
Kybernetika

Lukáš Ďurfina; Dušan Kolář
C source code obfuscator

Kybernetika, Vol. 48 (2012), No. 3, 494--501

Persistent URL: http://dml.cz/dmlcz/142951

Terms of use:
© Institute of Information Theory and Automation AS CR, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/142951
http://project.dml.cz

KYB ERNET IK A — VO LUME 4 8 (2 0 1 2) , NUMBER 3 , PAGES 4 9 4 – 5 0 1

C SOURCE CODE OBFUSCATOR

Lukáš Ďurfina and Dušan Kolář

Obfuscation is a process that changes the code, but without any change to semantics. This
process can be done on two levels. On the binary code level, where the instructions or control
flow are modified, or on the source code level, where we can change only a structure of code
to make it harder to read or we can make adjustments to reduce chance of successful reverse
engineering.

Keywords: obfuscation, source code, malware

Classification: 68N15

1. OBFUSCATION

The obfuscation is thoughtful process of modification with aim to hide information
without causing any damage to this information. We know several types of obfuscation
and they are shown in the following text.

1.1. Types of Obfuscation

The general division dictates two main areas:

• binary files obfuscation

• source files obfuscation.

Another division can be make according to a purpose:

• hide new algorithm, technology (protect intellectual property)

• hide well-known algorithm, technology (prevent unwanted detection).

In some point of view, we can say that obfuscation wants to achieve security through
obscurity, what can be enough only in some particular cases.

2. OBFUSCATION OF BINARY FILES

The base for this obfuscation is knowledge of an instruction set of aimed architecture,
because it is natural that obfuscator for ARM executable would damage executable for
the x86 architecture or other incompatible platform. The advantage is that well-written

C source code obfuscator 495

obfuscator can be usable for more executable formats, if exist, for the given architecture.
It is common to see obfuscator for both PE and ELF format on the x86 architecture [7].

We can take a look on the most used techniques [4]:

• Dead-code insertion

Idea is same as inserting instruction NOP, but single instruction would not be very
helpful, because it can be simply filtered. Dead code does nothing useful at all,
it only decreases performance and confuses the code. It can consist of various
complex algorithms, which unbend attention from real object of the inspection.

Example:
push eax
push ebx
push ecx
;some magic with eax, ebx, ecx
pop ecx
pop ebx
pop eax

• Code transposition

It is based on a finding of independent pieces of codes, and their mutual exchange.
Transposition can be made on two instructions, but it can also be done on whole
blocks. It depends on the skills of author how precisely he can determine inde-
pendent blocks of code. Another way of code transposition is adjusting jumps and
calls, and reassembling blocks of such code.

Example:

mov eax, [ecx]

mov ebx, 10

mul ebx

mov ebx, 10

mov eax, [ecx]

mul ebx

• Register realignment

It is simple method, when we exchange the certain number of registers. The
code works with other registers, so the bytes in binary code, which represent used
registers, are different, but an algorithm is still the same one. In another words,
we create different admissible permutation of registers for the given code.

Example:

mov eax, ebx

xor ecx, ecx

test eax, ecx

mov ecx, edx

xor eax, eax

test ecx, eax

The important note is that there are some restrictions. It definitely would not be
a good idea to exchange register esp on the x86 architecture, because it would
cause a corruption of stack, what uses to end up with the crash of application.

496 L. ĎURFINA AND D. KOLÁŘ

• Instruction substitution

Instruction set of the x86 architecture is very wide, so the single action can be
performed by more combinations of instructions [3]. This fact is used for substi-
tution technique. We can distinguish 3 subcategories according to the change of
code size:

– code expansion - new code is formed by more instructions than original

add eax, 4 add eax, 2

add eax, 2

– code shrinking - new code has less instructions than original

add eax, 100

mul 0

inc eax

mov eax, 1

– code alternating - new code has same size as orginal, following three blocks
do the same

mov ebx, 0

mov eax, eax

xor ebx, ebx

mul 1

sub ebx, ebx

add eax, 0

A very popular approach is exchanging instructions, which have different semantics,
but with clever updates they have the same result. We present it on the replacing of
push and call.

Examples:

push eax sub esp, 4

mov [esp], eax

call sub count push 401020

jump sub count

In the first example, we decrease stack pointer, and after that we store value from
eax to stack. If we use in the following code pop the beginner could be confused due to
no push. The second example uses the fact how the instruction call works, it stores the
address, where the control should be returned after finish of function. This approach
has a great advantage. You can set an arbitrary address for continuing after return from
function.

C source code obfuscator 497

The binary form of files provides another opportunities for code obfuscation, the good
example is function call dispatching, what is nicely implemented in PEScrambler [2].
The technique is based on the redirections of all internal and external function calls to
a single function, which acts as the dispatcher. The result is that all instructions CALL
has the same operand and the reverse engineer does not know which specific function is
called from the dispatcher.

3. OBFUSCATION ON SOURCE CODE LEVEL

Source code obfuscation can be divided into two types according to the result of the
obfuscation:

• obscure source code to make it harder to read and understand

• obscure compiled executable to make harder to understand its disassembly.

In this paper we are interested in the second type.
Editing source code is essentially different from editing binary code. There is no

possibility to use some introduced techniques from the previous section, for example
register realignment.

On the other side, we can easily hide the data in program. We can imagine that
all strings can be written in an encrypted form, and in the moment of use there will
be called a decryption function, so the base function will get the data in correct form,
but in the source and also in the data section of executable, the strings will be illegible.
The encrypted form and the decryption function can be changed for each compilation,
so every released version could have the different data section and also different code
for the decryption routine. This method could be utilized by botnet owners for better
hiding of bots. The majority of bots support self update and by this way they could be
updated regularly by new version.

We can also approximate function call dispatching, the function calls will not be
redirect to single dispatcher, but from the code it would not be easy to recognize which
function is called. The disadvantage is that it cannot be applied for all functions, but only
for the linked functions from the extern libraries. On the other hand, this method can
hide the imports of variables from such libraries too. The trick is done by using WINAPI
functions LoadLibrary and GetProcAddress [6]. The following example obfuscates the
call of CreateFileA.

HINSTANCE hDLL = LoadLibrary(‘‘Kernel32.dll"); if (hDLL) {
fCreateFile = GetProcAddress(hDLL, ‘‘CreateFileA");

}

After successful running of that code, we can use fCreateFile the same way as WINAPI
function CreateFileA. Still it is not so good, in spite of fact that we do not see direct
call to WINAPI function, the function name is stored in the data section as a string.
Anyway this is solved by the string encryption, which encodes both strings in that
example, so the name of function and library will be completely hidden. The problem is
recognition of those functions and loading the correct library for each one. The solution
is a database of libraries and corresponding functions, which would be complex and has
to be religiously updated.

498 L. ĎURFINA AND D. KOLÁŘ

Technique Binary code obfuscation Source code obfuscation
Dead-code insertion X X
Code transposition X X

Register realignment X ×
Instruction substitution X ×

Function call dispatching X ∼
Strings encryption × X

Tab. 1. The comparison of binary and source code obfuscation.

3.1. Comparison with binary obfuscation

Table 1 presents the summary and compares the both types of obfuscation. The sign
Xmeans that the method is possible by the given type, the sign × means impossibility
and ∼ is sign for partially possible method.

3.2. Obfuscating compiler

For the future research, we suggest more powerful solution, the obfuscating compiler.
The strength is given by possibility of applying all mentioned techniques with the ad-
vantage that compiler gives the higher probability of producing correct executable.

The idea goes from the fact that if you compile the the source code by the same
compiler with unchanged flags, you will get each time the same output executable.
This is easily verified by comparing the disassemblies. We can imagine the module for
GCC, which will work as add-on for code generator that will ensure providing different
executable each time. The generation of code will be nondeterministic process after
this modification, so still it would be possible to generate two same executables, but
the probability would be very small. The measure of obfuscation, which is important
for the performance of compiled program, would be configured in the same way as an
optimization. Such a compiler would be more powerful than metamorphic engines, but
the positive information is that it would be difficult to integrate it into malware due to
its size and the presence of source code.

4. EXPERIMENTAL APPLICATION

According to pointed approaches the simple obfuscator for C source code was imple-
mented. This tool supports two methods:

• string encryption

• dead-code insertion.

String encryption is based on Caesar cipher [8], so it is not very complicated, but for
our purposes it is enough. Every string, which can be encrypted by this implementation,
is exchanged by a call of decryption function with encrypted string as a parameter.

Example:

C source code obfuscator 499

printf(‘‘Hello"); printf(csoob_decrypt(‘‘Lipps"));

Dead-code insertion is based on an inserting mathematical operations – addition, sub-
traction, multiplication, and division. The most of nowadays compilers can detect dead
code and remove it from a final generated executable. This removal can be prevented
by using the keyword volatile with variable declaration [1]. This keyword is used for
appointing variable for hardware access or inter-thread communication, what prohibits
the optimization on such variable.

Example:

volatile int __csoob_530 = 2820;
__csoob_530 = __csoob_530 - 5347;
__csoob_530 = __csoob_530 * 28033;
__csoob_530 = __csoob_530 / 25;

The both of used methods could be improved. String encryption is now allowed only
for the first parameter in single function call. This is caused by the fact that we cannot
use dynamic allocation of memory, because the deallocation of these strings would be
very complex problem. The restriction for only the first parameter is given by using a
global variable for returning the result. So if we used decryption function on more than
single parameter, the parameters values would be corrupted. The next version will be
able to encrypt more parameters. It will be implemented by more decryption functions,
so each parameter will have own function with own global variable.

Insertion of dead-code will be improved by including more difficult codes. We could
insert computationally complex code that is never called, so the performance is not
decreased, but the disassembly is definitely longer and more confusing.

Example:

volatile int __x_0 = 0, __x_1 = 0;
if (__x_0 || __x_0 + 1 == __x_1) __x_1 = qsort();

4.1. Results

The created obfuscator was tested with various malware source codes, and the results
are shown in Table 2. Obfuscated malware was partially tested for correctness. Each
executable was run to verify if the changes of source code did not cause a segmentation
fault or another runtime error. This test passed without any error. We did not test if
the behavior was not changed, because it could be different for each run also without
any recompilation.

The first column contains name of malware, the following columns resume the number
of detections in that order: unmodified original code, obfuscated (A) (string encryption
and dead-code insertion), and stronger obfuscated (B) (string encryption and higher
measure of dead code). Inserting of dead code implies larger executables. In tested ex-
amples, for the test case (A) the size was increased by approximately 15 %, and stronger
obfuscation (B) increases size by approximately 30 %. Also a time of compilation was
longer, it takes about 50 % more for (A) and about 100 % more for (B), but malware
is usually small in the source code size, so this higher time consumption is not critical,

500 L. ĎURFINA AND D. KOLÁŘ

Malware name Original code Obfuscated (A) Stronger obfuscated (B)
Batzback 22/43 - 51.2% 13/43 - 30.2% 10/43 - 23.3%
Branko 10/43 - 23.3% 1/43 - 2.3% 0/43 - 0%
Cairuh 22/43 - 51.2% 18/43 - 43.9% 14/43 - 32.6%

Darkness IRC bot 14/43 - 32.6% 5/42 - 11.9% 4/43 - 9.3%
Hexbot 16/42 - 38.1% 14/43 - 32.6% 7/43 - 16.3%
JrBot 27/43 - 62.8% 18/43 - 41.9% 14/43 - 32.6%
Kbot 20/43 - 46.5% 12/43 - 27.9% 11/43 - 25.6%

lolworm 16/43 - 37.2% 11/43 - 25.6% 11/43 - 25.6%
Littlepain 14/43 - 32.6% 6/43 - 14% 4/43 - 9.3%

Akbot 25/43 - 58.1% 15/43 - 34.9% 14/43 - 32.6%
Mydoom 20/43 - 46.5% 11/43 - 25.6% 10/43 - 23.3%
Newstar 24/43 - 55.8% 20/43 - 46.5% 18/43 - 41.9%

MSBlaster 20/43 - 46.5% 17/43 - 39.5% 17/43 - 39.5%
Hunatchab 10/43 - 23.3% 0/43 - 0% 0/43 - 0%

Netsky 15/42 - 35.7% 13/43 - 30.2% 12/43 - 27.9%
Matrix 17/43 - 39.5% 5/43 - 11.6% 1/43 - 2.3%

Tab. 2. The results of experiment with malware.

because it was in all cases shorter than 5 seconds. For testing, we used the web ser-
vice VirusTotal1. This service provides scanning of the uploaded file by 43 anti-virus
applications.

The good result was achieved with Branko and Hunatchab, which were not detected
after stronger obfuscation at all. Also malware Win32.Matrix was obfuscated very
successfully, the count of detections was reduced from 17 to only 1. In the sum, the
executables from original code were marked as malware 292 times, after obfuscation
(A) there were 179 detections and finally, malware with stronger obfuscation (B) was
detected in only 147 cases, so the rate of detection was lowered by approximately 50%
of the original amount.

5. CONCLUSION

Each type of obfuscation can have good results for hiding the real object of code. The
positive information is that they are independent, so it is possible to use both on a
single program. Firstly, the source code is obfuscated, and after compilation there is
used binary obfuscation on executable.

As it was demonstrated by the experiment, this could be handily used by malware
creators and the antivirus software vendors are not prepared for such an option. There
is a need for creation of a generic decompiler, which would be able to recognize similar
behaviour of executables regardless of used arbitrary type of obfuscation.

Also, antivirus software vendors should enhance a recognition of dead code, because,
at this time, such a code can break pattern matching, which is used for malware detection

1Free Online Virus, Malware and URL Scanner http://www.virustotal.com/

http://www.virustotal.com/

C source code obfuscator 501

and they should put a lower significance to data in data sections, because such data
can be modified in various ways, and their correct representation can be gained in the
moment of use.

ACKNOWLEDGEMENT

This work has been supported by the research funding TAČR TA01010667, and by the Research
Plan No. MSM 0021630528.

(Received June 4, 2011)

R E FER E NCE S

[1] Free Software Foundation, Inc.: Volatiles – Using the GNU Compiler Collection. 2010,
http://gcc.gnu.org/onlinedocs/gcc/Volatiles.html.

[2] N. Harbour: Advanced Software Armoring and Polymorphic Kung-Fu. DEFCON 16,
2008.

[3] Intel: Intel Architecture Software Developer’s Manual Volume 2: Instruction Set Refer-
ence. 1999, http://download.intel.com/design/intarch/manuals/24319101.pdf.

[4] A. Karnik, S. Goswami, and R. Guha: Detecting Obfuscated Viruses Using Cosine
Similarity Analysis. Modelling Simulation, 2007.

[5] D. Low: Protecting Java code via code obfuscation. In: Crossroads – Special Issue on
Robotics, 1998.

[6] Microsoft: MSDN Library. http://msdn.microsoft.com/en-us/library/ms123401.

aspx.

[7] A. Moser, Ch. Kruegel, and E. Kirda: Limits of static analysis for malware detection.
In: Computer Security Applications Conference, 2007.

[8] Ch. Savarese and B. Hart.: The Caesar Cipher. 1999, http://www.cs.trincoll.edu/
∼crypto/historical/caesar.html.

Lukáš Ďurfina, Faculty of Information Technology Brno University of Technology, Božetěchova

1/2, 612 66 Brno. Czech Republic.

e-mail: idurfina@fit.vutbr.cz

Dušan Kolář, Faculty of Information Technology Brno University of Technology, Božetěchova

1/2, 612 66 Brno. Czech Republic.

e-mail: kolar@fit.vutbr.cz

http://gcc.gnu.org/onlinedocs/gcc/Volatiles.html
http://download.intel.com/design/intarch/manuals/24319101.pdf
http://msdn.microsoft.com/en-us/library/ms123401.aspx
http://msdn.microsoft.com/en-us/library/ms123401.aspx
http://www.cs.trincoll.edu/~crypto/historical/caesar.html
http://www.cs.trincoll.edu/~crypto/historical/caesar.html

		webmaster@dml.cz
	2013-09-24T12:29:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

