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Abstract. Estimators of parameters of an investigated object can be considered after
some time as insufficiently precise. Therefore, an additional measurement must be realized.
A model of a measurement, taking into account both the original results and the new ones,
has a litle more complicated covariance matrix, since the variance components occur in it.
How to deal with them is the aim of the paper.
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1. Introduction

The necessity to realize an additional experiment can be illustrated by many ex-

amples. Instead of many others let us consider the following problem. Let the task

be to build a bridge consisting of prefabricated parts over the river. We have to know

whether the sizes of prefabricated parts are in agreement with the total length of

the bridge. This can be determined from the coordinates of some points of the state

geodetical network. Such points of the network are on both sides of the river, however

the precision of their coordinates need not be sufficient for the purpose mentioned.

Therefore, some additional measurement must be realized by a device (distance-

meter, theodolit, GPS), which is usually not the same as the measurement device

used in the measurement of the state network. Thus the characteristcs of accuracy

of both the measurements are included in the compound model of measurement. If

they are not known in advance, they must be estimated from the data obtained from

both the experiments.

* Supported by the Council of the Czech Government MS 4 198 959 214.
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The problem is whether these estimators can be used for an estimation of the

new coordinates of the state network points used for building the bridge. This leads

to sensitivity analysis. Problems of sensitivity analysis in linear models are studied

in [2], [4], [5], [6].

The formulation of the problem of an additional experiment leads to a little bit

more complicated linear statistical model. Different structures of linear models are

investigated in many books and articles, see e.g. [4], [1], [12], [14], [13], [7], [8].

In practice the problem of an additional experiment is more complicated, however,

the essence of the problem has been shown.

To contribute to a solution of the problem is the aim of the paper.

2. Notation

The notation Y ∼n (Xβ,Σ) means that the observation vector Y is an n-dimen-

sional random vector with the mean value E(Y) equal to Xβ, where X is an n × k

known matrix and β ∈ R
k (k-dimensional linear vector space) is an unknown vector

parameter. The covariance matrix Var(Y) of the vector Y is Var(Y) = Σ.

The compound model of the original and the additional experiment is

(

Y1

Y2

)

∼n1+n2

[(

X1

X2

)

β,

(

Σ1, 0

0, Σ2

)]

,

where Y1 is the observation vector of the original model and Y2 is the observation

vector of the additional experiment.

In the following text it is assumed that the rank r(X1) is k < n1 and the covariance

matrices are of the form Σ1 = ϑ1V1, Σ2 = ϑ2V2. The known matrices V1 and

V2 are positive definite. The values ϑ1, ϑ2 ∈ (0,∞) are unknown. It is not assumed

that r(X2) = k < n2, since n2 can be equal even to 1 (one additional measurement).

The symbolMX means MX = I− X(X′X)−1X′, where I is the identity matrix.

Let C1 = X′

1V
−1
1 X1 and C2 = X′

2V
−1
2 X2. In view of the assumptions the

matrix C1 is regular, however, the matrix C2 need not be regular. The sym-

bol (MXVMX)+ means the Moore-Penrose [9] generalized inverse of the matrix

MXVMX and under assumptions we have

(MXVMX)+ = V−1 − V−1X(X′V−1X)−1X′V−1.
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3. Preliminaries

Lemma 3.1. (i) The BLUE (best linear unbiased estimator) of β in the original

model is

β̂(1) = C−1
1 X′

1V
−1
1 Y1 ∼k (β, ϑ1C

−1
1 ).

(ii) The ϑ-LBLUE (locally best linear unbiased estimator) of β in the compound

model is

β̂(ϑ) =
( 1

ϑ1
C1 +

1

ϑ2
C2

)

−1(

X′

1

1

ϑ1
V−1

1 Y1 + X′

2

1

ϑ2
V−1

2 Y2

)

,

β̂(ϑ) ∼k

[

β,
( 1

ϑ1
C1 +

1

ϑ2
C2

)

−1]

.

P r o o f. Proof is well known and therefore it is omitted (e.g., cf. [10]). �

Corollary 3.2. The estimator β̂(ϑ) can be expressed as

β̂(ϑ) = β̂(1) +
( 1

ϑ1
C1 +

1

ϑ2
C2

)

−1

X′

2

V−1
2

ϑ2
(Y2 − X2β̂

(1)),

where β̂(1) = C−1
1 X′

1V
−1
1 Y1 (estimator in the original model).

P r o o f. The two following equalities must be utilized:

( 1

ϑ1
C1 +

1

ϑ2
X′

2V
−1
2 X2

)

−1

= ϑ1C
−1
1 − ϑ1C

−1
1 X′

2(ϑ2V2 + X2ϑ1C
−1
1 X′

2)
−1X2C

−1
1 ϑ1

and

ϑ1C
−1
1 X′

2(ϑ2V2 + X2ϑ1C
−1
1 X′

2)
−1 =

( 1

ϑ1
C1 +

1

ϑ2
C2

)

−1

X′

2

1

ϑ2
V−1

2 .

Thus

β̂(ϑ) =
( 1

ϑ1
C1 +

1

ϑ2
X′

2V
−1
2 X2

)

−1(

X′

1

1

ϑ1
V−1

1 Y1 + X′

2

1

ϑ2
V−1

2 Y2

)

= ϑ1C
−1X′

1

1

ϑ1
V−1

1 Y1 − ϑ1C
−1
1 X′

2(ϑ2V2 + X2ϑ1C
−1
1 X′

2)
−1

× X2C
−1
1 ϑ1X

′

1

1

ϑ1
V−1

1 Y1 +
( 1

ϑ1
C1 +

1

ϑ2
C2

)

−1

X′

2

1

ϑ2
V−1

2 Y2

= β̂(1) +
( 1

ϑ1
C1 +

1

ϑ2
X′V−1

2 X2

)

−1

X′

2

1

ϑ2
V−1

2 (Y2 − X2β̂
(1))

(cf. e.g., [1], p. 79). �
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The expression for β̂(ϑ) given in Corollary 3.2 is important from the viewpoint of

practice. The value β̂(1) can be registered in the state documentation institute and

cannot be changed without a serious reason. Thus the correction

( 1

ϑ1
C1 +

1

ϑ2
C2

)

−1

X′

2V
−1
2 (Y2 − X2β̂

(1))

has been used during the time of the building the bridge only.

Lemma 3.3. The random vectors

∂β̂(ϑ1, ϑ2)

∂ϑi

∣

∣

∣

ϑ=ϑ0

, i = 1, 2,

are uncorrelated with the vector β̂(ϑ1,0, ϑ2,0), i.e.

covϑ0

[

β̂(ϑ0),
∂β̂(ϑ1, ϑ2)

∂ϑi

∣

∣

∣

ϑ=ϑ0

]

= 0, i = 1, 2.

Here ϑ0 is an arbitrary however fixed vector of variance components.

P r o o f. In the following text the notation

D−1
0 =

( C1

ϑ1,0
+

C2

ϑ2,0

)

−1

, D−1 =
(C1

ϑ1
+

C2

ϑ2

)

−1

will be used.

Since

β̂(ϑ) = C−1
1 X′

1V
−1
1 Y1 + D−1X′

2

V−1
2

ϑ2
(Y2 − X2C

−1
1 X′

1V
−1
1 Y1)

=
(

I− D−1 C2

ϑ2

)

C−1
1 X′

1V
−1
1 Y1 + D−1X′

2

V−1
2

ϑ2
Y2,

we have

∂β̂(ϑ)

∂ϑ1
= −D−1 C1

ϑ2
1

D−1 C2

ϑ2
C−1

1 X′

1V
−1
1 Y1 + D−1 C1

ϑ2
1

D−1X′

2

V−1
2

ϑ2
Y2
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and

covϑ

[

β̂(ϑ),
∂β̂(ϑ1, ϑ2)

∂ϑ1

]

= −
(

I − D−1 C2

ϑ2

)

C−1
1 X′

1V
−1
1 ϑ1V1V

−1
1 X1C

−1
1

C2

ϑ2
D−1 C1

ϑ2
1

D−1

+ D−1X′

2

V−1
2

ϑ2
ϑ2V2

V−1
2

ϑ2
X2D

−1 C1

ϑ2
1

D−1

= − C−1
1

C2

ϑ2
D−1 C1

ϑ1
D−1 + D−1 C2

ϑ2
C−1

1

C2

ϑ2
D−1 C1

ϑ1
D−1

+ D−1 C2

ϑ2
D−1 C1

ϑ2
1

D−1

= − C−1
1

C2

ϑ2
D−1 C1

ϑ1
D−1 + C−1

1

C2

ϑ2
D−1 C1

ϑ1
D−1 − D−1 1

ϑ1

C2

ϑ2
D−1 C1

ϑ1
D−1

+ D−1 C2

ϑ2
D−1 C1

ϑ2
1

D−1 = 0.

Analogously,

∂β̂(ϑ)

∂ϑ2
= − D−1 C2

ϑ2
2

D−1 C2

ϑ2
C−1

1 X′

1V
−1
1 Y1

+ D−1 C2

ϑ2
2

C−1
1 X′

1V
−1
1 Y1 + D−1 C2

ϑ2
2

D−1X′

2

V−1
2

ϑ2
Y2

− D−1X′

2

V−1
2

ϑ2
2

Y2

=
(

I − D−1 C2

ϑ2

)

D−1 C2

ϑ2
2

C−1
1 X′

1V
−1
1 Y1

−
(

I − D−1 C2

ϑ2

)

D−1X′

2

V−1
2

ϑ2
2

Y2

and

covϑ

[

β̂(ϑ),
∂β̂(ϑ1, ϑ2)

∂ϑ2

]

=
(

I − D−1 C2

ϑ2

)

C−1
1 X′

1V
−1
1 ϑ1V1V

−1
1 X1C

−1
1

C2

ϑ2
2

D−1
(

I − C2

ϑ2
D−1

)

− D−1X′

2

V−1
2

ϑ2
ϑ2V2

V−1
2

ϑ2
2

X2D
−1

(

I − C2

ϑ2
D−1

)

= C−1
1 ϑ1

C2

ϑ2
2

D−1 − D−1
(

D − C1

ϑ1

)

C−1
1 ϑ1

C2

ϑ2
2

D−1 − C−1
1 ϑ1

C2

ϑ2
2

D−1 C2

ϑ2
D−1

+ D−1 C2

ϑ2
C−1

1 ϑ1
C2

ϑ2
2

D−1 C2

ϑ2
D−1 − D−1 C2

ϑ2
2

D−1 + D−1 C2

ϑ2
2

D−1 C2

ϑ2
D−1

395



= − C−1
1 ϑ1

C2

ϑ2
2

D−1 C2

ϑ2
D−1 + D−1

(

D − C1

ϑ1

)

C−1
1 ϑ1

C2

ϑ2
2

D−1 C2

ϑ2
D−1

+ D−1 C2

ϑ2
2

D−1 C2

ϑ2
D−1 = 0.

�

4. Insensitivity region

The parameters ϑ1, ϑ2 are usually unknown and they must be estimated from the

measured data. With respect to the assumptions the parameter ϑ1 can be estimated

in the original experiment, i.e.

ϑ̂1 =
Y′

1(MX1
V1MX1

)+Y1

n1 − k
.

The estimator is unbiased and in the case of normally distributed observation vec-

tor Y1 it has the smallest dispersion among all unbiased estimators in the original

model (cf. [6, pp. 81–85]).

The observation vector Y2 of the additional experiment cannot be used for an

estimation of ϑ2, since it can happen that n2 < k.

Thus an estimator based on

(

Y1

Y2

)

is considered.

Lemma 4.1. The ϑ0-MINQUE (minimum norm quadratic unbiased estimator)

(in more detail cf. [11]) of

(

ϑ1

ϑ2

)

in the model

(

Y1

Y2

)

∼n1+n2

[(

X1

X2

)

, ϑ1

(

V1, 0

0, 0

)

+ ϑ2

(

0, 0

0, V2

)]

is ϑ̂ = ϑ0 + δ̂ϑ, where

(

ϑ̂1

ϑ̂2

)

= S−1







[Y1 − X1β̂(ϑ0)]
′
V−1

1

ϑ1,0
[Y1 − X1β̂(ϑ0)]

[Y2 − X2β̂(ϑ0)]
′
V−1

2

ϑ2,0
[Y2 − X2β̂(ϑ0)]






,

β̂(ϑ0) = D−1
0

(

X′

1

V−1
1

ϑ1,0
Y1 + X′

2

V−1
2

ϑ2,0
Y2

)

,
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{S}1,1 = n1 − 2Tr
(

D−1
0

C1

ϑ1,0

)

+ Tr
(

D−1
0

C1

ϑ1,0
D−1

0

C1

ϑ1,0

)

,

{S}1,2 = {S}2,1 = Tr
(

D−1
0

C1

ϑ1,0
D−1

0

C2

ϑ2,0

)

,

{S}2,2 = n2 − 2Tr
(

D−1
0

C2

ϑ2,0

)

+ Tr
(

D−1
0

C2

ϑ2,0
D−1

0

C2

ϑ2,0

)

.

(It is assumed that the matrix S is positive definite.)

In the case of a normally distributed vector

(

Y1

Y2

)

we have

Varϑ0

(

ϑ̂1

ϑ̂2

)

= 2S−1.

P r o o f. It is sufficient to take into account the relationships (in more detail

cf. [11])

ϑ̂ = S−1







Y′(MXΣ0MX)+V1(MXΣ0MX)+Y
...

Y′(MXΣ0MX)+Vp(MXΣ0MX)+Y






,

{S}i,j = Tr[Vi(MXΣ0MX)+Vj(MXΣ0MX)+], i, j = 1, . . . , p,

for the ϑ0-MINQUE of ϑ = (ϑ1, . . . , ϑp)
′ in the model

Y ∼n

(

Xβ,

p
∑

i=1

ϑiVi

)

,

where r(Xn,k) = k < n, V1, . . . ,Vp, are symmetric and positive semidefinite, ϑi > 0,

i = 1, . . . , p, and Σ0 =
p
∑

i=1

ϑi,0Vi. The expression

Y′(MXΣ0MX)+Vi(MXΣ0MX)+Y

can be rewritten as

[Y − Xβ̂(ϑ0)]
′Σ−1

0 ViΣ
−1
0 [Y − Xβ̂(ϑ0)].

If

X =

(

X1

X2

)

, Σ0 =

(

ϑ1,0V1, 0

0, ϑ2,0V2

)

,
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we obtain

{S}1,1 =

Tr

{

(

ϑ1,0V1, 0

0, 0

)

[

(

V−1
1 /ϑ1,0, 0

0, V−1
2 /ϑ2,0

)

−
(

(V−1
1 /ϑ1,0)X1

(V−2
1 /ϑ2,0)X2

)

D−1
0

(

X′

1

V−1
1

ϑ1,0
,X′

2

V−1
2

ϑ2,0

)

]

(

ϑ1,0V1, 0

0, 0

)

×
[

(

V−1
1 /ϑ1,0, 0

0, V−1
2 /ϑ2,0

)

−
(

(V−1
1 /ϑ1,0)X1

(V−2
1 /ϑ2,0)X2

)

D−1
0

(

X′

1

V−1
1

ϑ1,0
,X′

2

V−1
2

ϑ2,0

)

]}

= Tr

{[(

I, 0

0, 0

)

−
(

X1

0

)

D−1
0

(

X′

1

V−1
1

ϑ1,0
,X′

2

V−1
2

ϑ2,0

)]

×
[(

I, 0

0, 0

)

−
(

X1

0

)

D−1
0

(

X′

1

V−1
1

ϑ1,0
,X′

2

V−1
2

ϑ2,0

)]}

= Tr

{(

I, 0

0, 0

)

− 2

(

X1

0

)

D−1
0

(

X′

1

V−1
1

ϑ1,0
,X′

2

V−1
2

ϑ2,0

)

+

(

X1

0

)

D−1
0

C1

ϑ1,0
D−1

0

(

X′

1

V−1
1

ϑ1,0
,X′

2

V−1
2

ϑ2,0

)}

= n1 − 2Tr

(

D−1
0

C1

ϑ1,0

)

+ Tr

(

D−1
0

C1

ϑ1,0
D−1

0

C1

ϑ1,0

)

.

Analogously the expressions for {S}1,2 and {S}2,2 can be obtained. �

Now the “plug-in” estimator of β can be calculated, i.e.

β̂(ϑ̂) = C−1
1 X′

1V
−1
1 Y1 +

(

C1

ϑ̂1

+
C2

ϑ̂2

)

−1

X′

2

V−1
2

ϑ̂2

(Y2 − X2C
−1
1 X′

1V
−1
1 Y1).

This estimator is of practical use in such a case only when it is known with

sufficiently high probability that the actual values of ϑ1 and ϑ2 are in the insensitivity

region. It is defined as follows.

Definition 4.2. Let h(β) = h′β, β ∈ R
k be a linear function of the parameter β.

The set

Nh = {ϑ : (ϑ − ϑ0)
′Nh(ϑ − ϑ0) < a2

h}
with the property

ϑ ∈ Nh ⇒ Varϑ0
[h′β̂(ϑ)] 6 (1 + ε)2Varϑ0

[h′β̂(ϑ0)]

is the insensitivity region for the function h(·) at the point ϑ0. Here ε > 0 is a

sufficiently small real number (for more detail cf. [5], [6]).

The matrix Nh and the number a2
h are given in Theorem 4.4.
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Lemma 4.3. We have

Varϑ0

(

∂β̂(ϑ1, ϑ2)

∂ϑ1

∣

∣

∣

ϑ=ϑ0

)

=
1

ϑ2
1,0

D−1
0

C1

ϑ1,0
D−1

0 − 1

ϑ2
1,0

D−1
0

C1

ϑ1,0
D−1

0

C1

ϑ1,0
D−1

0 ,

covϑ0

(

∂β̂(ϑ1, ϑ2)

∂ϑ1

∣

∣

∣

ϑ=ϑ0

,
∂β̂(ϑ1, ϑ2)

∂ϑ2

∣

∣

∣

ϑ=ϑ0

)

= − 1

ϑ1,0ϑ2,0
D−1

0

C1

ϑ2,0
D−1

0

C2

ϑ1,0
D−1

0 ,

Varϑ0

(

∂β̂(ϑ1, ϑ2)

∂ϑ2

∣

∣

∣

ϑ=ϑ0

)

=
1

ϑ2
2,0

D−1
0

C2

ϑ2,0
D−1

0 − 1

ϑ2
2,0

D−1
0

C2

ϑ2,0
D−1

0

C2

ϑ2,0
D−1

0 .

P r o o f. Since

β̂(ϑ1, ϑ2) = C−1
1 X′

1V
−1
1 Y1 + D−1X′

2

V−1
2

ϑ2
(Y2 − X2C

−1
1 X′

1V
−1
1 Y1),

we have (cf. also the proof of Lemma 3.3)

∂β̂(ϑ1, ϑ2)

∂ϑ1
= − D−1 C1

ϑ2
1

D−1X′

2

V−1
2

ϑ2
X2C

−1
1 X′

1V
−1
1 Y1 + D−1 C1

ϑ2
1

D−1X′

2

V−1
2

ϑ2
Y2

⇒ Varϑ

(

∂β̂(ϑ1, ϑ2)

∂ϑ1

)

=
1

ϑ1
D−1 C1

ϑ1
D−1 C2

ϑ2
C−1

1 X′

1V
−1
1 ϑ1V1V

−1
1 X1C

−1
1

C2

ϑ2
D−1 C1

ϑ1
D−1 1

ϑ1

+ D−1 C1

ϑ2
1

D−1 C2

ϑ2
D−1 C1

ϑ2
1

D−1

=
1

ϑ2
1

D−1 C1

ϑ1
D−1

(

D− C1

ϑ1

)

ϑ1C
−1
1

C2

ϑ2
D−1 C1

ϑ1
D−1

+
1

ϑ2
1

D−1 C1

ϑ1
D−1 C2

ϑ2
D−1 C1

ϑ1
D−1

=
1

ϑ2
1

D−1 C2

ϑ2
D−1 C1

ϑ1
D−1 − 1

ϑ2
1

D−1 C1

ϑ1
D−1 C2

ϑ2
D−1 C1

ϑ1
D−1

+
1

ϑ2
1

D−1 C1

ϑ1
D−1 C2

ϑ2
D−1 C1

ϑ1
D−1

=
1

ϑ2
1

D−1
(

D − C1

ϑ1

)

D−1 C1

ϑ1
D−1

=
1

ϑ2
1

D−1 C1

ϑ1
D−1 − 1

ϑ2
1

D−1 C1

ϑ1
D−1 C1

ϑ1
D−1.

The expressions for

covϑ0

(

∂β̂(ϑ1, ϑ2)

∂ϑ1

∣

∣

∣

ϑ=ϑ0

,
∂β̂(ϑ1, ϑ2)

∂ϑ2

∣

∣

∣

ϑ=ϑ0

)

and Varϑ0

(

∂β̂(ϑ1, ϑ2)

∂ϑ2

∣

∣

∣

ϑ=ϑ0

)

can be derived analogously. �
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Theorem 4.4. The matrix Nh from Definition 4.2 is

Nh =









h′Varϑ0

( ∂β̂

∂ϑ1

)

h, h′covϑ0

( ∂β̂

∂ϑ1
,

∂β̂

∂ϑ2

)

h

h′covϑ0

( ∂β̂

∂ϑ2
,

∂β̂

∂ϑ1

)

h, h′Varϑ0

( ∂β̂

∂ϑ2

)

h









and

a2
h = 2εVarϑ0

[h′β̂(ϑ0)].

The derivatives in the expression for Nh are related to ϑ0.

P r o o f. Let ϑ = ϑ0 + δϑ. Then

h′β̂(ϑ0 + δϑ) ≈ h′β̂(ϑ0) + h′
∂β̂(ϑ)

∂ϑ1

∣

∣

∣

ϑ=ϑ0

δϑ1 + h′
∂β̂(ϑ)

∂ϑ2

∣

∣

∣

ϑ=ϑ0

δϑ2

and in view of Lemma 3.3

Varϑ0
[h′β̂(ϑ)] ≈ h′Varϑ0

[

β̂(ϑ0)
]

h + δϑ′Nhδϑ.

Since

Varϑ0
[h′β̂(ϑ)] 6 (1 + ε)2Varϑ0

[h′β̂(ϑ0)],

we have

Varϑ0
[h′β̂(ϑ)] ≈ h′Varϑ0

[

β̂(ϑ0)
]

h + δϑ′Nhδϑ

6 (1 + ε)2Varϑ0
[h′β̂(ϑ0)]

⇒
√

h′Varϑ0
[β̂(ϑ0)]h + δϑ′Nhδϑ 6 (1 + ε)

√

h′Varϑ0
[β̂(ϑ0)]h,

√

h′Varϑ0
[β̂(ϑ0)]h + δϑ′Nhδϑ ≈

√

h′Varϑ0
[β̂(ϑ0)]h

(

1 +
1

2

δϑ′Nhδϑ

h′Varϑ0
[β̂(ϑ0)]h

)

6 (1 + ε)

√

Varϑ0
[h′β̂(ϑ0)],

1

2

δϑ′Nhδϑ

h′Varϑ0
[β̂(ϑ0)h

6 ε ⇒ δϑ′Nhδϑ 6 2εVarϑ0
[h′β̂)ϑ0)]

⇒ a2
h = 2εVarϑ0

[h′β̂(ϑ0)].

�

The expressions for the entries of the matrix Nh are given in Lemma 4.3.

The utilization of the above results can be described as follows.

(1) The value ϑ0 of the vector ϑ is chosen as near as possible to the actual value

of ϑ.
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(2) An iteration procedure

ϑ̂(i+1) = S−1(ϑ̂(i))









[Y1 − X1β̂(ϑ̂(i))]′
1

ϑ̂
(i)
1

V−1
1 [Y1 − X1β̂(ϑ̂(i))]

[Y2 − X2β̂(ϑ̂(i))]′
1

ϑ̂
(i)
2

V−1
2 [Y2 − X2β̂(ϑ̂(i))]









is proceeding until a stable value ϑ̂ is obtained. Then

β̂(ϑ̂) =
(C1

ϑ̂1

+
C2

ϑ̂2

)

−1
(

X′

1

V−1
1

ϑ̂1

Y1 + X′

2

V−1
2

ϑ̂2

Y2

)

.

(3) The value ϑ̂ is considered to be ϑ0 and by help of it the matrix Nh and a2
h are

calculated.

(4) When Nh is determined, it is necessary to check whether the actual value ϑ

is an element of Nh. The covariance matrix Var
ϑ̂
(ϑ̂) = 2S−1(ϑ̂) enables us

to construct (1 − α)-confidence region E with sufficiently high level 1 − α of

confidence. If E ⊂ Nh, then the plug-in estimator β̂(ϑ̂) of β is acceptable.

R em a r k 4.5. It is important to observe that the shift δϑ = ϑ − ϑ0 in the

direction of ϑ0 implies

Varϑ0
[β̂(ϑ0 + δϑ)] ≈ Varϑ0

[β̂(ϑ0)].

In more detail (cf. Lemma 3.3)

Varϑ0
[β̂(ϑ0 + ηϑ0)]

≈ Varϑ0

{

[β̂(ϑ0)] +
∂β̂(ϑ0)

∂ϑ′
ηϑ0

}

= Varϑ0
[β̂(ϑ0)] + η2(ϑ1,0)

2Varϑ0

(

∂β̂(ϑ0)

∂ϑ1

)

+ η2ϑ1,0ϑ2,0covϑ0

(

∂β̂(ϑ0)

∂ϑ1
,
∂β̂(ϑ0)

∂ϑ2

)

+ η2ϑ2,0ϑ1,0covϑ0

(

∂β̂(ϑ0)

∂ϑ2
,
∂β̂(ϑ0)

∂ϑ1

)

+ η2(ϑ2,0)
2Var

(

∂β̂(ϑ0)

∂ϑ2

)

= Varϑ0
[β̂(ϑ0)] + η2

{

D−1
0

C1

ϑ1,0
D−1

0 − D−1
0

C1

ϑ1,0
D−1

0

C1

ϑ1,0
D−1

0

− D−1
0

C2

ϑ2,0
D−1

0

C1

ϑ1,0
D−1

0 − D−1
0

C1

ϑ1,0
D−1

0

C2

ϑ2,0
D−1

0 + D−1
0

C2

ϑ2,0
D−1

0

− D−1
0

C2

ϑ2,0
D−1

0

C2

ϑ2,0
D−1

0

}

= Varϑ0
[β̂(ϑ0)] + η2

{

D−1
0 − D−1

0

C1

ϑ1,0
D−1

0 − D−1
0

C2

ϑ2,0
D−1

0

}

= Varϑ0
[β̂(ϑ0)].
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Thus mainly such shifts δϑ cause the enlargement of the dispersion of the estimator

for which δϑ′ϑ0 = 0.

It is of some interest to know also the sensitiveness of the variance

Varϑ0
[h′β̂(ϑ0 + δϑ)]

to the shift δϑ, i.e. to know

Varϑ0+δϑ[h′β̂(ϑ0 + δϑ)].

The corresponding insensitivity region NV,h is defined as follows.

Definition 4.6. The set NV,h is

NV,h = {δϑ : Varϑ0+δϑ[h′β̂(ϑ0 + δϑ)] 6 (1 + ε)2Varϑ0
[h′β̂(ϑ0)]}.

Lemma 4.7. The set NV,h at the point ϑ0 can be expressed as

NV,h = {δϑ : |q′

hδϑ| 6 2εh′D−1
0 h},

qh =

(

h′D−1
0 C1D

−1
0 h

ϑ2
1,0

,
h′D−1

0 C2D
−1
0 h

ϑ2
2,0

)

′

.

P r o o f. We have

Varϑ0+δϑ[β̂(ϑ0 + δϑ)] =

(

C1

ϑ1,0 + δϑ1
+

C2

ϑ2,0 + δϑ2

)

−1

≈ D−1
0 +

D−1
0 C1D

−1
0

ϑ2
1,0

δϑ1 +
D−1

0 C2D
−1
0

ϑ2
2,0

δϑ2

⇒ Varϑ0+δϑ[h′β̂(ϑ0 + δϑ)] ≈ h′D−1
0 h + q′

hδϑ.

Due to Definition 4.6,

√

Varϑ0+δϑ[h′β̂(ϑ0 + δϑ)] ≈
√

Varϑ0
[h′β̂(ϑ0)] + q′

hδϑ

6 (1 + ε)

√

Varϑ0
[h′β̂(ϑ0)]

⇒
√

1 +
q′

hδϑ

h′D−1
0 h

6 1 + ε ⇒ |q′

hδϑ| 6 2εh′D−1
0 h.

�
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5. Numerical example

Let the regression function be y = β1 + β2x, x ∈ R
1, let the measurement in

the original experiment be realized at the points x = −2;−1; 0; 1; 2, and let the

covariance matrix of the vector Y1 be Var(Y1) = 1I. Since in this experiment the

parameter β2 is estimated with relatively large dispersion (Var(β̂
(1)
2 ) = 0.1), the

additional experiment is realized, i.e. Y6 ∼1 (β1 + β210, 0.1).

In this case we have

C1 =

(

5, 0

0, 10

)

, C2 =

(

1, 10

10, 100

)

, ϑ1,0 = 1, ϑ2,0 = 0.1,

D−1
0 =

(

1

ϑ1,0
C1 +

1

ϑ2,0
C2

)

−1

=

(

0.196116, −0.019417

−0.019417, 0.002913

)

,

i.e. Varϑ0
[β̂2(ϑ0)] = 0.002913 ≪ 0.1 = Var(β̂

(1)
2 ).

Let us investigate the insensitivity region from Definition 4.2, which is in this case

interesting. Since (Lemma 4.3)

Varϑ0

(

∂β̂(ϑ0)

∂ϑ1

)

=
1

ϑ2
1,0

D−1
0

C1

ϑ1,0
D−1

0 − 1

ϑ2
1,0

D−1
0

C1

ϑ1,0
D−1

0

C1

ϑ1,0
D−1

0 = 0,

covϑ0

(

∂ ˆβ(ϑ0)

∂ϑ1
,
∂ ˆβ(ϑ0)

∂ϑ2

)

= − 1

ϑ1,0ϑ2,0
D−1

0

C1

ϑ2,0
D−1

0

C2

ϑ1,0
D−1

0 = 0,

covϑ0

(

∂ ˆβ(ϑ0)

∂ϑ2
,
∂ ˆβ(ϑ0)

∂ϑ1

)

=

[

covϑ0

(

∂β̂(ϑ0)

∂ϑ1
,
∂β̂(ϑ0)

∂ϑ2

)]

′

,

Varϑ0

(

∂β̂(ϑ0)

∂ϑ2

)

=
1

ϑ2
2,0

D−1
0

C2

ϑ2,0
D−1

0 − 1

ϑ2
2,0

D−1
0

C2

ϑ2,0
D−1

0

C2

ϑ2,0
D−1

0 = 0,

the matrix Nh from Definition 4.2, at the point ϑ0, is 0 for any function h(β) =

h′β, β ∈ R
2. The insensitivity region Nh seems to be the whole parametric space

(0,∞) × (0,∞) of the parameter ϑ. However, it is necessary to keep in mind that

the determination of Nh is based on the infinitesimal consideration.

In order to get an idea of the behaviour of Varϑ0
[β̂(ϑ0+δϑ)] in the neighbourhood

of the point ϑ0 let us compare the matrices

Varϑ0
[β̂(ϑ0)] =

(

C1

ϑ1,0
+

C2

ϑ2,0

)

−1

= D−1
0 = D−1(ϑ0), ϑ1,0 = 1, ϑ2,0 = 0.1

and

Varϑ0
[β̂(ϑ0 + δϑ)]

= D−1(ϑ0 + δϑ)

(

ϑ1,0

(ϑ1,0 + δϑ1)2
C1 +

ϑ2,0

(ϑ2,0 + δϑ2)2
C2

)

D−1(ϑ0 + δϑ)−1

for different δϑ.

403



In view of Remark 4.5 any shift δϑ = k

(

1

0.1

)

, k ∈ R
1, implies the approximate

equality

Varϑ0
[β̂(ϑ0 + kϑ0))] ≈ Varϑ0

[β̂(ϑ0)].

Let δϑ =

(

0

0.05

)

, cosϕ = ϑ′

0δϑ/
√

ϑ′

0ϑ0δϑ′δϑ = 0.0995, ϕ = 84.3◦. (This shift

is relatively large, i.e. 50% change of the value ϑ2,0 = 0.1 and the direction of it is

dangerous.) Nevertheless,

Varϑ0
[β̂(ϑ0 + δϑ)] =

(

0.196116, −0.019417

−0, 019417, 0.002915

)

,

which is practically the same as Varϑ0
[β̂(ϑ0)].

Let δϑ =

(

0

0.2

)

. Then

Varϑ0
[β̂(ϑ0 + δϑ)] =

(

0.196118, −0.019410

−0, 019410, 0.002948

)

.

Also in this case the agreement with the covariance matrix at the point ϑ0 of the

estimator β̂(ϑ0) is very good.

The insensitivity region NV,h (cf. Definition 4.6) is in the case h = (1, 0)′, ε = 0.1

NV,(1,0)′ = {δϑ : |q′

hδϑ| 6 2εh′D−1
0 h}

= {δϑ : |0.196078 δϑ1 + 0.000379 δϑ2| 6 0.039223}

and in the case h = (0, 1)′, ε = 0.1

NV,(0,1)′ = {ϑ : |0.001970 δϑ1 + 0.009434 δϑ2| 6 0.000583}.

The setNV,(1,0)′ is a strip orthogonal to q(1,0)′ = (0.196078, 0.000379)′ of the width

〈−0.2, 0.2〉. The set NV,(0,1)′ is a strip orthogonal to q(0,1)′ = (0.001970, 0.009434)′

of the width 〈−0.060, 0.060〉.
If δϑ ∈ NV,(1,0)′ and δϑ2 = 0, then |δϑ1,max| 6 0.2.

If δϑ ∈ NV,(1,0)′ and δϑ1 = 0, then |δϑ2,max| 6 103.5.

The variance of the estimator β̂1 is practically independent of the value ϑ2.

In the case of NV,(0,1)′ the analogous values are

δϑ2 = 0 ⇒ |δϑ1,max| 6 0.296,

δϑ1 = 0 ⇒ |δϑ2,max| 6 0.062.

The variance of the estimator β̂2 is much more sensitive to ϑ2 than the variance

of the estimator β̂1.
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In practice it is more sutitable to use σi =
√

ϑi instead of ϑi and therefore to

express the admissible shift δϑ in terms of the quantities δσ1, δσ2.

Since δϑi = 2σiδσi + (δσi)
2 ≈ 2σiδσi, i = 1, 2, we conclude that

δσi =
δϑi

2σi

=
δϑi

2
√

ϑi

.

Thus

|δϑ1,max| 6 0.2 ⇒ |δσ1,max| 6 0.1,

|δϑ2,max| 6 103.5 ⇒ |δσ2,max| 6 163.6,

|δϑ1,max| 6 0.296 ⇒ |δσ1,max| 6 0.148,

|δϑ2,max| 6 0.062 ⇒ |δσ2,max| 6 0.098.
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