance from x to the nearest integer.

Lemma 2. Suppose that M is a positive integer. Let p/q be a convergent of the

continued fraction expansion of γ such that q > 6M and let ε = ‖µq‖ −M‖γq‖,
where µ is a real number. If ε > 0, then there is no solution to the inequality

0 < mγ − n+ µ < AB−m

in positive integers m,n with

log(Aq/ε)

logB
6 m < M.

See Lemma 5, a) in [6]. Now, we are ready to deal with the proofs of our results.
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3. The proof of Theorem 1

3.1. Finding a bound on n. By Binet’s formulae (2.1) and (2.2) we get

ϕn − (−ϕ)−n

√
5

=
αm

α′
+
βm

β′
+
γm

γ′
.

Let us denote by α′, β′, γ′ the values of Q(x) = −x2 + 4x − 1 at x = α, β, γ,

respectively. By (2.2) and equation (1.2), we have

ϕn

√
5
− αm

α′
=

(−1)nϕ−n

√
5

+
βm

β′
+
γm

γ′
, m, n > 1.

More precisely,

(3.1)
∣∣∣
ϕn

√
5
− αm

α′

∣∣∣ 6

∣∣∣
ϕ−1

√
5

∣∣∣ + 2
∣∣∣
β

β′

∣∣∣ < 0.67 for any m,n > 1

where in the last inequality we have used |β| = |γ| = 0.73735 . . . and |β′| = |γ′| =

3.84631 . . ..

Define

Λ = Λ(m,n) = m logα− n logϕ+ log

(√
5

α′

)
.

Then

Λ = log

(
αmϕ−n

√
5

α′

)
,

which yields

|eΛ − 1| =

∣∣∣∣
αmϕ−n

√
5

α′
− 1

∣∣∣∣.

On the other hand, from (3.1) we get

∣∣∣∣ϕ
n − αm

√
5

α′

∣∣∣∣ < 0.67 ·
√

5 < 1.5.

Hence

|eΛ − 1| =
1

ϕn

∣∣∣∣ϕ
n − αm

√
5

α′

∣∣∣∣ <
1.5

ϕn
.

Since ϕ = 1.61803 . . ., we have 1.5/ϕn < ϕ−n+1 and then

(3.2) |eΛ − 1| < ϕ−n+1.
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We claim that Λ 6= 0. In fact, towards a contradiction, suppose that Λ = 0 and

thus αm
√

5/α′ = ϕn. Therefore α2m/α′2 is a quadratic algebraic number. However

α2m/α′2 ∈ Q(α) which is absurd, because α is a 3-degree algebraic number.

If Λ > 0, then Λ < eΛ−1 < ϕ−n+2 (see (3.2)). If Λ < 0, then 1−e−|Λ| = |eΛ−1| <
ϕ−n+2. Thus, for Λ < 0, we get

|Λ| < e|Λ| − 1 <
ϕ−n+1

1 − ϕ−n+1
< ϕ−n+2,

where we have used the fact that 1 − ϕ−n+1 > 1/ϕ for all n > 3.

Hence, we have |Λ| < ϕ−n+2 for any Λ 6= 0, which yields

(3.3) log |Λ| < −(n− 2) logϕ.

Now, we will apply Lemma 1. Take

α1 = α, α2 = ϕ, α3 =
√

5/α′, b1 = m, b2 = −n, b3 = 1.

Then Q(α1, α2, α3) = Q(α, ϕ), D = 6 and C < 1.2 · 1010.

It is easy to verify that 1/α′ is a root of 44x3 − 2x− 1 and that
√

5/α′ is a root of

1936x6−880x4+100x2−125. Since
√

5/α′ is a 6-degree algebraic number, its minimal

polynomial (over Z) is 1936x6 − 880x4 + 100x2 − 125. Using direct calculation, we

verify that the absolute value of every root of the minimal polynomial is less than

1. Hence h(α3) < (log 1936)/6 < 1.262. Next, we have h(α1) = (logα)/3 = 0.204

and h(α2) = (logϕ)/2 < 0.241. We then take A1 = 1.22, A2 = 1.45 and A3 = 7.58.

Since (1.2) implies n > m, we have

max
{
1,max{|bj|Aj/A1; 1 6 j 6 3}

}
= max{m, 1.2n} = 1.2n =: B.

Hence, Lemma 1 yields

(3.4) log |Λ| > −6.8 · 1012 log(82n).

Combining the estimates (3.3) and (3.4), we get

6.8 · 1012 log(82n) > (n− 2) logϕ,

and this inequality implies n < 6 · 1014 and, by the trivial estimate m < n, we have

m < 6 · 1014. In order to improve the estimates, we use the bounds on Fn and

Tm together with Equation (1.2) to obtain α
m−3 < Tm = Fn < ϕn−1, which yields
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m < 0.8n+ 2.2. Hence, m < 4.8 · 1014. Similarly, ϕn−2 < Fn = Tm < αm+2 yields

n < 1.3m+ 4.6.

3.2. Reducing the bound. The next goal is to reduce the bound on m. For

that, let us suppose, without loss of generality, that Λ > 0 (the other case can be

handled in a similar way by considering 0 < Λ′ = −Λ).

We know that 0 < Λ < ϕ−n+2 and therefore

0 < m logα− n logϕ+ log

(√
5

α′

)
< ϕ−m+2.

Dividing by logϕ, we get

(3.5) 0 < mγ̂ − n+ µ < 5.45 · ϕ−m,

with γ̂ = logα/ logϕ and µ = log(
√

5/α′)/ logϕ.

Surely γ̂ is an irrational number (actually, this number is transcendental by the

Gelfond-Schneider theorem: if α and β are algebraic numbers with α 6= 0 or 1,

and β is irrational, then αβ is transcendental). So, let us denote by pn/qn the nth

convergent of its continued fraction.

In order to reduce our bound on m, we will use Lemma 2. For that, taking

M = 4.8 · 1014, we have that

p33

q33
=

53739149317980067

42436582738078750
,

and then q33 > 6M . Moreover, we get

‖µq33‖ −M‖γ̂q33‖ > 0.028 =: ε.

Thus all the hypotheses of Lemma 2 are satisfied and we take A = 5.45 and B = ϕ.

It follows from Lemma 2 that there is no solution of the inequality in (3.5) (and then

for the Diophantine equation (1.2)) in the range

[⌊ log(Aq33/ε)

logB

⌋
+ 1,M

]
= [91, 4.8 · 1014].

Therefore m 6 90 and then n 6 120. To conclude, we use the formulas in (2.3) and

(2.4) together with the Mathematica command

Intersection[CoefficientList[Series[x/(1− x− x2), x, 0, 120], x],

CoefficientList[Series[x/(1− x− x2 − x3), x, 0, 90], x]]

to find the possible solutions. Fastly, Mathematica returns us the set {0, 1, 2, 13} as
its answer. This completes the proof.
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4. Final remarks and a conjecture

We point out that the method in proof of Theorem 1 is quite general and that

it can be used to work on the intersection of two arbitrary k-generalized Fibonacci

sequences. In fact, in a similar fashion, we found the set F (k) ∩ F (m) for 4 6 k <

m 6 10. These cases suggest that the following statement (which is Conjecture 1 in

[32]) should be true.

Conjecture 1. Let k < m be positive integer numbers. Then

F (k) ∩ F (m) =






{0, 1, 2, 13}, if (k,m) = (2, 3),

{0, 1, 2, 4, 504}, if (k,m) = (3, 7),

{0, 1, 2, 8}, if k = 2 and m > 3,

{0, 1, 2, . . . , 2k−1}, otherwise.

When working on these cases it may be helpful that the polynomials ψk(x) :=

xk − xk−1 − . . .− x− 1 are irreducible over Q[x] with just one zero outside the unit

circle. That single zero is located between 2(1 − 2−k) and 2 (as seen in [39]). Also,

in a recent paper, G.Dresden [7, Theorem 1] gave a simplified “Binet-like” formula

for F
(k)
n :

F (k)
n =

k∑

i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1

i

for α1, . . . , αk being the roots of ψk(x) = 0. There are many other ways of repre-

senting these k-generalized Fibonacci numbers, as can be seen in [10], [11], [12], [14],

[15]. Also, it was proved in [7, Theorem 2] that

F (k)
n = Round

[ α− 1

2 + (k + 1)(α− 2)
αn−1

]
,

where α is the dominant root of ψk(x).
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