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Pseudoautomorphisms of Bruck

loops and their generalizations

MARK GREER, MICHAEL KINYON

Abstract. We show that in a weak commutative inverse property loop, such as a
Bruck loop, if « is a right [left] pseudoautomorphism with companion ¢, then ¢
[c?] must lie in the left nucleus. In particular, for any such loop with trivial left
nucleus, every right pseudoautomorphism is an automorphism and if the squaring
map is a permutation, then every left pseudoautomorphism is an automorphism
as well. We also show that every pseudoautomorphism of a commutative inverse
property loop is an automorphism, generalizing a well-known result of Bruck.

Keywords: pseudoautomorphism, Bruck loop, weak commutative inverse pro-
perty

Classification: 20N05

A loop (Q,-) consists of a set @) with a binary operation - : @ x @ — @ such
that (i) for all a,b € @, the equations ax = b and ya = b have unique solutions
xz,y € @, and (ii) there exists 1 € @ such that 1z = z1 = z for all z € Q.
We denote these unique solutions by z = a\b and y = b/a, respectively. For
x € @, define the right and left translations by x by, respectively, yR, = yx and
yL, = zy for all y € Q). That these mappings are permutations of () is essentially
part of the definition of loop. Standard reference in loop theory are [7], [13].

A triple («, 8,7) of permutations of a loop @ is an autotopism if for all z,y € Q,
za - yB = (zy)y. The set Atp(Q) of all autotopisms of @ is a group under
composition. Of particular interest here are the three subgroups

Atpy(Q) = {(a,8,7) € Atp(Q) | 18 = 1},
Atp, (@) = {(a,B,7) € Atp(Q) | 1y =1},
Atp,(Q) = {(a, 8,7) € Atp(Q) | 1a = 1}.

For instance, say, (a, 3,7) € Atp,(Q). For all z € Q, za = za-1 = za - 18 =
(z1)y = z7y. Thusa =+y. Set a = la. Forallz € Q, za = (1z)a = la-zf = a-z3
Thus a = SL,, and so every element of Atp,(Q) has the form (8L,, 3, 8L,) for
some a € ). Conversely, it is easy to see that if a triple of permutations of that
form is an autotopism, then 15 = 1.
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By similar arguments for the other two cases, we have the following character-
izations:

Atpy(Q) = Atp(Q) N{(BLq,B,BLa) | B € Sym(Q),a € Q},
Atp,(Q) = Atp(Q) N{(vR},vL7',7) | v € Sym(Q), c € Q},
Atp,(Q) = Atp(Q) N {(a, aRy,aRy) | @ € Sym(Q),b € Q}.

Since these special types of autotopisms are entirely determined by a single per-
mutation and an element of the loop, it is customary to focus on those instead of
on the autotopisms themselves. This motivates the following definitions.

Let @ be a loop. If 8 € Sym(Q) and a € @ satisfy

(1) a-(zy)B = (a-z6)(yps)

for all z,y € @, then 3 is called a left pseudoautomorphism with companion a. If
~v € Sym(Q) and ¢ € Q satisfy

(2) (zy)y = [(&7)/(AD][e\ ()]

for all z,y € @, then 7 is called a middle pseudoautomorphism with companion c.
Finally, if a € Sym(Q) and b € @ satisfy

(3) (zy)o- b = (za)(ya - b)

for all z,y € @, then « is called a right pseudoautomorphism with companion b.
Pseudoautomorphisms can also be viewed as isomorphisms between loop iso-
topes where the isotopy is determined by the companion. Since this perspective
will not play a role in what follows, we leave the details to the literature [7].
There are some specializations of the notion of pseudoautomorphism worth
mentioning explicitly. First, recall that the left, middle and right nucleus of a
loop @ are the sets

N\(Q)={a€Q|ar-y=a-zy, Yo,y € Q},
Nu(Q)={ceQ|zc-y=1x-cy, Y,y € Q},
N,(Q)={beQ|zy-b==x-yb, Vz,y € Q},

respectively.
We denote the identity mapping on @ by ¢.
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Lemma 1. Let ) be a loop. The nuclei are characterized as follows:

NA(Q) = {a €Q | (tLa,t,tL,) € Atp(Q)}

={a € Q| ¢ is a left pseudoautomorphism with companion a},

N.(Q)={ce Q]| (R.tL7' 1) € Atp(Q)}
= {c € Q| ¢ is a middle pseudoautomorphism with companion c},

Ny(Q) ={be Q[ (1,tRy, tRy) € Atp(Q)}

= {b € Q| ¢ is a right pseudoautomorphism with companion b}.

PROOF: Perhaps the only claim which is not immediately obvious is the charac-
terization of the middle nucleus. Suppose ¢ is a middle pseudoautomorphism with
companion c. Then for all z,y € @, zy = [z/(c\1)][c\y]. Replace y with cy to get
z-cy = [z/(c\1)]y. Set y =1 so that zc = z/(c\1). Thus z - cy = zc -y, that is,
¢ € N,(Q). The reverse inclusion is similarly straightforward. O

Note that all three of the nuclei are subloops. This can be proved directly from
their definitions, but perhaps the easiest proof uses the autotopic characterization
of Lemma 1.

A permutation o of a loop @ is an automnorphism of @ if (zy)o = (zo)(yo)
for all z,y € Q. Observe that a permutation ¢ is an automorphism if and only
if it is a pseudoautomorphism of any of the three types with companion 1. The
following is also clear from Lemma 1.

Lemma 2. Let () be a loop. If o € Sym(Q) is a left [middle, right] pseudoau-
tomorphism with companion ¢ € @ then o is an automorphism if and only if

c € NA(Q) [Nu(Q); N,o(Q)]-

A loop @ is said to be a (right) Bruck loop if it satisfies the Bol identity
[(zy)z]y = z[(yz)y] for all 2, y, z € Q and the automorphic inverse property (AIP):

(ATP) (zy) "' =27y

for all z,y € Q. (Bruck loops have also been called “K-loops” [10] or “gyrocom-
mutative gyrogroups” [14]. Note that much of the literature works with the dual
notion of left Bruck loop.) In a Bruck loop @, inverses are two-sided, that is,
1/x = 2\1 = 27!, and the right inverse property (RIP) holds:

(RIP) zy -y =z or equivalently R;' =R,

for all z,y € Q. Bruck loops have been intensively studied in recent years [1], [2],
3], [4], [5), [8], [10], [12].

The interest in Bruck loops is partly because they are a naturally occurring
class. As an example, consider the set S;"(R) of all n x n positive definite, sym-
metric matrices. By the polar decomposition, the product AB of two such ma-
trices decomposes uniquely as AB = UP where U is an orthogonal matrix and
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P € S}'(R). Define A©B = P. Then it is straightforward to show that (S;/ (R), ®)
is a Bruck loop (see, e.g., [10]).

Bruck loops are the motivation for our main result below, but we will state
and prove it in much more generality (hence the generalizations mentioned in the
title). The class of loops we will consider are those with two-sided inverses such
that the following identity holds:

(WCIP) (zy) "y =27

for all z,y. These were introduced by Johnson and Sharma [9] who called them
weak commutative inverse property loops (WCIP loops). It is clear that any loop
with the RIP and AIP satisfies WCIP. This applies in particular to Bruck loops
or even to the more general class of Kikkawa loops [10]. In fact, it is evident that
any two of the properties RIP, ATP and WCIP imply the third.

Lemma 3. A loop @ has the WCIP if and only if for all z,y € Q,
(WCIP2) y N\ =z\y.

ProOF: Replacing y in (WCIP) with z\y and rearranging, we obtain (WCIP2).
Replacing y in (WCIP2) with zy and rearranging, we obtain (WCIP). O

In particular, Lemma 3 shows that a loop ) has the WCIP if and only if the
isotrophic loop [13] (Q, o) defined by z oy = x~!\y is commutative.

Before turning to our main result, we will show that in the present setting we
can dispense with the notion of middle pseudoautomorphism. In a loop ) with
two-sided inverses, we will denote the inversion map by J: Q — Q;z — z~'.

Lemma 4. Let @ be loop with WCIP. If («, 3,7) € Atp(Q), then (JvJ, 3, JaJ)
€ Atp(Q).

PROOF: Since (a, ,7) € Atp(Q), we have za -y = (zy)y for all z,y € Q. Thus
(zy)yJ - yB = (za - yB)J - yB = zaJ using the WCIP. Replace z with (zy)~!
and use the WCIP again to get zJvJ - yp = (zy)Jad for all z,y € Q. Thus
(Jvd, B, JaJ) € Atp(Q). O

Lemma 5. Let ) be a loop with WCIP and let ¢ € Sym(Q). Then o is a
middle pseudoautomorphism with companion c¢ if and only if JoJ is a right
pseudoautomorphism with companion ¢=1.

PROOF: Suppose o is a middle pseudoautomorphism with companion ¢ so that
(oR ' ,0L;", 0)is an autotopism. By Lemma4, (JoJ,oL;', JoR_ ' J) € Atp(Q).
Since the first component fixes 1, this autotopism lies in Atp,(@Q), and so the sec-
ond and third components coincide and have the form JoJRy for some d. To
determine d, we compute d = lJaRc_,llJ = c¢ !, Thus (JoJ,JoJR.,JoJR,.) €
Atp,(Q), that is, o is a right pseudoautomorphism with companion ¢~ !. The
converse is similar. O
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As an aside, we mention that a similar result holds for loops with the right
inverse property: o is a middle pseudoautomorphism with companion ¢ if and only
if o is a right pseudoautomorphism with companion c. In place of Lemma 4, the
argument uses the fact that in RIP loops, (a, 8,7) € Atp(Q) implies (v, JBJ,a) €
Atp(Q) [10].

As a corollary of Lemmas 1 and 5, we re-obtain a fact from [9].
Corollary 6. In a loop Q with WCIP, N,(Q) = N,(Q).
Our main result is the following.

Theorem 7. Let Q be a WCIP loop, let o be a permutation of ) and let ¢ € Q.

(1) If o is a right pseudoautomorphism of () with companion ¢, then ¢ €

NA(Q).
(2) If o is a left pseudoautomorphism of @) with companion c, then ¢! is
also a companion of o and ¢* € N»(Q).

ProOF: (1) Since 1 =yy ! =y-z(x\y '), we have

c=10-c=yo-((a(e\y ))o-c) = yo - [vo - (@\y o o).

Thus

(4) 20\(yo\e) = (a\y™)o - c.
Exchanging the roles of z and y, we also have

(5) yo\(@o\e) = (\a~)o - c.

By (WCIP2), the right sides of (4) and (5) are equal, and so
(6) zo\(yo\c) = yo'\(zo\c).

Replacing z with zo~! and y with yo~! in (6), we have x\(y\c) = y\(z\¢), and
s0

(7) z(y\(z\c)) = y\c.

Setting = ¢ in (7), we obtain

(8) y\e=cy™".
Using (8) in (7), we have

(9) z(y\(ez™")) = ey
Taking y = cz ! in (9), we get

(10) clecx™) =2,
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Now in (9), replace z with cz~! and use (10) and (WCIP2) to obtain

(11) ot @y = eyl

1 1

Finally, in (11), replace z with 2~
to get

and y with y~", and then replace y with xy

cx -y =c-xy,

which shows ¢ € Ny (Q), as claimed.

(2) Since (oL¢,0,0L.) € Atp(Q), we have (JoL.J,0,JoL.J) € Atp(Q) by
Lemma 3. Since 1o = 1, this autotopism lies in Atp,(Q). Thus JoL.J = 0Lq
where d = 1JoL.J = ¢ . Hence (0L.-1,0,0L.-1) € Atp(Q), which shows that
o has ¢! as a companion. We have

(Lc_—ll ot ; ot > Lc_—ll Uﬁl)(aLc: g, ULC) = (Lc_—ll L, Lc_—ll Lc) € Atp(Q)

Therefore LcillLC = L, where e = lL;,llLC = ¢ Thus (Le,t,Le2) € Atp(Q),
that is, ¢> € Ny (Q). O

Corollary 8. Let Q be a WCIP loop with trivial left nucleus. Then every right
pseudoautomorphism is an automorphism. If, in addition, every element of () has
a unique square root, then every left pseudoautomorphism is an automorphism.

Ezample 9. The relativistic Bruck loop (or relativistic gyrocommutative gyro-
group) is the set of relativistic velocity vectors with Einstein’s velocity addition
as the operation [14]. This is isomorphic to the natural Bruck loop structure on
the set of positive definite symmetric Lorentz transformations [10, Chapter 10].
The left nucleus is trivial, because it is precisely the set of fixed points of the
action of the special orthogonal group. In addition, every element of the loop
has a unique square root. Thus we obtain: In the relativistic Bruck loop, every
pseudoautomorphism is an automorphism.

Finally, we generalize a well-known result of Bruck [6], who proved the following
for commutative Moufang loops.

Corollary 10. Every pseudoautomorphism of a commutative, inverse property
loop is an automorphism.

PROOF: In an inverse property loop, all nuclei coincide, so by Theorem 7 and
its left /right dual, the companion of any pseudoautomorphism lies in the nucleus
of . By Lemma 2, we have the desired result. d
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