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COPULA APPROACH TO RESIDUALS
OF REGIME-SWITCHING MODELS

Anna Petričková and Magda Komorńıková

The autocorrelation function describing the linear dependence is not suitable for description
of residual dependence of the regime-switching models. In this contribution, inspired by Rakon-
czai ([20]), we will model the residual dependence of the regime-switching models (SETAR,
LSTAR and ESTAR) with the autocopulas (Archimedean, EV and their convex combinations)
and construct improved quality models for the original real time series.
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1. INTRODUCTION

The first models used for modelling economical and financial time series had a linear
character (shocks were assumed to be non-correlated but not necessarily independent
and identically distributed – iid). Although many of the models commonly used in
empirical finance are linear, the nature of financial data suggests that nonlinear models
are more appropriate [8].

Therefore, in recent years there were proposed many time series models, which for-
malize the idea of the different regimes existence in time series. These models can be
used for the modelling of financial yields, hydrological and geodetic time series, and so
on ([1, 4, 13]). They have the nonlinear character.

In this work we focus on the models from the class of regime-switching models where
changes in variability are related to (or predicted by) recent past values of the observed
time series. We restrict our attention to the models where the dynamic behavior of the
time series can be described adequately by a linear AR model in each of the regimes. We
deal with three classes of the regime-switching models, regimes of which are determined
by observable variables (SETAR, LSTAR and ESTAR).

The paper is organized as follows. After a general introduction, the theoretical basis
of the regime-switching models with regimes determined by observable variables, copulas
and some tests are described. The paper continues with the application of the residual
dependence modelling for the regime-switching models (SETAR, LSTAR and ESTAR)
with autocopulas and the constructing of improved quality models for the original real
time series.
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2. THEORETICAL BASIS

2.1. Overview of regime-switching models
with regimes determined by observable variables

Typical models belonging to this class are TAR models (”Threshold AutoRegressive”).
They are well to interpret and also very suitable for modelling a lot of real data. They
form the basis of the regime-switching models with regimes determined by observable
variables.

These models assume that any regime in time t can be given by any observed variable
qt (indicator variable). Values of qt are compared with threshold value c.

2.1.1. SETAR model

The special case arises when qt is taken to be a lagged value of the time series itself that
is, qt = Xt−d for a certain integer d > 0. The resulting model is called a Self-Exciting
Threshold AutoRegressive (SETAR) model. For example the 2-regime SETAR model
with AR(p) in both regimes has form

Xt = (φ0,1 + φ1,1Xt−1 + · · ·+ φp,1Xt−p) [1− 1(Xt−d > c)]
+ (φ0,2 + φ1,2Xt−1 + · · ·+ φp,2Xt−p)1(Xt−d > c) + εt (1)

where {εt} is the strict white noise process with E[εt] = 0, D[εt] = σ2
ε for all t = 1, . . . , T

and 1(A) is the indicatorfunction with values 1(A) = 1 if the event A occurs and 1(A)
= 0 otherwise.

In the case of a 3-regime model we have to define four constants ci, i = 0, 1, 2, 3,
where −∞ = c0 < c1 < c2 < c3 = ∞. The SETAR model with AR(p) in all regimes has
the form

Xt = φ0,j + φ1,jXt−1 + · · ·+ φp,jXt−p + εt (2)

if cj−1 < Xt−d ≤ cj , j = 1, 2, 3.
For more details see Arlt and Arltová ([2]), Frances and Van Dijk ([8]).

2.1.2. STAR model

If we replace the indicator function 1(qt > c) by a continuous function F (qt, δ, c)
(so called the transition function, where δ is the smooth parameter) which changes
smoothly from 0 to 1 as qt increases, the resulting model is called Smooth Transition
AutoRegressive (STAR) model ([2, 8]). For example the 2-regime STAR model with
AR(p) in both regimes and the indicator variable qt = Xt−d has the form

Xt = (φ0,1 + φ1,1Xt−1 + · · ·+ φp,1Xt−p) [1− F (Xt−d, δ, c)]
+ (φ0,2 + φ1,2Xt−1 + · · ·+ φp,2Xt−p) F (Xt−d, δ, c) + εt (3)

If the transition function F (qt, δ, c) is the logistic function

F (qt, δ, c) =
(

1
1 + exp (−δ (qt − c))

)
, δ > 0, (4)
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the resulting model is called a Logistic STAR (LSTAR) model.
If the transition function F (qt, δ, c) is the exponential function

F (qt, δ, c) = 1− exp
(
−δ (qt − c)2

)
, δ > 0, (5)

the resulting model is called an Exponential STAR (ESTAR) model. For more details on
STAR models see, e. g. Arlt and Arltová [2], Frances and Van Dijk [8], Teräsvirta [21]).

2.2. Empirical specification procedure for nonlinear models

In the process of the empirical specification for the nonlinear models the following steps
are recommended [11]:

1. specify an appropriate linear AR model of order p for the time series under inves-
tigation,

2. test the null hypothesis of linearity against the alternative of SETAR- and/or
STAR-type nonlinearity; this step also consists of selecting the appropriate variable
that determines the regimes,

3. estimate the parameters in the selected model,

4. evaluate the model using diagnostic tests,

5. modify the model if necessary,

6. use the model for descriptive or forecasting purposes.

When we test the null hypothesis of linearity against the alternative of SETAR-type
nonlinearity, we need to know estimates of parameters for the nonlinear model. Simi-
larly, we test optimal 2–regime models (with the minimum value of BIC criterion) for
remaining nonlinearity against three-regime alternatives. (For details of testing proce-
dures see e. g. [8]). The residuals of the selected models are further tested for serial
correlations (see [8]). The residuals of the regime-switching models are supposed to be
independent (not only serially non-correlated). This property can be tested e. g. by the
BDS test [3].

2.3. The BDS test

There are number of reasons why the BDS statistic has become so widely used. It can be
applied as a goodness of fit test to any model that can be transformed into model with
additive i.i.d. errors and whose parameters can be estimated

√
T -consistently (where T

is the length of time series). Also, this statistic can be used to test for stochastic linearity.
The other reason is, that the asymptotic distribution theory of the BDS statistic does
not require higher moments to exist. This is important in financial economics because of
the problems that heavy–tailed distributions can cause when using most of the standard
test statistics. This test was presented in the of Brock, Dechert, Scheinkman, and Le
Baron [3] and can be used to test the independence in residuals {êt}.
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For some n ∈ N and ε > 0 the test is based on the correlation integral

Cn,ε =

∑∑
m+15τ5Tn

1 (‖êt,n − êτ,n‖ < ε)

2[(Tn − 1)Tn]
(6)

where Tn = T − n + 1, êt,n = (êt, . . . , êt+n−1), 1(A) is the indicator of the event A,
and ‖ · ‖ denotes the maximum norm (also known as Chebyshev norm) in <d (i. e.,
‖z‖ = max1<i<d |zi| for z = (z1, . . . , zd)′). Then the BDS statistic is

ΛBDS =

√
(T −m)(Cn,ε − Cn

1,ε)
σn,ε

(7)

where
1
4
Vn,ε = Kn

ε + (n− 1)2C2n
ε − n2KεC

2(n−1)
ε + 2

n−1∑
j=1

Kn−1
ε C2j

ε ,

Kε =
1

(T −m)3

T∑
K=m+1

T∑
τ=m+1

T∑
t=m+1

1 (|êκ − êτ | < ε)1 (|êτ − êt| < ε) ,

Cε =
1

(T −m)2

T∑
τ=m+1

T∑
t=m+1

1 (|êτ − êt| < ε) ,

T is length of time series and m is order of process AR. The test is implemented here
using “embedding dimension” n = 2 (number of time-lagged residuals) and “metric
bound” ε = σ̃, where σ̃2 = 1

T−m−1

∑T
t=m+1 ê2

t ; the latter choice is in the centre of the
region 1

2 σ̃ ≤ ε ≤ 3
2 σ̃, that is recommended in Brock et al. [3].

ΛBDS has N(0,1) asymptotic distribution when {et} are i.i.d.
When BDS test at the significant level shows residual dependence, we use n-lag

autocopulas for modelling of these dependent residuals.
Inspired by the approach of Rakonczai [20] we have applied autocopulas to the time

series of the residuals exhibiting nonlinear dependences in order to gauge how much they
violate the assumptions of independence. We have tried to describe the dependences of
the (time lag 1) residuals of regime-switching models by means of copulas.

2.4. Copula

A 2-dimensional copula is the function ([14, 17]) C : [0, 1]2 −→ [0, 1], which satisfies

• the boundary conditions:

C(0, y) = C(x, 0) = 0 and C(1, y) = y, C(x, 1) = x for all x, y ∈ [0, 1],

• the 2-increasing property:

C(x1, y1) + C(x2, y2)− C(x1, y2)− C(x2, y1) ≥ 0

for all x1, y1, x2, y2 ∈ [0, 1] such that x1 ≤ x2 and y1 ≤ y2.
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The most important applications of the 2-dimensional copulas are related to a well-
known and very convenient rewriting of the joint distribution function F of a 2-dimensional
random vector (X, Y ) in the form

F (x, y) = C(FX(x), FY (y)) (8)

where FX , FY are marginal distribution functions.

Rakonczai et al. [20] introduced autocopulas to describe the lag self-dependence
structure of a time series. Given a strictly stationary time series Xt and set of lags
L = {di ∈ Z+ : i = 1, . . . , k}, the autocopula CX,L is defined as the copula on the k + 1
dimensional random vector (Xt, Xt−d1 , . . . , Xt−dk

). The k-lag autokopula CX,k is the
autocopula with lag k ∈ Z+. In other words, autocopula is an ordinary copula related
to original and the lagged time series, and as such it describes the interdependence
structure in more detail than autocorrelation does, specifically, it takes into account
non-linear interdependencies as well.

2.4.1. Some bivariate copulas

Archimedean class of copula
Copula C belongs to the Archimedean class if (see e. g. [6, 14, 17])

Cφ (x, y) = φ(−1) (φ(x) + φ(y)) for x, y ∈ (0, 1],

where φ : (0, 1] → [0,∞) is a convex, decreasing function (satisfying φ(1) = 0) that is
called a generator of the copula Cφ, and φ(−1) : [0,∞) → [0, 1] is given by

φ(−1)(x) = sup {t ∈ (0, 1] | φ(t) ≥ x} =
{

φ−1(x) x < φ(0+)
0 else.

Let (X, Y )′ be a vector of continuous random variables with copula C. Then Kendall’s
tau for (X, Y )′ is given by

τ(X, Y ) = 4
∫ ∫

[0,1]2
C(u, v) dC(u, v)− 1.

As a generator uniquely determines an Archimedean copula, different choices of gen-
erators yield many families of copulas that consequently, besides the form of the gen-
erator, differ in the number and the range of parameters. We summarize some basic
facts related to the most important 1- and 2-parameter families of Archimedean copu-
las ([6, 17]). Note, that Clayton and Gumbel copulas model only positive dependence
(measured by Kendall’s τ), while Frank copulas cover the whole range [-1,1].

Some examples:

• Gumbel family

Cθ(x, y) = exp−((− ln x)θ+(− ln y)θ)
1
θ , where θ ≥ 1,

τ = θ−1
θ .
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• Strict Clayton family (Kimeldorf and Sampson)

Cθ(x, y) =
(
x−θ + y−θ − 1

)−1
θ and C0(x, y) = Π (x, y) = xy,

τ = θ
θ+2 where θ > 0.

• Frank family

Cθ(x, y) = − 1
θ ln

(
1 + (e−θx−1)(e−θy−1)

(e−θ−1)

)
, where θ ∈ <,

τ = 1− 4
θ (1−D1(θ)),

D1(z) = 1
z

∫ z

0
t

et−1 dt is the Debye function.

• Joe’s BB1 family

Cθ,a(x, y) =
(

1 +
(
(x−a − 1)θ + (y−a − 1)θ

) 1
θ

)−1
a

,

τ = 1− 2
θ(a+2) where θ ≥ 1 and a > 0.

A rich overview of Archimedean copulas is presented in Embrechts et. al [6], Genest and
Favre [9], Joe [14] and Nelsen [17].

Extreme Value (EV) Copulas
Their characteristic relation is

C (xt, yt) = (C(x, y))t

for any t > 0 and (x, y) ∈ [0, 1]2.
A bivariate copula C is an extreme-value copula if and only if it can be represented

in the form

C(x, y) = exp
(
ln(xy)A

(
ln(x)
ln(xy)

))
where the function A : [0, 1] → [1/2, 1] is a convex function and satisfies the inequality

max(t, 1− t) ≤ A(t) ≤ 1

for all t ∈ [0, 1]. The function A is called a dependencefunction.
We have worked with the following types of EV copulas [10]:

• Gumbel A family (Mixed model)

Cθ(x, y) = xy exp
(
−θ ln(x) ln(y)

ln(x)+ln(y)

)
,

τ =
8 arctan

q
θ

4−θ√
θ(4−θ)

− 2, where 0 ≤ θ ≤ 1.

• Galambos family

Cθ(x, y) = xy exp
((

(− lnx)−θ + (− ln y)−θ
)− 1

θ

)
,

τ = θ+1
θ

∫ 1

0

(
1

s1/θ + 1
(1−s)1/θ − 1

)−1

ds, where θ ≥ 0.
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Notice that the only class of associative EV copulas are just Gumbel copulas (with
Min(x, y) = min {x, y} as it’s limiting case when the parameter of copula from Gumbel
family approaches infinity).

Convex combinations of Copulas
A very useful class for fitting the investigated couples of time series has been obtained

in the class of convex combinations of copulas C1 and C2 given by

Cα(x, y) = αC1(x, y) + (1− α)C2(x, y)

for α ∈ [0, 1].
In practical data fitting by the copulas of this form we have applied the MLE method

(with initial parameters estimate received by the minimalization of the mean square
distances to the fitted empirical copulas). In order to reduce complexity of required
computations we have used convex combinations of Archimedean copulas only.

2.4.2. Goodness of fit test for copulas

Let {(xj , yj), j = 1, . . . , T} be T modeled 2-dimensional observations, FX , FY their
marginal distribution functions and F their joint distribution function.

We say that the class of copulas Cθ is correctly specified if there exists θ0 so that
holds

F (x, y) = Cθ0 (FX(x), FY (y)) .

Let cθ be the density function of Cθ, copula Cθ has to be absolutely continuous, ∇θ be the
vector of all first-order partial derivatives of ln cθ (FX(x), FY (y)) and ∇2

θ be the square
matrix of second-order partial derivatives of the same function ln cθ (FX(x), FY (y)) (the
Hessian matrix or simply the Hessian) are continuous on the domain of their parameters.
White [23] showed that under correct specification of the copula class Cθ the following
information matrix equivalence holds:

−Aθ0 = Bθ0 ,

where
Aθ = E[∇2

θ ln cθ (FX(X), FY (Y ))]

Bθ = E[∇θ ln cθ (FX(X), FY (Y ))∇′
θ ln cθ (FX(X), FY (Y ))].

The proposed procedure [18] is based on the empirical distribution functions

F̂X(s) =
1
T

T∑
i=1

1(xi ≤ s), F̂Y (s) =
1
T

T∑
i=1

1(yi ≤ s)

and also on a consistent estimator θ̂ of θ0 that maximizes ln cθ

(
F̂X(xi), F̂Y (yi)

)
]. To

introduce the sample versions of A and B put

Ai(θ) = ∇2
θ ln cθ

(
F̂X(xi), F̂Y (yi)

)
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Bi(θ) = ∇θ ln cθ

(
F̂X(xi), F̂Y (yi)

)
∇′

θ ln cθ

(
F̂X(xi), F̂Y (yi)

)
Âθ =

1
T

T∑
i=1

Ai(θ)

B̂θ =
1
T

T∑
i=1

Bi(θ)

and
di(θ) = vech (Ai(θ) + Bi(θ))

where vech(M) is the vector of dimension [k(k+1)/2] containing the upper triangle (in
the lexicographic ordering) of the symmetric matrix M of the type k×k (where k is the
space dimension of parameters θ).

Put D̂θ = 1
T

∑T
i=1 di(θ). Under the hypothesis of proper specification the statis-

tics
√

T D̂θ has asymptotical distribution N(0,V), where V is estimated by V̂ =
1

T−1

∑
d’i(θ)di(θ).

Therefore
ξ = T D̂′

θV̂−1
θ D̂θ (9)

asymptotically follows χ2
k(k+1)

2

.

2.4.3. Fitting of copulas

In practical fitting of the data we have utilized the maximum pseudolikelihood method
(MPLE) of parameter estimation (with initial parameters estimates received by the
minimalization of the mean square distance to the empirical copula Cn presented e. g.
in Genest and Favre [9]). It requires that the copula Cθ(x, y) is absolutely continuous
with density cθ(x, y) = ∂2

∂x ∂y Cθ(x, y). This method (described e. g. in [9]) involves
maximizing a rank-based log-likelihood of the form

L(θ) =
T∑

i=1

ln
(

cθ

(
Ri

T + 1
;

Si

T + 1

))
where T is the sample size, Ri stands for the rank of Xi among X1, . . . , XT , Si stands
for the rank of Yi among Y1, . . . , YT and θ is vector of parameters in the model. Note
that arguments Ri

T+1 , Si

T+1 equal to the corresponding values of the empirical marginal
distributional functions of random variables X and Y.

To compare a goodness of fit of our estimated model we have used Takeuchi criterion
TIC ([12]) that is a robustified version of the Akaike criterion AIC

TIC = −2L(θ) + 2Tr
(
B̂θ · Â−1

θ

)
. (10)

Smaller TIC value means an improvement of the quality of model fitting.
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2.5. Forecast

Our main goal is to evaluate a regime-switching model by comparing of out-of-sample
forecast to observed values. Following [8] and [11], let g denote the model describing Xt

through formula
Xt = g(Ωt−1; θ) + et , (11)

with history Ωt−1 of the time series up to and including Xt−1, parameter vector θ and
i.i.d. white noise et at time t with distribution D . For the sake of demonstration
assume a general nonlinear autoregressive model of order one. The optimal one-step-
ahead forecast is

X̂t+1|t = E[Xt+1|Ωt] = g(Xt; θ) (12)

which can be achieved with no difficulty. The two-step case is not easy,

X̂t+2|t = E[Xt+2|Ωt] = E[g(Xt+1; θ)|Ωt], (13)

because the linear conditional expectation operator E cannot be interchanged with the
nonlinear operator g. It helps to link both forecasts (12) and (13),

X̂t+2|t = E[g(g(Xt; θ) + et+1; θ)|Ωt] = E[g(X̂t+1|t + et+1; θ)|Ωt]. (14)

If we do not want to ignore the random term et+1 (that would be a näıve forecast) we
might attempt to obtain the conditional expectation directly by computing

X̂t+2 =
∫ ∞

−∞
g(X̂t+1|t + ε) dΦ(ε), (15)

where Φ(ε) is the distribution function of D. Instead of numerical integration we ap-
proximate it by Monte-Carlo method,

X̂t+2|t =
1
N

N∑
i=1

g(X̂t+1|t + εi; θ), (16)

where N is some large number and εi, i = 1, . . . , N , are random numbers drawn from
distribution D. In practise the function g is not known, it has to be specified and
estimated, so that et is not usually a white noise and has temporal relationships. These
are most probably of nonlinear quality, so it seems natural to employ copulas to simulate
εi. Given residual at time t, êt = Xt − X̂t|t−1 with associated distribution function Φ,
ε for next-step-ahead forecast can be obtained as quantile of conditional distribution
function

FY |X=x(y) =
∂C(u, FY (y)

∂u

∣∣∣
u=FX(x)

, (17)

that is
εi = F−1

Y |X=et
(p), (18)

where p is a random number drawn from uniform distribution U(0, 1). Recall that C
is a bivariate copula and FX , FY are marginal distribution functions, in our case as-
sumed to identicaly belong to zero-mean normal distribution N(0, σ̂2) with variance
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estimated from êt. Because of successively applied one-step prediction, 1-lag autocopula
is chosen as the copula C. Since the usual inference theory for copulas assumes i.i.d.
observations, as pointed out in [19], one should not use all single pairs of observations
{(Xi−1, Xi) : i ∈ {2, . . . , T}} for copula fitting (which in most cases are not indepen-
dent), instead a thined subset is recommended. On this account we took every mth pair
(with m presumably large enough).

3. REVIEW OF RESULTS

This section was inspired by Komorńık and Komorńıková [15]. Below we summarize
all results in tables and graphs. For the investigations there have been used 50 real
data series (exchange rates, various macroeconomic data and other financial data series)
and for all calculations the system MATHEMATICA, version 7 has been used. For all
statistical tests used in the subsequent analyses, we have considered the significance level
0.05. We have omitted 5 the most recent values from each of the considered time series
(they were used for checking of the predictive properties of the resulting models).

For the considered time series and models we have sequentially performed the follow-
ing succession of procedures:

1. At first, we ’fitted’ these real time series with SETAR, LSTAR and ESTAR model
[8]. In each class we have selected the best model (optimizing the number of
states and the order of the local autoregressive models) on the basis of the BIC
criterion ([8]).

2. For every time series we have chosen the best model from model classes mentioned
above; as a criterion we have used the lowest values of the residual standard
deviation.

3. We have applied the serial autocorrelation test of the residuals for the selected
models.

4. The residuals of these models have been supposed to be not only serially non-
correlated but also independent (which can be tested by the BDS test [3]).

5. We have applied autocopulas to the time series of the above mentioned residuals.
We have tried to describe the dependencies of the (time lag 1) residuals of selected
models by means of copulas (EV, Archimedean and their convex combinations).
For each couple (êt, êt−1) , t ∈ {2, 2+m, . . . , 2+r m ≤ T}, where m is the thinning
parameter (presumably large enough) (see [20]) and each class of copulas we have
sequentially performed the following procedures:

• calculation of Maximum pseudo–likelihood estimates and TIC,

• calculation of p-values of the goodness of fit tests for all candidate copula
models and selection only of the models that pass GoF tests,

• selection of the optimal models with the minimal TIC criterion (from models
that pass GoF tests).
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3.1. Selection of the best model

At first, we have tested linearity against the (2-regime) SETAR, LSTAR, or ESTAR
type of nonlinearity. For 5 illustrative time series

• TS1 = Final consumption households, Euro area 16, seasonally adjusted (1995Q1
– 2009Q4),

• TS2 = Industrial production index USA, monthly seasonally adjusted data (01/1997
– 12/2009)

• TS3 = UK march 2010, exchange rates GBP/EUR, monthly data (03/1999 –
03/2010)

• TS4 = Danish krone, exchange rates DKK/EUR, monthly data (03/1999 – 03/2010)

• TS5 = Unemployement USA, monthly seasonally adjusted data (06/1999 – 06/2010)

the corresponding results are included in the Table 1. The first time series in the table
are modeled with SETAR, the second and third one with LSTAR and the last two with
ESTAR model.

Time The linearity
series test

TS1 0.007406
TS2 0.000106
TS3 0.000004

TS4 < 10−6

TS5 0.000480

Tab. 1. The p-values for the test of linearity of estimated models.

Next, we have continued by testing remaining nonlinearity of optimal 2-regime SE-
TAR, LSTAR, or ESTAR models (with the minimum value of the BIC criterion) against
alternatives of 3-regime model. The corresponding results are included in the second
column of Table 2.

Time The remaining The serial The BDS
series nonlinearity test correlation test test

TS1 0.0138 0.3631 0.023

TS2 0.00671 0.9766 < 10−6

TS3 0.00001 0.7074 0.00005

TS4 < 10−6 0.8175 0.00084
TS5 0.1373 0.5411 0.0102

Tab. 2. The p-values for the diagnostic checking of estimated models.

We have chosen four 3-regimes models, only the last illustrative time series is de-
scribed by 2-regimes model.
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Next we have applied the residual autocorrelation tests for the selected model’s out-
comes (see the third column of Table 2 for the results). However, the residuals of the
models are supposed to be not only serially non-correlated but also independent. This
property has been tested by the BDS test of independence (the fourth column of Table 2).

In the Table 3, there is a summary of the test results – the number of the time series
with dependent and non-correlated residuals (for all models).

Type of model Number

SETAR 9
LSTAR 16
ESTAR 20

Tab. 3. Summary of the tests results – dependent & non-correlated.

3.2. The best copulas

For each couple (êt, êt−1) and each class of copulas we have subsequently performed the
sequence of procedures that we have described above and we have selected the optimal
models that attain the minimum value of the TIC criterion.

The results for 5 illustrative time series are presented in Table 4. We see that none
of the selected optimal models have been rejected by the GoF test. Moreover, signifi-
cant results of the BDS test justify efforts to model dependencies between the residuals
(despite low values of the Kendall τ ’s).

Time Kendall’s τ Type of p– α θ1 θ2 a
series copulas values

TS1 -0.03774 Frank& 0.10897 0.90041 -0.74241 1 2.85563
Joe

TS2 -0.07719 Clayton & 0.23334 0.38532 0.66171 -2.11948 x
Frank

TS3 -0.00698 Gumbel A 0.16552 x 0.11818 x x

TS4 0.08917 Frank 0.31532 x 0.82413 x x

TS5 -0.00574 Gumbel & 0.23882 0.82887 1.05539 13.4784 4.79458
Joe

Tab. 4. Optimal copulas for the pairs of residuals.

3.3. Modified models

In this section we aim to improve classical SETAR, LSTAR and ESTAR models. Instead
of {et} (which is the strict white noise process with E[et] = 0, D[et] = σ2

e for all t =
1, . . . , T ), we have used the autocopulas that we have chosen as the best copulas above
(for each real time series). To compare the quality of the optimal models without
(first category) and with (second category) application of copulas for modelling of their
residuals, we have compared their prediction mean square error MSE for the differences
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between the values of the (1-step-ahead) forecasts of the optimal models and the last 5
values of empirical data as well as standard deviations (σe). In the case of models in
the second category, we have applied the fitted copulas for the residuals of the optimal
models in the calculations of the forecasts.

In the columns in Table 5 we can see the standard deviations σe of the residuals in
both categories without and with copulas and also their percentage changes.

Time σe for model σe for model Relative
series without copulas with copulas reduction (%)

TS1 0.048415 0.031102 35.76
TS2 0.000517 0.000267 48.44

TS3 4.19 ∗ 10−6 1.97 ∗ 10−6 53.04
TS4 0.000032 0.000015 53.21
TS5 0.036251 0.020662 43.01

Tab. 5. The standard deviation of residuals for the model without

and with copulas.

In the next Table 6 there are for the same 5 illustrative time series prediction errors
MSE and MAE (Mean Absolute Error) for 1-step-ahead forecasts for 5 time units of
residuals in both categories without and with copulas and also their percentage changes.

Time MSE MSE Relative MAE MAE Relative
series without c. with c. reduction (%) without c. with c. reduction (%)

TS1 1.33668 1.40617 -5.20 0.93928 0.97576 -3.88
TS2 0.01584 0.00850 46.33 0.12036 0.06507 45.33

TS3 1.79 ∗ 10−6 2.11 ∗ 10−6 -16.98 0.00117 0.00132 -12.63

TS4 0.000018 5.22 ∗ 10−6 71.03 0.00363 0.00189 47.94
TS5 0.05432 0.06554 -20.67 0.20131 0.21666 -7.63

Tab. 6. The prediction errors for 1-step-ahead forecasts for 5 time

units of residuals for model without and with copulas.

In order to compare visually the improvements in standard deviations of the residuals
for the 2 categories of models, we present graphs comparing the original data (marked
by dots) of 5 illustrative time series by the optimal models from the first (dashed line)
and the second category (solid line) – see the Figure 1.

In order to compare visually forecasting performance of the 2 categories of models,
we show (in Figure 2) the differences in fitting of the last 5 values of the illustrative
time series (marked by *) by 1-step-ahead forecasts by the optimal models from the first
(dashed line) and the second category (solid line).

The average improvement in description for 31 modeled time series is 51.42 % but
in the case of prediction it comes to the small degradation in almost all cases. Average
degradation in prediction is −11.81 %. It is necessary to remark that most nonlinear
techniques give good in-sample fits to real time series, but they are usually outperformed
by models of random walks or random walks with drift when are used for forecasting
[5]. Next we directly quote Enders and Pascalau [7]: “Teräsvirta [22] summarizes much
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Fig. 1. Graphs comparing the original data (marked by dots) of 5

illustrative time series with their best model fits in both categories,

the first (dashed line) and the second category (solid line).

of the research indicating that a linear model may forecast better than a nonlinear one,
even when the nonlinear model is consistent with the actual data-generating process.
For example, Montgomery et al. [16] show that a nonlinear model may forecast better
than a linear one in some regimes, but not in others (e. g., recessions but not expan-
sions). Similarly, Dacco and Satchell [5] show that a regime–switching model may have
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Fig. 2. Graphs comparing the predictions of 5 illustrative time series

modeled by their best model fits in both categories with the last 5

original values.

poor forecasting performance relative to a linear model as a result of misclassifying ob-
servations. The point is that, any superior in-sample performance of a nonlinear model
may not translate itself into superior out-of-sample performance. Moreover, forecasting
with nonlinear models can be quite programming-intensive, as multistep-ahead forecasts
need to be simulated.”

From the optional models for 31 considered time series, the Table 7 summarizes the
frequencies of occurrence of different candidates of Archimedean copulas, their convex
combinations (denoted by &) and extreme value copulas.

4. CONCLUSIONS

Rakonczai [20] used autocopulas only for the testing of residual independence. Inspired
by him we have extended his approach and applied autocopulas to the time series of the
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Copula family Number

Archimedean copulas (AC) 7
convex combinations of AC 13
extreme value copulas 11

Tab. 7. Numbers of the optimal copulas.

above mentioned residuals of the time series (exhibiting nonlinear dependences among
subsequent residuals) in order to gauge how much they violate the assumptions of in-
dependence. We have tried to describe the nonlinear dependencies of the (time lag 1)
residuals of the selected models by means of copulas (Archimedean, their convex com-
binations and EV copulas).

Then we have compared description of ’original’ and ’modified’ models. We have
seen that when we have used copula driven noise series instead of the white noise in
the models, the descriptions have been much better (in almost all cases). The average
improvement in description has reached 51.42%.

We have calculated also predictions by this copula approach but it comes to the
small downgrade (in average −11.81%). It is necessary to remark that most nonlinear
techniques give good in-sample fits to real time series, but they are usually outperformed
by models of random walks or random walks with drift when are used for forecasting [5].

This approach is new, so it is necessary to build up a theory about it. It will be
the part of our further research. In the future we also want to describe real time series
with non-Archimedean copulas like Gauss and Student copulas, Archimax copulas, etc.
We also want to use regime-switching model with regimes determined by unobservable
variables and compare it with the others.

ACKNOWLEDGEMENT

This work was supported by Slovak Research and Development Agency under contract No.
LPP-0111-09, APVV-0073-10 and by VEGA 1/0143/11.

(Received July 29, 2011)

R E FER E NCE S

[1] B. Akintug and P. F. Rasmussen: A Markov switching model for annual hydrologic time
series. Water Resour. Res. 41 (2005).
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[21] T. Teräsvirta: Specification, estimation, and evaluation of smooth transition autoregres-
sive models. J. Amer. Statist. Assoc. 89 (1994), 208–218.
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